Newer
Older
#* Functions for plotting a power grid described by a network data dictionary
#*------------------------------------------------------------------------------
#* NOTE: Utility functions used are defined in PlotUtils.jl
#*------------------------------------------------------------------------------
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
#=
Identifies and plots the overhead transmission line segments in the network data dictionary.
=#
function plot_pg_overhead_tl_segments(
network_data::Dict{String,<:Any},
settings = Dict{String,Any}();
mode = :sum, # :sum or :single
figpath::String
)
### Setup figure and axes
figure::Figure, ax::PyObject = plt.subplots()::Tuple{Figure,PyObject}
ax.set_aspect("equal")
w::Float64, h::Float64 = plt.figaspect(2/3)::Vector{Float64}
figure.set_size_inches(1.5w, 1.5h)
### Set plot settings and plot power grid
settings = _recursive_merge(
_default_settings(:plot_pg_overhead_tl_segments), settings
)
nx = pyimport("networkx")
G::PyObject = nx.Graph()
### Plot buses into graph
G, bus_markers, bus_labels = _draw_buses!(G, network_data, settings)
### Identify overhead transmission line segments and get their positions
seg_data = calc_overhead_tl_segments(
network_data, settings["d_twrs"], mode=mode
)
seg_pos = Dict{Int64,Tuple{Float64,Float64}}()
seg_counter = 0
for tl in collect(values(seg_data))
for i in 1:tl["N_seg"]
seg_pos[seg_counter+i] = (tl["seg_lons"][i], tl["seg_lats"][i])
end
seg_counter += tl["N_seg"]
end
### Draw overhead transmission line segments as nodes
nx.draw_networkx_nodes(
G, seg_pos,
nodelist = [i for i in 1:length(seg_pos)],
node_size = settings["node_size"],
alpha = settings["alpha"]
)
### Check for a predefined area to show
if haskey(settings, "area")
area = settings["area"]
plt.xlim(area[1], area[2])
plt.ylim(area[3], area[4])
end
### Axes settings
ax.tick_params(
left = settings["draw_ticks"][1],
bottom = settings["draw_ticks"][2],
labelleft = settings["draw_ticks"][3],
labelbottom = settings["draw_ticks"][4]
)
plt.xlabel(settings["xlabel"])
plt.ylabel(settings["ylabel"], rotation=90)
### Draw legend, if wanted
if settings["draw_legend"] == true
plt.legend(bus_markers, bus_labels)
end
plt.savefig(figpath, bbox_inches="tight")
plt.close("all")
end
#*------------------------------------------------------------------------------
function plot_pg_map(
network_data::Dict{String,<:Any},
settings = Dict{String,Any}(); # dictionary containing plot settings
wind = ("", 0), # optional .nc file with wind data and frame to plot
figpath = "" # where to save the figure
)
### Python imports
cartopy = pyimport("cartopy")
cticker = pyimport("cartopy.mpl.ticker")
### Setup figure and plot geographic map
fig::Figure = plt.figure()
w::Float64, h::Float64 = plt.figaspect(2/3)::Vector{Float64}
fig.set_size_inches(1.5w, 1.5h)
ax = fig.add_subplot(projection=cartopy.crs.PlateCarree())
ax.set_aspect("equal")
### Set plot settings
settings = _recursive_merge(_default_settings(:plot_pg), settings)
xmin, xmax, ymin, ymax = _get_pg_area(network_data, settings["area_offset"])
ax.set_extent([xmin, xmax, ymin, ymax])
### Get state borders
states_provinces = cartopy.feature.NaturalEarthFeature(
category="cultural",
name="admin_1_states_provinces_lines",
scale="50m",
facecolor="none"
)
### Add wanted features to plot
ax.add_feature(cartopy.feature.LAND)
ax.add_feature(cartopy.feature.OCEAN)
ax.add_feature(cartopy.feature.COASTLINE)
ax.add_feature(cartopy.feature.BORDERS)
ax.add_feature(states_provinces, edgecolor="gray")
### Show longitude and latitude values
gl = ax.gridlines(crs=cartopy.crs.PlateCarree(), draw_labels=true)
gl.top_labels = false # xlabels_top
gl.right_labels = false # ylabels_right
gl.xlines = false
gl.ylines = false
gl.xformatter = cartopy.mpl.gridliner.LONGITUDE_FORMATTER
gl.yformatter = cartopy.mpl.gridliner.LATITUDE_FORMATTER
mticker = pyimport("matplotlib.ticker")
gl.xlocator = mticker.FixedLocator([-105, -103, -101, -99, -97, -95])
gl.ylocator = mticker.FixedLocator([26, 28, 30, 32, 34, 36])
# gl.xlocator = mticker.FixedLocator([-105, -102, -99, -96])
_plot_pg!(ax, network_data, settings, figpath, wind)
return nothing
end
#*------------------------------------------------------------------------------
#=
Plots the power grid described by the network data dictionary (NDD). Possible plot settings are shown in _default_settings.
=#
function plot_pg(
network_data::Dict{String,<:Any},
settings = Dict{String,Any}(); # dictionary containing plot settings
wind = ("", 0), # optional .nc file with wind data and frame to plot
figpath = "" # where to save the figure
### Setup figure
figure::Figure, ax::PyObject = plt.subplots()::Tuple{Figure,PyObject}
w::Float64, h::Float64 = plt.figaspect(2/3)::Vector{Float64}
figure.set_size_inches(1.5w, 1.5h)
### Set plot settings and plot power grid
settings = _recursive_merge(_default_settings(:plot_pg), settings)
_plot_pg!(ax, network_data, settings, figpath, wind)
return nothing
end
#=
Plots the power grid described by the network data dictionary (NDD) onto an already existing axes. Possible plot settings are shown in _default_settings.
