Newer
Older
# written by Fabian Stenzel
# 2022-2023 - stenzel@pik-potsdam.de
################# BioCol calc functions ###################
#' Calculate BioCol based on file lists from a PNV run and LU run of LPJmL.
#' Do not use this function directly, unless you are instructed to do so, there
#' is a wrapper called calc_biocol() which is for use of endusers.
#'
#' Function to calculate BioCol based on a PNV run and LU run of LPJmL
#' @param files_scenario list with variable names and corresponding file paths
#' (character string) of the scenario LPJmL run. All needed files are
#' provided in XXX. E.g.: list(npp = "/temp/npp.bin.json")
#' @param files_baseline list with variable names and corresponding file paths
#' (character string) of the baseline LPJmL run. All needed files are
#' provided in XXX. E.g.: list(npp = "/temp/npp.bin.json"). If not
#' @param files_reference list with npp file path (character string) of the
#' reference LPJmL run (usually Holocene/preindustrial).
#' E.g.: list(npp = "/temp/npp.bin.json"). If NULL uses baseline npp.
#' @param time_span_scenario time span to be used for the scenario run, defined
#' as a character vector, e.g. `as.character(1982:2011)` (required)
#' @param time_span_baseline time span to be used for the baseline run, defined
#' as a character vector, e.g. `as.character(1901:1930)`. Can differ in offset
#' and length from `time_span_scenario`! If `NULL` value of `time_span_scenario`
#' is used
#' @param time_span_reference time span to read reference npp from, using
#' index years 10:39 from potential npp input if set to NULL (default: NULL)
#' @param gridbased logical are pft outputs gridbased or pft-based?
#' @param read_saved_data flag whether to read previously saved data
#' instead of reading it in from output files (default FALSE)
#' @param save_data whether to save input data to file (default FALSE)
#' @param data_file file to save/read input data to/from (default NULL)
#' @param include_fire boolean include firec in calculation of BioCol?
#' (default TRUE)
#' @param external_fire instead of reading in firec for fire emissions, read in
#' this external firec file from a separate spitfire run with disabled
#' lighning. this will then include only human induced fires
#' (default FALSE)
#' @param external_wood_harvest include external wood harvest from LUH2_v2h
#' (default FALSE)
#' @param grass_scaling whether to scale pasture harvest according to
#' data given via grass_harvest_file (default FALSE)
#' @param npp_threshold lower threshold for npp (to mask out non-lu areas
#' according to Haberl et al. 2007). Below BioCol will be set to 0.
#' (default: 20 gC/m2)
#' @param epsilon minimum value for npp, below which it will be set to 0
#' @param grass_harvest_file file containing grazing data to rescale the
#' grassland harvests according to Herrero et al. 2013. File contains:
#' grazing_data list object with $name and $id of 29 world regions, and
#' $Herrero_2000_kgDM_by_region containing for each of these regions and
#' mapping_lpj67420_to_grazing_regions array with a mapping between 67420
#' LPJmL cells and the 29 regions
#' @param external_fire_file path to external file with human induced fire
#' fraction c(cell,month,year) since 1500
#' @param external_wood_harvest_file path to R-file containing processed
#' timeline of maps for LUH2_v2h woodharvest
#' @param suppress_warnings suppress warnings when reading files (default: TRUE)

Fabian Stenzel
committed
#' @return list data object containing BioCol and components as arrays:
#' biocol_overtime, biocol_overtime_abs, biocol_overtime_abs_frac_piref,

Fabian Stenzel
committed
#' biocol_overtime_abs_frac, biocol_overtime_pos,
#' biocol_overtime_pos_frac_piref,biocol_overtime_pos_frac,

