Skip to content
Snippets Groups Projects
biocol.R 37 KiB
Newer Older
Jannes Breier's avatar
Jannes Breier committed
# written by Fabian Stenzel
# 2022-2023 - stenzel@pik-potsdam.de

################# BioCol calc functions  ###################

#' Calculate BioCol based on a PNV run and LU run of LPJmL
#'
#' Function to calculate BioCol based on a PNV run and LU run of LPJmL
#' @param files_scenario list with variable names and corresponding file paths
#' (character string) of the scenario LPJmL run. All needed files are
#' provided in XXX. E.g.: list(leaching = "/temp/leaching.bin.json")
#' @param files_reference list with variable names and corresponding file paths
#' (character string) of the reference LPJmL run. All needed files are
#' provided in XXX. E.g.: list(leaching = "/temp/leaching.bin.json"). If not
#' needed for the applied method, set to NULL.
#' @param time_span_scenario time span to be used for the scenario run, defined
#' as a character string, e.g. `as.character(1982:2011)` (default)
#' @param time_span_reference time span to be used for the scenario run, defined
#' as an integer vector, e.g. `as.character(1901:1930)`. Can differ in offset
#' and length from `time_span_scenario`! If `NULL` value of `time_span_scenario`
#' is used
#' @param reference_npp_time_span time span to read reference npp from, using
#'     index years 10:39 from potential npp input if set to NULL (default: NULL)
#' @param reference_npp_file file to read reference npp from, using
#'        potential npp input if set to NULL (default: NULL)
#' @param gridbased logical are pft outputs gridbased or pft-based?
#' @param read_saved_data flag whether to read previously saved data
#'        instead of reading it in from output files (default FALSE)
#' @param save_data whether to save input data to file (default FALSE)
#' @param data_file file to save/read input data to/from (default NULL)
#' @param include_fire boolean include firec in calculation of BioCol?
#' (default TRUE)
#' @param external_fire instead of reading in firec for fire emissions, read in
#'        this external firec file from a separate spitfire run with disabled
#'        lighning. this will then include only human induced fires
#' (default FALSE)
#' @param external_wood_harvest include external wood harvest from LUH2_v2h
#'        (default FALSE)
#' @param grass_scaling whether to scale pasture harvest according to
#'        data given via grass_harvest_file (default FALSE)
#' @param npp_threshold lower threshold for npp (to mask out non-lu areas
#'        according to Haberl et al. 2007). Below BioCol will be set to 0.
#'        (default: 20 gC/m2)
#' @param grass_harvest_file file containing grazing data to rescale the
#'        grassland harvests according to Herrero et al. 2013. File contains:
#'        grazing_data list object with $name and $id of 29 world regions, and
#'        $Herrero_2000_kgDM_by_region containing for each of these regions and
#'        mapping_lpj67420_to_grazing_regions array with a mapping between 67420
#'        LPJmL cells and the 29 regions
#' @param external_fire_file path to external file with human induced fire
#'        fraction c(cell,month,year) since 1500
#' @param external_wood_harvest_file path to R-file containing processed
#'        timeline of maps for LUH2_v2h woodharvest
#'
#' @return list data object containing BioCol and components as arrays: biocol,
#'         biocol_overtime, biocol_overtime_piref, biocol_frac, npp_potential,
#'         biocol_overtime_abs_frac_piref, biocol_frac_piref, npp_act_overtime,
#'         npp_pot_overtime, npp_eco_overtime, npp_ref, harvest_cft_overtime,
#'         npp_luc_overtime, rharvest_cft_overtime, fire_overtime,
#'         timber_harvest_overtime, harvest_cft, rharvest_cft,
#'         wood_harvest_overtime, biocol_harvest, biocol_luc
Jannes Breier's avatar
Jannes Breier committed
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
#'
#' @export
read_calc_biocol <- function( # nolint
  files_scenario,
  files_reference,
  time_span_scenario,
  time_span_reference = NULL,
  reference_npp_time_span = NULL,
  reference_npp_file = NULL,
  gridbased = TRUE,
  read_saved_data = FALSE,
  save_data = FALSE,
  data_file = NULL,
  include_fire = FALSE,
  external_fire = FALSE,
  external_wood_harvest = FALSE,
  grass_scaling = FALSE,
  npp_threshold = 20,
  grass_harvest_file = "grazing_data.RData",
  external_fire_file = "human_ignition_fraction.RData",
  external_wood_harvest_file = "wood_harvest_biomass_sum_1500-2014_67420.RData"
) {
  if (is.null(time_span_reference)) time_span_reference <- time_span_scenario
  if (grass_scaling && !file.exists(grass_harvest_file)) {
    stop(
      paste0("Grass harvest scaling enabled, but grass_harvest_file does not exist in: ", # nolint
             grass_harvest_file)
    )
  }
  if (external_wood_harvest && !file.exists(external_wood_harvest_file)) {
    stop(
      paste0("External wood harvest enabled, but external_wood_harvest_file does not exist in: ", # nolint
             external_wood_harvest_file)
    )
  }
  if (external_fire && !file.exists(external_fire_file)) {
    stop(
      paste0("External fire fraction file enabled, but external_fire_file does not exist in: ", # nolint
             external_fire_file)
    )
  }
  # reading required data
  if (read_saved_data) {
    if (file.exists(data_file)) {
      print(paste0("Reading in data from previously saved data file"))
      load(data_file)
      wood_harvest[is.na(wood_harvest)] <- 0
    } else {
      stop(
        paste0("data_file: '",
               data_file,
               "' does not exist but is required since reading is set to FALSE."
               )
      )
    }
    if (save_data) {
      save_data <- FALSE
      print(
        paste0("Both read_saved_data and save_data have been set to TRUE. ",
            "Overwriting with the same data does not make sense, saving ",
            "disabled. ")
      )
    }
  } else {
    print("Reading in data from outputs")

    file_type <- tools::file_ext(files_reference$grid)

    if (file_type %in% c("json", "clm")) {
      # read grid
      grid <- lpjmlkit::read_io(
        files_reference$grid
      )
      # calculate cell area
      cellarea <- lpjmlkit::calc_cellarea(grid)
      lat <- grid$data[, , 2]
      lon <- grid$data[, , 1]

      npp <- lpjmlkit::read_io(
        files_scenario$npp,
        subset = list(year = as.character(time_span_scenario))) %>%
        lpjmlkit::transform(to = c("year_month_day")) %>%
        lpjmlkit::as_array(aggregate = list(month = sum)) %>% drop() # gC/m2

      if (!is.null(reference_npp_file)) {
        npp_ref <- lpjmlkit::read_io(
          reference_npp_file,
          subset = list(year = as.character(reference_npp_time_span))) %>%
          lpjmlkit::transform(to = c("year_month_day")) %>%
          lpjmlkit::as_array(aggregate = list(month = sum)
        ) %>% drop() # remaining bands
      }

      pftnpp <- lpjmlkit::read_io(
        files_scenario$pft_npp,
        subset = list(year = as.character(time_span_scenario))) %>%
        lpjmlkit::transform(to = c("year_month_day")) %>%
        lpjmlkit::as_array(aggregate = list(month = sum)
      )

      harvest <- lpjmlkit::read_io(
        files_scenario$pft_harvestc,
        subset = list(year = as.character(time_span_scenario))) %>%
        lpjmlkit::transform(to = c("year_month_day")) %>%
        lpjmlkit::as_array(aggregate = list(month = sum)
      )

      rharvest <- lpjmlkit::read_io(
        files_scenario$pft_rharvestc,
        subset = list(year = as.character(time_span_scenario))) %>%
        lpjmlkit::transform(to = c("year_month_day")) %>%
        lpjmlkit::as_array(aggregate = list(month = sum))

      timber <- lpjmlkit::read_io(
        files_scenario$timber_harvestc,
        subset = list(year = as.character(time_span_scenario))) %>%
        lpjmlkit::transform(to = c("year_month_day")) %>%
        lpjmlkit::as_array(aggregate = list(month = sum)
      ) %>% drop() # remaining bands

      if (include_fire) {

        # read fire in monthly res. if possible, then multiply with monthly
        # human/total ignition frac and aggregate to yearly. Otherwise aggregate
        # human/total ignition frac to yearly and multiply with yearly firec
        fire_raw <- lpjmlkit::read_io(
          files_scenario$firec,
          subset = list(year = as.character(time_span_scenario))) %>%
          lpjmlkit::transform(to = c("year_month_day")) %>%
          lpjmlkit::as_array(aggregate = list(band = sum)
        ) # gC/m2

        if (external_fire) {
          load(external_fire_file) # frac = c(cell,month,year)
        }

        if ("month" %in% names(dim(fire_raw))) {
          if (external_fire) {
            fire <- apply(
              fire_raw * frac[, , year = time_span_scenario],
              c("cell", "year"),
              sum,
              na.rm = TRUE
            ) # gC/m2
            rm(frac)

          } else {
            fire <- apply(
              fire_raw,
              c("cell", "year"),
              sum,
              na.rm = TRUE
            ) # gC/m2
          }
          rm(fire_raw)

        } else {
          if (external_fire) {
            frac_yearly <- apply(
              frac[, , year = time_span_scenario],
              c("cell", "year"),
              mean,
              na.rm = TRUE
            )
            fire <- fire_raw * frac_yearly
            rm(frac_yearly, frac)
          }
        }
        gc()
      } else {
        fire <- timber * 0
      }

      if (external_wood_harvest) {
        load(external_wood_harvest_file) # wh_lpj in kgC
        wh_years <- names(wh_lpj[1, ])
        # from kgC to gC/m2
        wood_harvest <- (
          wh_lpj[, match(time_span_scenario, wh_years)] * 10^3 / cellarea
        )
        # the division can lead to NAs
        wood_harvest[is.na(wood_harvest)] <- 0
        rm(wh_lpj, wh_years)
        gc()