Fabian Stenzel
committed
#' biocol_overtime_frac_piref, biocol_overtime_frac, npp_harv_overtime,
#' npp_luc_overtime,npp_act_overtime, npp_pot_overtime,npp_eco_overtime,
#' harvest_grasslands_overtime, harvest_bioenergy_overtime,
#' harvest_cft_overtime, rharvest_cft_overtime, fire_overtime,
#' timber_harvest_overtime, wood_harvest_overtime, biocol, biocol_frac,
#' npp, biocol_frac_piref, npp_potential, npp_ref, harvest_cft,
#' rharvest_cft, biocol_harvest, biocol_luc, lat, lon, cellarea
read_calc_biocol <- function(
# nolint
files_scenario,
files_baseline,
files_reference = NULL,
time_span_scenario,
time_span_baseline = NULL,
time_span_reference = NULL,
gridbased = TRUE,
read_saved_data = FALSE,
save_data = FALSE,
data_file = NULL,
include_fire = FALSE,
external_fire = FALSE,
external_wood_harvest = FALSE,
grass_scaling = FALSE,
npp_threshold = 20,
epsilon = 0.001, # gC/m2
grass_harvest_file = NULL,
external_fire_file = NULL,
suppress_warnings = TRUE) {
files_reference <- list(npp = baseline_npp_file)
time_span_baseline <- time_span_scenario
}
if (is.null(time_span_reference)) {
time_span_reference <- time_span_scenario[3:12]
}
if (grass_scaling && !file.exists(grass_harvest_file)) {
stop(
paste0("Grass harvest scaling enabled, but grass_harvest_file \
does not exist in: ", grass_harvest_file)
)
}
if (external_wood_harvest && !file.exists(external_wood_harvest_file)) {
stop(
paste0("External wood harvest enabled, but external_wood_harvest_file \
does not exist in: ", external_wood_harvest_file)
)
}
if (external_fire && !file.exists(external_fire_file)) {
stop(
paste0("External fire fraction file enabled, but external_fire_file \
does not exist in: ", external_fire_file)
)
}
# reading required data
if (read_saved_data) {
if (file.exists(data_file)) {
message("Reading in data from previously saved data file")
load(data_file)
wood_harvest[is.na(wood_harvest)] <- 0
} else {
stop(
paste0(
"data_file: '",
data_file,
"' does not exist but is required since reading is set to FALSE."
)
message(
"Both read_saved_data and save_data have been set to TRUE. ",
"Overwriting with the same data does not make sense, saving ",
"disabled. "
file_type <- tools::file_ext(files_baseline$grid)
if (file_type %in% c("json", "clm")) {
# read grid
grid <- lpjmlkit::read_io(
files_baseline$grid
cellarea <- drop(lpjmlkit::read_io(
filename = files_baseline$terr_area

Fabian Stenzel
committed
npp <- abind::adrop(lpjmlkit::read_io(
subset = list(year = as.character(time_span_scenario))
) %>%

Fabian Stenzel
committed
suppressWarnings(), drop = "band") # gC/m2
if (!is.null(files_reference)) {

Fabian Stenzel
committed
npp_ref <- abind::adrop(lpjmlkit::read_io(
files_reference$npp,
subset = list(year = as.character(time_span_reference))
) %>%

Fabian Stenzel
committed
suppressWarnings(), drop = "band")
}
pftnpp <- lpjmlkit::read_io(
files_scenario$pft_npp,
subset = list(year = as.character(time_span_scenario))
) %>%
lpjmlkit::as_array(aggregate = list(month = sum)) %>%
suppressWarnings()
harvest <- lpjmlkit::read_io(
files_scenario$pft_harvestc,
subset = list(year = as.character(time_span_scenario))
) %>%
lpjmlkit::as_array(aggregate = list(month = sum)) %>%
suppressWarnings()
rharvest <- lpjmlkit::read_io(
files_scenario$pft_rharvestc,
subset = list(year = as.character(time_span_scenario))
) %>%
lpjmlkit::as_array(aggregate = list(month = sum)) %>%
suppressWarnings()

Fabian Stenzel
committed
timber <- abind::adrop(lpjmlkit::read_io(
subset = list(year = as.character(time_span_scenario))
) %>%

Fabian Stenzel
committed
suppressWarnings(), drop = "band")
if (include_fire) {
# read fire in monthly res. if possible, then multiply with monthly
# human/total ignition frac and aggregate to yearly. Otherwise aggregate
# human/total ignition frac to yearly and multiply with yearly firec
fire_raw <- lpjmlkit::read_io(
files_scenario$firec,
subset = list(year = as.character(time_span_scenario))
) %>%
lpjmlkit::as_array(aggregate = list(band = sum)) %>%
if (external_fire) {
load(external_fire_file) # frac = c(cell,month,year)
}
if ("month" %in% names(dim(fire_raw))) {
if (external_fire) {
fire <- apply(
fire_raw *
lpjmlkit::asub(frac,
year = time_span_scenario,
drop = FALSE
),
c("cell", "year"),
sum,
na.rm = TRUE
) # gC/m2
rm(frac)
} else {
fire <- apply(
fire_raw,
c("cell", "year"),
sum,
na.rm = TRUE
) # gC/m2
}
rm(fire_raw)
} else {
if (external_fire) {
frac_yearly <- apply(
lpjmlkit::asub(frac,
year = time_span_scenario,
drop = FALSE
),
c("cell", "year"),
mean,
na.rm = TRUE