      } else {
        wood_harvest <- fire * 0
      }

      cftfrac <- lpjmlkit::read_io(
        files_scenario$cftfrac,
        subset = list(year = as.character(time_span_scenario))) %>%
        lpjmlkit::transform(to = c("year_month_day")) %>%
        lpjmlkit::as_array(aggregate = list(month = sum)
      )

      npp_potential <- lpjmlkit::read_io(
        files_reference$npp,
        subset = list(year = as.character(time_span_reference))) %>%
        lpjmlkit::transform(to = c("year_month_day")) %>%
        lpjmlkit::as_array(aggregate = list(month = sum)
      ) %>% drop() # gC/m2

      fpc <- lpjmlkit::read_io(
        files_scenario$fpc,
        subset = list(year = as.character(time_span_scenario))) %>%
        lpjmlkit::transform(to = c("year_month_day")) %>%
        lpjmlkit::as_array(aggregate = list(band = sum)
      )

      pftbands <- lpjmlkit::read_meta(files_scenario$fpc)$nbands - 1

    } else if (file_type == "nc") { # to be added
      stop(
        "nc reading has not been updated to latest functionality.",
        " Please contact Fabian Stenzel"
      )

    } else {
      stop("Unrecognized file type (",
           file_type,
           ")")
    }

    bp_bands <- c(15, 16, 31, 32)
    grass_bands <- c(14, 30)
    nat_bands <- 1:pftbands

    if (!gridbased) { # needs to be scaled with standfrac
      pftnpp[, , nat_bands] <- pftnpp[, , nat_bands] * fpc[, , 2:(pftbands + 1)]
      pftnpp[, , -c(nat_bands)] <- pftnpp[, , -c(nat_bands)] * cftfrac
      harvest <- harvest * cftfrac
    }

    pftnpp_grasslands <- apply(
      pftnpp[, , pftbands + grass_bands],
      c(1, 2),
      sum
    ) #gC/m2 only from grassland bands

    pftnpp_cft <- apply(
      pftnpp[, , -c(nat_bands, pftbands + grass_bands, pftbands + bp_bands)],
      c(1, 2), sum
    ) #gC/m2 not from grassland and bioenergy bands

    pftnpp_bioenergy <- apply(
      pftnpp[, , pftbands + bp_bands],
      c(1, 2),
      sum
    ) #gC/m2 only from bioenergy bands

    pftnpp_nat <- apply(
      pftnpp[, , nat_bands], c(1, 2), sum) # gC/m2

    if (is.null(reference_npp_file)){
      pi_window <- 3:32
      npp_ref <- npp_potential[, pi_window]
    } # npp_ref

    harvest_grasslands <- apply(
      harvest[, , grass_bands],
      c(1, 2),
      sum
    ) # gC/m2 only from grassland bands

    harvest_bioenergy <- apply(
      harvest[, , bp_bands],
      c(1, 2),
      sum
    ) # gC/m2 only from bioenergy bands

    harvest_cft <- apply(
      harvest[, , -c(grass_bands, bp_bands)],
      c(1, 2),
      sum
    ) # gC/m2 not from grassland and bioenergy bands

    rharvest_cft <- apply(
      rharvest[, , -c(grass_bands, bp_bands)],
      c(1, 2),
      sum
    ) # gC/m2 not from grassland and bioenergy bands

    if (save_data) {
      if (!file.exists(data_file)) {
        print(paste0("Writing data file: ", data_file))
      } else {
        print(
          paste0(
            "Data file (",
            data_file,
            ") already exists, old file renamed to: ",
            data_file,
            "_sav")
          )
        file.rename(data_file, paste0(data_file, "_sav"))
      }

      save(npp_potential,
           npp,
           npp_ref,
           pftnpp_cft,
           pftnpp_nat,
           pftnpp_grasslands,
           pftnpp_bioenergy,
           harvest_cft,
           rharvest_cft,
           fire,
           timber,
           fpc,
           cftfrac,
           harvest_grasslands,
           harvest_bioenergy,
           wood_harvest,
           lat,
           lon,
           cellarea,
           file = data_file)
    }
  }

  print(paste0("Calculating data"))

  if (grass_scaling) {
    load(grass_harvest_file)

    nregs <- length(grazing_data$name)

    lpj_grass_harvest_region <- array(0, dim = nregs)

    lpj_grass_harvest_2000 <- rowMeans(
      harvest_grasslands[, (1995 - start_year + 1) : (2005 - start_year + 1)]
    ) * cellarea / 1000 * 2 # from gC/m2 to kgDM

    grassland_scaling_factor_cellwise <- array(1, dim = grid$ncells)

    for (r in 1:nregs) {
      lpj_grass_harvest_region[r] <- sum(
        lpj_grass_harvest_2000[which(mapping_lpj67420_to_grazing_regions == r)]
      )
    }

    scaling_factor <- (
      grazing_data$Herrero_2000_kgDM_by_region / lpj_grass_harvest_region
    )

    for (r in 1:nregs) {
      grassland_scaling_factor_cellwise[
        which(mapping_lpj67420_to_grazing_regions == r)
      ] <- scaling_factor[r]
    }
    harvest_grasslands <- harvest_grasslands * rep(
      grassland_scaling_factor_cellwise,
      times = length(harvest_grasslands[1, ])
    )
  }

  npp_act_overtime <- colSums(npp * cellarea) / 10^15 # gC/m2 to GtC
  npp_pot_overtime <- colSums(npp_potential * cellarea) / 10^15 # gC/m2 to GtC
  npp_eco_overtime <- colSums(pftnpp_nat * cellarea) / 10^15 # gC/m2 to GtC
  npp_luc_overtime <- npp_pot_overtime - npp_act_overtime

  harvest_cft_overtime <- colSums(
    harvest_cft * cellarea
  ) / 10^15 # gC/m2 to GtC
  rharvest_cft_overtime <- colSums(
    rharvest_cft * cellarea
  ) / 10^15 # gC/m2 to GtC
  harvest_grasslands_overtime <- colSums(
    harvest_grasslands * cellarea
  ) / 10^15 # gC/m2 to GtC
  harvest_bioenergy_overtime <- colSums(
    harvest_bioenergy * cellarea
  ) / 10^15 # gC/m2 to GtC

  timber_harvest_overtime <- colSums(
    timber * cellarea
  ) / 10^15 # gC/m2 to GtC
  fire_overtime <- colSums(
    fire * cellarea
  ) / 10^15 # gC/m2 to GtC
  wood_harvest_overtime <- colSums(
    wood_harvest * cellarea
  ) / 10^15 # gC/m2 to GtC

  if (include_fire) {
    biocol_overtime <- harvest_cft_overtime + rharvest_cft_overtime +
      harvest_grasslands_overtime + harvest_bioenergy_overtime +
      timber_harvest_overtime + fire_overtime + npp_luc_overtime +
      wood_harvest_overtime
  } else {
    biocol_overtime <- harvest_cft_overtime + rharvest_cft_overtime +
      harvest_grasslands_overtime + harvest_bioenergy_overtime +
      timber_harvest_overtime + npp_luc_overtime +
      wood_harvest_overtime
  }

  biocol_overtime_frac_piref <- (
    biocol_overtime / mean(colSums(npp_ref * cellarea) / 10^15)
  )
  biocol_overtime_frac <- (
    biocol_overtime / npp_pot_overtime 
Jannes Breier's avatar
Jannes Breier committed
  )
  biocol_luc <- npp_potential - npp
  # pick a PI window that excludes onset effects, but is reasonable early

  if (include_fire) {
    biocol_harvest <- (
      harvest_cft + rharvest_cft + harvest_grasslands + harvest_bioenergy +
      timber + fire + wood_harvest
    )
  } else {
    biocol_harvest <- (
      harvest_cft + rharvest_cft + harvest_grasslands + harvest_bioenergy +
      timber + wood_harvest
    )
  }

  biocol <- biocol_harvest + biocol_luc
  # set to 0 below lower threshold of NPP
  biocol[abs(npp_potential) < npp_threshold] <- 0
  # actual NPPpot as ref
  biocol_frac <- biocol / npp_potential
Jannes Breier's avatar
Jannes Breier committed

  # NPPpi as ref
  biocol_frac_piref <- biocol / rowMeans(npp_ref)
Jannes Breier's avatar
Jannes Breier committed

  # take the abs of biocol and sum that up for overtime
  biocol_overtime_abs_frac_piref <- colSums(abs(biocol * cellarea)) / 
  return(list(biocol_overtime = biocol_overtime, #absolute 
              biocol_overtime_abs_frac_piref = biocol_overtime_abs_frac_piref,
              biocol_overtime_frac_piref = biocol_overtime_frac_piref,
              biocol_overtime_frac = biocol_overtime_frac,
Jannes Breier's avatar
Jannes Breier committed
              biocol = biocol,
              biocol_frac = biocol_frac,
Jannes Breier's avatar
Jannes Breier committed
              npp = npp,
              biocol_frac_piref = biocol_frac_piref,
Jannes Breier's avatar
Jannes Breier committed
              npp_potential = npp_potential,
              npp_act_overtime = npp_act_overtime,
              npp_pot_overtime = npp_pot_overtime,
              npp_eco_overtime = npp_eco_overtime,
              npp_ref = npp_ref,
              harvest_cft_overtime = harvest_cft_overtime,
              npp_luc_overtime = npp_luc_overtime,
              rharvest_cft_overtime = rharvest_cft_overtime,
              fire_overtime = fire_overtime,
              timber_harvest_overtime = timber_harvest_overtime,
              harvest_cft = harvest_cft,
              rharvest_cft = rharvest_cft,
              wood_harvest_overtime = wood_harvest_overtime,
              biocol_harvest = biocol_harvest,
              biocol_luc = biocol_luc)) #, biocol_luc_piref = biocol_luc_piref))