Fabian Stenzel
committed
) # gC/m2
fire <- fire_raw * frac_yearly
rm(frac_yearly, frac)
}
}
gc()
} else {
fire <- timber * 0
}
if (external_wood_harvest) {
load(external_wood_harvest_file) # wh_lpj in kgC

Fabian Stenzel
committed

Fabian Stenzel
committed
lpjmlkit::asub(wh_lpj, year = time_span_scenario, drop = FALSE) *
)
# the division can lead to NAs
wood_harvest[is.na(wood_harvest)] <- 0

Fabian Stenzel
committed
rm(wh_lpj)
gc()
} else {
wood_harvest <- fire * 0
}
cftfrac <- lpjmlkit::read_io(
files_scenario$cftfrac,
subset = list(year = as.character(time_span_scenario))
) %>%
lpjmlkit::as_array(aggregate = list(month = sum)) %>%
suppressWarnings()

Fabian Stenzel
committed
npp_potential <- abind::adrop(lpjmlkit::read_io(
files_baseline$npp,
subset = list(year = as.character(time_span_baseline))
) %>%
# drop() %>% suppressWarnings()
suppressWarnings(), drop = "band") # gC/m2
subset = list(year = as.character(time_span_scenario))
) %>%

Fabian Stenzel
committed
lpjmlkit::as_array(subset = list(band = "natural stand fraction")) %>%
pftbands <- lpjmlkit::read_meta(files_scenario$fpc)$nbands - 1
} else if (file_type == "nc") { # to be added
stop(
"nc reading has not been updated to latest functionality.",
" Please contact Fabian Stenzel"
)
} else {
stop(
"Unrecognized file type (",
file_type,
")"
)
}
bp_bands <- c(15, 16, 31, 32)
grass_bands <- c(14, 30)
pftnpp[, , nat_bands] <- lpjmlkit::asub(pftnpp,
band = nat_bands,
drop = FALSE
) *
lpjmlkit::asub(fpc, band = rep(
"natural stand fraction",
pftbands
), drop = FALSE)
pftnpp[, , -c(nat_bands)] <- lpjmlkit::asub(pftnpp,
band = -c(nat_bands),
drop = FALSE
) * cftfrac
lpjmlkit::asub(pftnpp, band = (pftbands + grass_bands), drop = FALSE),
c("cell", "year"),

Fabian Stenzel
committed
lpjmlkit::asub(pftnpp,
band = -c(nat_bands, pftbands + grass_bands, pftbands + bp_bands),
drop = FALSE
),
c("cell", "year"),

Fabian Stenzel
committed
sum

Fabian Stenzel
committed
lpjmlkit::asub(pftnpp, band = pftbands + bp_bands, drop = FALSE),

Fabian Stenzel
committed
lpjmlkit::asub(pftnpp, band = nat_bands, drop = FALSE),

Fabian Stenzel
committed
sum

Fabian Stenzel
committed
npp_ref <- lpjmlkit::asub(npp_potential, year = pi_window, drop = FALSE)

Fabian Stenzel
committed
# lpjmlkit::asub(INARRAY, band = BANDS, drop = FALSE)

Fabian Stenzel
committed
lpjmlkit::asub(harvest, band = grass_bands, drop = FALSE),
sum
) # gC/m2 only from grassland bands
harvest_bioenergy <- apply(

Fabian Stenzel
committed
lpjmlkit::asub(harvest, band = bp_bands, drop = FALSE),
sum
) # gC/m2 only from bioenergy bands
harvest_cft <- apply(

Fabian Stenzel
committed
lpjmlkit::asub(harvest, band = -c(grass_bands, bp_bands), drop = FALSE),
sum
) # gC/m2 not from grassland and bioenergy bands
rharvest_cft <- apply(