}

#' Calculate BioCol
#'
#' Wrapper function to calculate BioCol
#'
#' @param path_lu folder of landuse scenario run
#' @param path_pnv folder of pnv reference run
#' @param start_year first year of simulations
#' @param stop_year last year of simulations
#' @param reference_npp_time_span time span to read reference npp from, using
#'     index years 10:39 from potential npp input if set to NULL (default: NULL)
#' @param reference_npp_file file to read reference npp from, using
#'        potential npp input if set to NULL (default: NULL)
#' @param gridbased logical are pft outputs gridbased or pft-based?
#' @param read_saved_data flag whether to read previously saved data
#'        instead of reading it in from output files (default FALSE)
#' @param save_data whether to save input data to file (default FALSE)
#' @param data_file file to save/read input data to/from (default NULL)
#' @param include_fire boolean include firec in calculation of BioCol?
#'        (default TRUE)
#' @param external_fire instead of reading in firec for fire emissions, read in
#'        this external firec file from a separate spitfire run with disabled
#'        lighning. this will then include only human induced fires
#'        (default FALSE)
#' @param external_wood_harvest include external wood harvest from LUH2_v2h
#'        (default FALSE)
#' @param grass_scaling whether to scale pasture harvest according to
#'        data given via grass_harvest_file (default FALSE)
#' @param npp_threshold lower threshold for npp (to mask out non-lu areas
#'        according to Haberl et al. 2007). Below BioCol will be set to 0.
#'        (default: 20 gC/m2)
#' @param grass_harvest_file file containing grazing data to rescale the
#'        grassland harvests according to Herrero et al. 2013. File contains:
#'        grazing_data list object with $name and $id of 29 world regions, and
#'        $Herrero_2000_kgDM_by_region containing for each of these regions and
#'        mapping_lpj67420_to_grazing_regions array with a mapping between 67420
#'        LPJmL cells and the 29 regions
#' @param external_fire_file path to external file with human induced fire
#'        fraction c(cell,month,year) since 1500
#' @param external_wood_harvest_file path to R-file containing processed
#'        timeline of maps for LUH2_v2h woodharvest
#'
#' @return list data object containing BioCol and components as arrays: biocol,
#'         biocol_overtime, biocol_overtime_piref, biocol_frac, npp_potential,
#'         biocol_overtime_abs_frac_piref, biocol_frac_piref, npp_act_overtime,
#'         npp_pot_overtime, npp_eco_overtime, npp_ref, harvest_cft_overtime,
#'         npp_luc_overtime, rharvest_cft_overtime, fire_overtime,
#'         timber_harvest_overtime, harvest_cft, rharvest_cft,
#'         wood_harvest_overtime, biocol_harvest, biocol_luc
Jannes Breier's avatar
Jannes Breier committed
#'
#' @export
calc_biocol <- function(
  path_lu,
  path_pnv,
  start_year,
  stop_year,
  reference_npp_time_span = NULL,
  reference_npp_file = NULL,
  varnames = NULL,
  gridbased = TRUE,
  read_saved_data = FALSE,
  save_data = FALSE,
  data_file = NULL,
  include_fire = FALSE,
  external_fire = FALSE,
  external_wood_harvest = FALSE,
  grass_scaling = FALSE,
  npp_threshold = 20,
  grass_harvest_file = "grazing_data.RData",
  external_fire_file = "human_ignition_fraction.RData",
  external_wood_harvest_file = "wood_harvest_biomass_sum_1500-2014_67420.RData"
) {
  if (is.null(varnames)) {
    print(
      paste0("Varnames not given, using standard values, which might not fit ",
             "this specific configuration. Please check!")
    )
    varnames <- data.frame(
      row.names = c(
        "grid",
        "npp",
        "pft_npp",
        "pft_harvest",
        "pft_rharvest",
        "firec",
        "timber_harvest",
        "cftfrac",
        "fpc"
      ),
      outname = c(
        "grid.bin.json",
        "mnpp.bin.json",
        "pft_npp.bin.json",
        "pft_harvest.bin.json",
        "pft_rharvest.bin.json",
        "firec.bin.json",
        "timber_harvestc.bin.json",
        "cftfrac.bin.json",
        "fpc.bin.json"
      ),
      timestep = c("Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y")
    )
  }

  # translate varnames and folders to files_scenarios/reference lists
  files_scenario <- list(
    grid = paste0(path_lu, varnames["grid", "outname"]),
    npp = paste0(path_lu, varnames["npp", "outname"]),
    pft_npp = paste0(path_lu, varnames["pft_npp", "outname"]),
    pft_harvestc = paste0(path_lu, varnames["pft_harvest", "outname"]),
    pft_rharvestc = paste0(path_lu,varnames["pft_rharvest", "outname"]),
    firec = paste0(path_lu, varnames["firec", "outname"]),
    timber_harvestc = paste0(path_lu, varnames["timber_harvest", "outname"]),
    cftfrac = paste0(path_lu, varnames["cftfrac", "outname"]),
    fpc = paste0(path_lu, varnames["fpc", "outname"])
  )
  files_reference <- list(
    grid = paste0(path_pnv, varnames["grid", "outname"]),
    npp = paste0(path_pnv, varnames["npp", "outname"]),
    pft_npp = paste0(path_pnv, varnames["pft_npp", "outname"]),
    pft_harvestc = paste0(path_pnv, varnames["pft_harvest", "outname"]),
    pft_rharvestc = paste0(path_pnv, varnames["pft_rharvest", "outname"]),
    firec = paste0(path_pnv, varnames["firec", "outname"]),
    timber_harvestc = paste0(path_pnv, varnames["timber_harvest", "outname"]),
    cftfrac = paste0(path_pnv, varnames["cftfrac", "outname"]),
    fpc = paste0(path_pnv, varnames["fpc", "outname"])
  )
  return(
    read_calc_biocol(
      files_scenario = files_scenario,
      files_reference = files_reference,
      time_span_scenario = as.character(start_year:stop_year),
      time_span_reference = as.character(start_year:stop_year),
      reference_npp_time_span = reference_npp_time_span,
      reference_npp_file = reference_npp_file,
      gridbased = gridbased,
      read_saved_data = read_saved_data,
      save_data = save_data,
      data_file = data_file,
      include_fire = include_fire,
      external_fire = external_fire,
      external_wood_harvest = external_wood_harvest,
      grass_scaling = grass_scaling,
      npp_threshold = npp_threshold,
      grass_harvest_file = grass_harvest_file,
      external_fire_file = external_fire_file,
      external_wood_harvest_file = external_wood_harvest_file
    )
  )
}


#' Plot absolute BioCol, overtime, maps, and npp into given folder
#'
#' Wrapper function to plot absolute biocol, overtime, maps, and npp into given
#' folder
#'
#' @param biocol_data biocol data list object (returned from calc_biocol)
#' containing biocol, npp_eco_overtime, npp_act_overtime, npp_pot_overtime,
#' npp_bioenergy_overtime, biocol_overtime, npp_harv_overtime,
#' biocol_overtime_perc_piref, biocol_perc, biocol_perc_piref, npp all in GtC
#' @param path_write folder to write into
#' @param plotyears range of years to plot over time
#' @param min_val y-axis minimum value for plot over time
#' @param max_val y-axis maximum value for plot over time
#' @param legendpos position of legend
#' @param start_year first year of biocol_data object
#' @param details show all harvest components or not
Jannes Breier's avatar
Jannes Breier committed
#' @param mapyear year to plot biocol map for
#' @param mapyear_buffer +- years around mapyear to average biocol
#' (make sure these years exist in biocol_data)
#' @param highlightyear year(s) that should be highlighted in overtime plot
#' @param eps write plots as eps, instead of png (default = FALSE)
#'
#' @return none
#' @export
plot_biocol <- function(
  biocol_data,
  path_write,
  plotyears,
  min_val,
  max_val,
  legendpos,
Jannes Breier's avatar
Jannes Breier committed
  start_year,
  mapyear,
  mapyear_buffer = 5,
  highlightyear,
  eps = FALSE
) {
  mapindex <- mapyear - start_year
  print(paste0("Plotting BioCol figures"))
  dir.create(file.path(path_write), showWarnings = FALSE, recursive = TRUE)
Jannes Breier's avatar
Jannes Breier committed

  plot_global(
    data = rowMeans(
      biocol_data$biocol[, (mapindex - mapyear_buffer) : (mapindex + mapyear_buffer)] # nolint
    ),
    file = paste0(path_write, "BioCol_absolute_", mapyear, ".png"),
    type = "exp",
    title = "",
    # paste0("BioCol_abs in ", mapyear),
    pow2min = 0,
    pow2max = 12,
    legendtitle = "GtC",
    leg_yes = TRUE,
    only_pos = FALSE,
    eps = eps
  )

  plot_global(
    data = rowMeans(
      biocol_data$biocol_luc[, (mapindex - mapyear_buffer) : (mapindex + mapyear_buffer)] # nolint
    ),
    file = paste0(path_write, "BioCol_luc_", mapyear, ".png"),
    type = "exp",
    title = "",
    # paste0("BioCol_luc in ", mapyear),
    pow2min = 0,
    pow2max = 12,
    legendtitle = "GtC",
    leg_yes = TRUE,
    only_pos = FALSE,
    eps = eps
  )

  plot_global(
    data = rowMeans(
      biocol_data$biocol_harvest[, (mapindex - mapyear_buffer) : (mapindex + mapyear_buffer)] # nolint
    ),
    file = paste0(path_write, "BioCol_harv_", mapyear, ".png"),
    type = "exp",
    title = "",
    # paste0("BioCol_harv in ", mapyear), 
    pow2min = 0,
    pow2max = 12,
    legendtitle = "GtC",
    leg_yes = TRUE,
    only_pos = FALSE,
    eps = eps
  )

  plot_biocol_ts(
    biocol_data = biocol_data,
    file = paste0(
      path_write, "BioCol_overtime_LPJmL_", plotyears[1], "-", plotyears[2], ".png" # nolint
    ),
    first_year = start_year,
    plot_years = plotyears,
    min_val = min_val,
    ref = "pi",
    legendpos = legendpos,
Jannes Breier's avatar
Jannes Breier committed
    max_val = max_val,
    eps = eps,
    highlight_years = highlightyear
  )