Fabian Stenzel
committed
lpjmlkit::asub(rharvest, band = -c(grass_bands, bp_bands), drop = FALSE),
sum
) # gC/m2 not from grassland and bioenergy bands
if (save_data) {
if (!file.exists(data_file)) {
message(
"Data file (",
data_file,
") already exists, old file renamed to: ",
data_file,
"_sav"
file.rename(data_file, paste0(data_file, "_sav"))
}
save(npp_potential,
npp,
npp_ref,
pftnpp_cft,
pftnpp_nat,
pftnpp_grasslands,
pftnpp_bioenergy,
harvest_cft,
rharvest_cft,
fire,
timber,
fpc,
cftfrac,
harvest_grasslands,
harvest_bioenergy,
wood_harvest,
lat,
lon,
cellarea,
file = data_file
)
if (grass_scaling) {
load(grass_harvest_file)
nregs <- length(grazing_data$name)
lpj_grass_harvest_region <- array(0, dim = nregs)
lpj_grass_harvest_2000 <- rowMeans(
harvest_grasslands[, (1995 - start_year + 1):(2005 - start_year + 1)]
) * cellarea / 1000 * 2 # from gC/m2 to kgDM
grassland_scaling_factor_cellwise <- array(1, dim = grid$ncells)
lpj_grass_harvest_region[r] <- sum(
lpj_grass_harvest_2000[which(mapping_lpj67420_to_grazing_regions == r)]
)
}
scaling_factor <- (
grazing_data$Herrero_2000_kgDM_by_region / lpj_grass_harvest_region
)
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
grassland_scaling_factor_cellwise[
which(mapping_lpj67420_to_grazing_regions == r)
] <- scaling_factor[r]
}
harvest_grasslands <- harvest_grasslands * rep(
grassland_scaling_factor_cellwise,
times = length(harvest_grasslands[1, ])
)
}
npp_act_overtime <- colSums(npp * cellarea) / 10^15 # gC/m2 to GtC
npp_pot_overtime <- colSums(npp_potential * cellarea) / 10^15 # gC/m2 to GtC
npp_eco_overtime <- colSums(pftnpp_nat * cellarea) / 10^15 # gC/m2 to GtC
npp_luc_overtime <- npp_pot_overtime - npp_act_overtime
harvest_cft_overtime <- colSums(
harvest_cft * cellarea
) / 10^15 # gC/m2 to GtC
rharvest_cft_overtime <- colSums(
rharvest_cft * cellarea
) / 10^15 # gC/m2 to GtC
harvest_grasslands_overtime <- colSums(
harvest_grasslands * cellarea
) / 10^15 # gC/m2 to GtC
harvest_bioenergy_overtime <- colSums(
harvest_bioenergy * cellarea
) / 10^15 # gC/m2 to GtC
timber_harvest_overtime <- colSums(
timber * cellarea
) / 10^15 # gC/m2 to GtC
fire_overtime <- colSums(
fire * cellarea
) / 10^15 # gC/m2 to GtC
wood_harvest_overtime <- colSums(
wood_harvest * cellarea
) / 10^15 # gC/m2 to GtC
if (include_fire) {
npp_harv_overtime <- harvest_cft_overtime + rharvest_cft_overtime +
timber_harvest_overtime + fire_overtime + wood_harvest_overtime
npp_harv_overtime <- harvest_cft_overtime + rharvest_cft_overtime +
timber_harvest_overtime + wood_harvest_overtime
biocol_overtime <- npp_harv_overtime + npp_luc_overtime
biocol_overtime_frac_piref <- (
biocol_overtime / mean(colSums(npp_ref * cellarea) / 10^15)
)
biocol_overtime_frac <- (
# pick a PI window that excludes onset effects, but is reasonable early
if (include_fire) {
biocol_harvest <- (
harvest_cft + rharvest_cft + harvest_grasslands + harvest_bioenergy +
)
} else {
biocol_harvest <- (
harvest_cft + rharvest_cft + harvest_grasslands + harvest_bioenergy +
)
}
biocol <- biocol_harvest + biocol_luc
# set to 0 below lower threshold of NPP
biocol[abs(npp_potential) < npp_threshold] <- 0
# actual NPPpot as ref
biocol_frac <- biocol / npp_potential
biocol_frac_piref <- biocol / rowMeans(npp_ref)

Fabian Stenzel
committed
# take the abs of biocol and sum that up for overtime
biocol_overtime_abs <- colSums(abs(biocol * cellarea)) / 10^15
biocol_overtime_abs_frac_piref <- biocol_overtime_abs * 10^15 /
biocol_overtime_abs_frac <- biocol_overtime_abs / npp_pot_overtime

Fabian Stenzel
committed

Fabian Stenzel
committed
# take the abs of biocol and sum that up for overtime
biocol_pos <- biocol
biocol_pos[biocol_pos < 0] <- 0

Fabian Stenzel
committed
biocol_overtime_pos <- colSums(biocol_pos * cellarea) / 10^15
biocol_overtime_pos_frac_piref <- biocol_overtime_pos * 10^15 /
mean(colSums(npp_ref * cellarea))
biocol_overtime_pos_frac <- biocol_overtime_pos / npp_pot_overtime