Jannes Breier's avatar
Jannes Breier committed
    data = rowMeans(
      biocol_data$biocol_frac[, (mapindex - mapyear_buffer) : (mapindex + mapyear_buffer)] # nolint
Jannes Breier's avatar
Jannes Breier committed
    ),
    file = paste0(path_write, "BioCol_frac_LPJmL_", mapyear, ".png"),
    legendtitle = "frac of NPPpot",
    type = "lin",
    min=-1,
    max=1,
    col_pos = "Reds",
    col_neg = "Blues",
    leg_yes = TRUE,
    eps = FALSE,
    n_legend_ticks = 11
Jannes Breier's avatar
Jannes Breier committed
  )

Jannes Breier's avatar
Jannes Breier committed
    data = rowMeans(
      biocol_data$biocol_frac_piref[, (mapindex - mapyear_buffer) : (mapindex + mapyear_buffer)] # nolint
Jannes Breier's avatar
Jannes Breier committed
    ),
    file = paste0(path_write, "BioCol_frac_piref_LPJmL_", mapyear, ".png"),
Jannes Breier's avatar
Jannes Breier committed
    title = "",
    legendtitle = "frac of NPPref",
    type = "lin",
    min=-1,
    max=1,
    col_pos = "Reds",
    col_neg = "Blues",
    leg_yes = TRUE,
    eps = FALSE,
    n_legend_ticks = 11
Jannes Breier's avatar
Jannes Breier committed
  )

  plot_global(
    data = rowMeans(
      biocol_data$npp[, (mapindex - mapyear_buffer) : (mapindex + mapyear_buffer)] # nolint
    ),
    file = paste0(path_write, "NPP_LPJmL_", mapyear, ".png"),
    type = "lin",
    only_pos = TRUE,
    title = "",
    legendtitle = "gC/m2",
    leg_yes = TRUE,
    min = 0,
    max = 1800
  )
}


#' Plot global map of BioCol to file
#'
#' Plot global map of BioCol to file with legend colors similar to
#' Haberl et al. 2007
#'
#' @param data array containing BioCol percentage value for each gridcell
#' @param file character string for location/file to save plot to
#' @param plotyears range of years to plot over time
#' @param title character string title for plot
#' @param legendtitle character string legend title
#' @param zero_threshold smallest value to be distinguished from 0 in legend,
#'        both for negative and positive values (default: 0.1)
#' @param eps write eps file instead of PNG (boolean) - (default: FALSE)
#'
#' @return none
#'
#' @export
plot_biocol_map <- function(
  data, file,
  title = "",
  legendtitle = "",
  zero_threshold = 0.001,
  eps = FALSE,
  haberllegend = FALSE
Jannes Breier's avatar
Jannes Breier committed
) {
  path_write <- dirname(file)
  dir.create(file.path(path_write), showWarnings = FALSE, recursive = TRUE)
Jannes Breier's avatar
Jannes Breier committed

  if (haberllegend){
    brks <- c(-400, -200, -100, -50, -zeroThreshold,
              zeroThreshold, 10, 20, 30, 40, 50, 60, 70, 80, 100)
    classes <- c("<-200", "-200 - -100", "-100 - -50",
                 paste0("-50 - -",zeroThreshold),
                 paste0("-",zeroThreshold," - ",zeroThreshold),
                 paste0(zeroThreshold," - 10"), "10 - 20", "20 - 30", "30 - 40", 
                 "40 - 50", "50 - 60", "60 - 70", "70 - 80", "80 - 100")
    palette <- c("navy", "royalblue3", "royalblue1", "skyblue1",
                 "grey80", "yellowgreen", "greenyellow", "yellow",
                 "gold", "orange", "orangered", "orangered4",
                 "brown4", "black")
  } else{
    brks <- c(-400,seq(-100,-10,10),-zeroThreshold,
              zeroThreshold,seq(10,100,10),400)/100
    classes <- c("<-1", "-1 - -0.9", "-0.9 - -0.8", "-0.8 - -0.7", 
                 "-0.7 - -0.6", "-0.6 - -0.5", "-0.5 - -0.4", "-0.4 - -0.3", 
                 "-0.3 - -0.2", "-0.2 - -0.1",paste("-0.1 - -",zeroThreshold),
                 paste("-",zeroThreshold," - ",zeroThreshold),
                 paste(zeroThreshold," - 0.1"),"0.1 - 0.2", "0.2 - 0.3", 
                 "0.3 - 0.4", "0.4 - 0.5", "0.5 - 0.6", "0.6 - 0.7", 
                 "0.7 - 0.8", "0.8 - 0.9", "0.9 - 1", ">1")    
    palette <- grDevices::colorRampPalette(rev(
               RColorBrewer::brewer.pal(11,"RdBu")))(length(brks)-1)
  }

Jannes Breier's avatar
Jannes Breier committed
  data[data < brks[1]] <- brks[1]
  data[data > brks[length(brks)]] <- brks[length(brks)]

  if (eps) {
    file <- strsplit(file, ".", fixed = TRUE)[[1]]
    file <- paste(c(file[1 : (length(file) - 1)], "eps"), collapse = ".")
    grDevices::ps.options(family = c("Helvetica"), pointsize = 18)
    grDevices::postscript(file, horizontal = FALSE, onefile = FALSE, width = 22,
                          height = 8.5, paper = "special")