Fabian Stenzel
committed
return(list(
biocol_overtime = biocol_overtime,
biocol_overtime_abs = biocol_overtime_abs,
biocol_overtime_abs_frac_piref = biocol_overtime_abs_frac_piref,

Fabian Stenzel
committed
biocol_overtime_abs_frac = biocol_overtime_abs_frac,
biocol_overtime_pos = biocol_overtime_pos,
biocol_overtime_pos_frac_piref = biocol_overtime_pos_frac_piref,
biocol_overtime_pos_frac = biocol_overtime_pos_frac,
biocol_overtime_frac_piref = biocol_overtime_frac_piref,
biocol_overtime_frac = biocol_overtime_frac,
npp_harv_overtime = npp_harv_overtime,
npp_luc_overtime = npp_luc_overtime,
npp_act_overtime = npp_act_overtime,
npp_pot_overtime = npp_pot_overtime,
npp_eco_overtime = npp_eco_overtime,
harvest_grasslands_overtime = harvest_grasslands_overtime,
harvest_bioenergy_overtime = harvest_bioenergy_overtime,
harvest_cft_overtime = harvest_cft_overtime,
rharvest_cft_overtime = rharvest_cft_overtime,
fire_overtime = fire_overtime,
timber_harvest_overtime = timber_harvest_overtime,
wood_harvest_overtime = wood_harvest_overtime,
biocol = biocol,
biocol_frac = biocol_frac,
npp = npp,
biocol_frac_piref = biocol_frac_piref,
npp_potential = npp_potential,
npp_ref = npp_ref,
harvest_cft = harvest_cft,
rharvest_cft = rharvest_cft,
biocol_harvest = biocol_harvest,

Fabian Stenzel
committed
biocol_luc = biocol_luc,
lat = lat,
lon = lon,
cellarea = cellarea
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
}
#' Calculate BioCol
#'
#' Wrapper function to calculate BioCol
#'
#' @param path_lu folder of landuse scenario run
#' @param path_pnv folder of pnv reference run
#' @param start_year first year of simulations
#' @param stop_year last year of simulations
#' @param reference_npp_time_span time span to read reference npp from, using
#' index years 10:39 from potential npp input if set to NULL (default: NULL)
#' @param reference_npp_file file to read reference npp from, using
#' potential npp input if set to NULL (default: NULL)
#' @param gridbased logical are pft outputs gridbased or pft-based?
#' @param read_saved_data flag whether to read previously saved data
#' instead of reading it in from output files (default FALSE)
#' @param save_data whether to save input data to file (default FALSE)
#' @param data_file file to save/read input data to/from (default NULL)
#' @param include_fire boolean include firec in calculation of BioCol?
#' (default TRUE)
#' @param external_fire instead of reading in firec for fire emissions, read in
#' this external firec file from a separate spitfire run with disabled
#' lighning. this will then include only human induced fires
#' (default FALSE)
#' @param external_wood_harvest include external wood harvest from LUH2_v2h
#' (default FALSE)
#' @param grass_scaling whether to scale pasture harvest according to
#' data given via grass_harvest_file (default FALSE)
#' @param npp_threshold lower threshold for npp (to mask out non-lu areas
#' according to Haberl et al. 2007). Below BioCol will be set to 0.
#' (default: 20 gC/m2)
#' @param grass_harvest_file file containing grazing data to rescale the
#' grassland harvests according to Herrero et al. 2013. File contains:
#' grazing_data list object with $name and $id of 29 world regions, and
#' $Herrero_2000_kgDM_by_region containing for each of these regions and
#' mapping_lpj67420_to_grazing_regions array with a mapping between 67420
#' LPJmL cells and the 29 regions
#' @param external_fire_file path to external file with human induced fire
#' fraction c(cell,month,year) since 1500
#' @param external_wood_harvest_file path to R-file containing processed
#' timeline of maps for LUH2_v2h woodharvest

Fabian Stenzel
committed
#' @param replace_input_file_names list with alternative names for output

Fabian Stenzel
committed
#' identifiers to replace the ones in inst/ext_files/metric_files.yml.