  } else {
    grDevices::png(file, width = 7.25, height = 3.5, units = "in", res = 300,
                   pointsize = 6, type = "cairo")
  }
  ra <- raster::raster(ncols = 720, nrows = 360)
  range <- range(data)
  ra[raster::cellFromXY(ra, cbind(lon, lat))] <-  data
  extent <- raster::extent(c(-180, 180, -60, 90))
  graphics::par(bty = "n", oma = c(0, 0, 0, 0), mar = c(0, 0, 0, 0), xpd = TRUE)
  raster::plot(ra, ext = extent, breaks = brks, col = palette, main = "",
               legend = FALSE, axes = FALSE)
  graphics::title(title, line = -2)
  maps::map("world", add = TRUE, res = 0.4, lwd = 0.25, ylim = c(-60, 90))
  graphics::legend(x = -180, y = 50, fill = palette, border = palette,
                   legend = classes, title = legendtitle)
  grDevices::dev.off()
}

#' Plot absolute BioCol, overtime, maps, and npp into given folder
#'
#' Plot to file a comparison over time of global sums of BioCol, NPPpot, NPPeco,
#' and NPPact, with legend similar to Krausmann et al. 2013
#'
#' @param biocol_data biocol data list object (returned from calc_biocol)
#' containing biocol, npp_eco_overtime, npp_act_overtime, npp_pot_overtime,
#' npp_bioenergy_overtime, biocol_overtime, npp_harv_overtime,
#' biocol_overtime_perc_piref, biocol_perc, biocol_perc_piref, npp
#' all in GtC
#' @param file character string for location/file to save plot to
#' @param first_year first year of biocol object
#' @param plot_years range of years to plot over time
#' @param highlight_years year(s) that should be highlighted in overtime plot
#' (default: 2000)
#' @param min_val y-axis minimum value for plot over time (default: 0)
#' @param max_val y-axis maximum value for plot over time (default: 100)
#' @param legendpos position of legend (default: "topleft")
#' @param highlight_years year(s) that should be highlighted in overtime plot
#' (default: 2000)
#' @param details show all harvest components or not
Jannes Breier's avatar
Jannes Breier committed
#' @param ref reference period for biocol ("pi" or "act"), to either use
#'        biocol_data$biocol_overtime_perc_piref or biocol_data$biocol_overtime
#' @param eps write plots as eps, instead of png (default = FALSE)
#'
#' @return none
#'
#' @export
plot_biocol_ts <- function(
  biocol_data,
  file,
  first_year,
  plot_years,
  highlight_years = 2000,
Jannes Breier's avatar
Jannes Breier committed
  min_val = 0,
  max_val = 100,
  legendpos = "topleft",
  ext = FALSE,
  eps = FALSE,
  ref = "pi"
) {
  path_write <- dirname(file)
  dir.create(file.path(path_write), showWarnings = FALSE, recursive = TRUE)
Jannes Breier's avatar
Jannes Breier committed

  last_year <- first_year + length(biocol_data$npp_act_overtime) - 1
  colz <- c("slateblue", "gold", "green3", "darkorange", "black",
            "red3", "green", "brown", "yellow", "turquoise",
            "darkgreen")

  if (eps) {
    file <- strsplit(file, ".", fixed = TRUE)[[1]]
    file <- paste(c(file[1 : (length(file) - 1)], "eps"), collapse = ".")
    grDevices::ps.options(family = c("Helvetica"), pointsize = 18)
    grDevices::postscript(file, horizontal = FALSE, onefile = FALSE, width = 22,
                          height = 8.5, paper = "special")

  } else {
    grDevices::png(file, width = 3.5, height = 3, units = "in", res = 300,
                   pointsize = 6, type = "cairo")
  }

  graphics::par(bty = "o", oma = c(0, 0, 0, 0), mar = c(4, 5, 1, 3))
  graphics::plot(NA, ylab = "GtC/yr", xlab = "Year", xlim = plot_years,
       ylim = c(min_val, max_val), xaxs = "i", yaxs = "i")
  graphics::grid()
  graphics::lines(
    x = seq(first_year, last_year, 1),
    y = biocol_data$npp_pot_overtime,
    type = "l",
    col = colz[1]
  )
  graphics::lines(
    x = seq(first_year, last_year, 1),
    y = biocol_data$npp_act_overtime,
    type = "l",
    col = colz[2])
  graphics::lines(
    x = seq(first_year, last_year, 1),
    y = biocol_data$npp_eco_overtime,
    type = "l",
    col = colz[3]
  )
  graphics::lines(
    x = seq(first_year, last_year, 1),
    y = biocol_data$npp_luc_overtime,
    type = "l",
    col = colz[4]
  )
  graphics::lines(
    x = seq(first_year, last_year, 1),
    y = biocol_data$biocol_overtime,
    type = "l",
    col = colz[5]