Fabian Stenzel
committed
#' e.g. list(npp="mnpp") would replace the expected output for npp with

Fabian Stenzel
committed
#' mnpp followed by the automatically detected file extension (.bin.json)
#' @param suppress_warnings suppress warnings when reading files (default: TRUE)
#'
#' @return list data object containing BioCol and components as arrays: biocol,
#' biocol_overtime, biocol_overtime_piref, biocol_frac, npp_potential,
#' biocol_overtime_abs_frac_piref, biocol_frac_piref, npp_act_overtime,
#' npp_pot_overtime, npp_eco_overtime, npp_ref, harvest_cft_overtime,
#' npp_luc_overtime, rharvest_cft_overtime, fire_overtime,
#' timber_harvest_overtime, harvest_cft, rharvest_cft,

Fabian Stenzel
committed
#' wood_harvest_overtime, biocol_harvest, biocol_luc, lat, lon, cellarea
#' @examples
#' \dontrun{
#' calc_biocol(
#' path_lu = run_folder,
#' path_pnv = pnv_folder,
#' gridbased = TRUE,
#' start_year = 1980,
#' stop_year = 2014,

Fabian Stenzel
committed
#' reference_npp_time_span = 1510:1539,
#' read_saved_data = FALSE,
#' save_data = FALSE,
#' npp_threshold = 20,
#' }
#'
#' @md
path_lu,
path_pnv,
start_year,
stop_year,
reference_npp_time_span = NULL,
reference_npp_file = NULL,
gridbased = TRUE,
read_saved_data = FALSE,
save_data = FALSE,
data_file = NULL,
include_fire = FALSE,
external_fire = FALSE,
external_wood_harvest = FALSE,
grass_scaling = FALSE,
npp_threshold = 20,
grass_harvest_file = NULL,
external_fire_file = NULL,
external_wood_harvest_file = NULL,

Fabian Stenzel
committed
replace_input_file_names = NULL,
suppress_warnings = TRUE) {

Fabian Stenzel
committed
metric_files <- system.file(
"extdata",
"metric_files.yml",
package = "biospheremetrics"
) %>%
yaml::read_yaml()
# translate output names (from metric_files.yml)
# and folders to files_scenarios/reference lists

Fabian Stenzel
committed
file_extension <- get_major_file_ext(paste0(path_lu))
files_scenario <- list()
files_baseline <- list()

Fabian Stenzel
committed

Fabian Stenzel
committed
for (output in names(metric_files$metric$biocol$output)) {
# Iterate over all outputs
if (is.null(replace_input_file_names[[output]])) {
for (file in metric_files$file_name[[output]]) {

Fabian Stenzel
committed
full_file_path_lu <- paste0(path_lu, file, ".", file_extension)
if (file.exists(full_file_path_lu)) {
files_scenario[[output]] <- full_file_path_lu
}
full_file_path_pnv <- paste0(path_pnv, file, ".", file_extension)
if (file.exists(full_file_path_pnv)) {
files_baseline[[output]] <- full_file_path_pnv
}
}
if (is.null(files_scenario[[output]])) {
stop(
"None of the default file names for ", output,
" were found in ", path_lu, "please check or define manually",
" using argument 'replace_input_file_names'. Stopping."
)

Fabian Stenzel
committed
}
if (is.null(files_baseline[[output]])) {
stop(
"None of the default file names for ", output,
" were found in ", path_pnv, "please check or define manually",
" using argument 'replace_input_file_names'. Stopping."
)

Fabian Stenzel
committed
}

Fabian Stenzel
committed
} else {
files_scenario[[output]] <- paste0(
path_lu,
replace_input_file_names[[output]], ".", file_extension
)
files_baseline[[output]] <- paste0(
path_pnv,
replace_input_file_names[[output]], ".", file_extension
)

Fabian Stenzel
committed
}

Fabian Stenzel
committed
}
if (is.null(reference_npp_file)) reference_npp_file <- files_baseline$npp
files_reference <- list(
return(
read_calc_biocol(
files_scenario = files_scenario,
files_baseline = files_baseline,
files_reference = files_reference,
time_span_scenario = as.character(start_year:stop_year),
time_span_baseline = as.character(start_year:stop_year),
time_span_reference = reference_npp_time_span,
gridbased = gridbased,
read_saved_data = read_saved_data,
save_data = save_data,
data_file = data_file,
include_fire = include_fire,
external_fire = external_fire,
external_wood_harvest = external_wood_harvest,
grass_scaling = grass_scaling,
npp_threshold = npp_threshold,
grass_harvest_file = grass_harvest_file,
external_fire_file = external_fire_file,
external_wood_harvest_file = external_wood_harvest_file,
suppress_warnings = suppress_warnings