=#
function _plot_pg!(
ax::PyObject, # axes to draw power grid onto
network_data::Dict{String,<:Any},
settings::Dict{String,<:Any}, # dictionary containing plot settings
figpath::String, # where to save the figure
wind = ("", 0) # optional .nc file with wind data and frame to plot
)
### Draw power grid graph
nx = pyimport("networkx")
G::PyObject = nx.Graph() # empty graph
_draw_pg!(ax, G, network_data, settings, wind) # draw power grid onto ax
plt.savefig(figpath, bbox_inches="tight") # save figure
plt.close("all") # close figure
return nothing
end
#*------------------------------------------------------------------------------
#=
Draws a graph for the power grid described by the NDD with options according to the dictionary "settings" (see _default_settings for possible options).
=#
function _draw_pg!(
ax::PyObject, # axes to draw power grid onto
G::PyObject, # power grid graph
network_data::Dict{String,<:Any},
settings::Dict{String,<:Any}, # dictionary containing plot settings
wind = ("", 0) # optional .nc file with wind data and frame to plot
### Plot optional wind field
if isempty(wind[1]) == false # optional .nc file given
ax, wind_cbar = _draw_wind!(ax, settings, wind)
end
### Plot buses into graph
G, bus_markers, bus_labels = _draw_buses!(G, network_data, settings)
### Plot branches into graph
G, br_markers, br_labels, br_cbar = _draw_branches!(
G, network_data, settings
)
### Check for a predefined area to show
if haskey(settings, "area")
area = settings["area"]
plt.xlim(area[1], area[2])
plt.ylim(area[3], area[4])
end
### Axes settings
ax.tick_params(
left = settings["draw_ticks"][1],
bottom = settings["draw_ticks"][2],
labelleft = settings["draw_ticks"][3],
labelbottom = settings["draw_ticks"][4]
)
plt.xlabel(settings["xlabel"])
plt.ylabel(settings["ylabel"], rotation=90)
### Draw legend, if wanted
if settings["draw_legend"] == true
all_markers = vcat(bus_markers, br_markers)
all_labels = vcat(bus_labels, br_labels)
plt.legend(all_markers, all_labels) # loc="lower left",
end
return ax, G
end
#*------------------------------------------------------------------------------
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
function _draw_wind!(
ax::PyObject, # axes to draw wind field onto
settings::Dict{String,<:Any}, # dictionary containing plot settings
wind = ("", 0) # .nc file with wind data and frame to plot
)
wind_lons, wind_lats, wind_speeds = get_windfield(wind[1], wind[2])
N_frames, max_ws = get_winddata(wind[1])
wind_speeds = transpose(wind_speeds) # correct dimensions for contour plot
levels = LinRange(0, max_ws, settings["Wind"]["levels"])
cs = ax.contourf(
wind_lons, wind_lats, wind_speeds,
cmap = settings["Wind"]["cmap"],
alpha = settings["Wind"]["alpha"],
levels = levels
)
cbar = plt.colorbar(cs, ticks=[0:5:max_ws])
cbar.ax.set_ylabel(
settings["Wind"]["cbar_label"], rotation=-90, va="bottom"
)
return ax, cbar
end
#*------------------------------------------------------------------------------
#=
Draws buses contained in the NDD as nodes into graph G. The nodes are displayed according to the settings dictionary (see _default_settings).
=#
function _draw_buses!(
G::PyObject, # power grid graph
network_data::Dict{String,<:Any},
settings::Dict{String,<:Any} # dictionary containing plot settings
)
nx = pyimport("networkx")
mlines = pyimport("matplotlib.lines")
bustypes = get_bustypes(network_data) # types of all buses
pos = Dict(
b["index"] => (b["bus_lon"], b["bus_lat"])
for b in collect(values(network_data["bus"]))
) # geographic bus locations
bus_markers = [
mlines.Line2D([], [], color=b["color"], marker=b["marker"], ls="None")
for b in collect(values(settings["Buses"]))
if b["label"] != "nolabel" && b["show"] == true
] # markers for legend
bus_labels = [
b["label"] for b in collect(values(settings["Buses"]))
if b["label"] != "nolabel" && b["show"] == true
] # labels for legend
### Draw different buses as nodes
for (type, buses) in bustypes
bus_settings = settings["Buses"][type]
### Filter out isolated empty buses and plot them invisible
if type == "Empty bus" && settings["Buses"]["Empty bus"]["show_isolated"] == false
isolated_buses = _get_isolated_buses(network_data)
filter!(i -> i ∉ isolated_buses, bustypes["Empty bus"])
nx.draw_networkx_nodes(
G, pos,
nodelist = isolated_buses,
node_shape = bus_settings["marker"],
node_size = bus_settings["size"],
node_color = bus_settings["color"],
alpha = 0 # invisible
)
end
### Plot buses
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
if bus_settings["show"] == true
nx.draw_networkx_nodes(
G, pos,
nodelist = buses,
node_shape = bus_settings["marker"],
node_size = bus_settings["size"],
node_color = bus_settings["color"],
alpha = bus_settings["alpha"]
)
end
end
return G, bus_markers, bus_labels
end
#*------------------------------------------------------------------------------
#=
Draws branches contained in the NDD as edges into graph G. The branches are displayed according to the settings dictionary (see _default_settings).
=#
function _draw_branches!(
G::PyObject, # power grid graph
network_data::Dict{String,<:Any},
settings::Dict{String,<:Any} # dictionary containing plot settings
)
br_settings = settings["Branches"]
br_coloring = br_settings["br_coloring"]
### Draw branches according to coloring mode
if br_coloring == "equal"
G, br_markers, br_labels, cbar = _draw_br_equal!(
G, network_data, br_settings
)
elseif br_coloring == "voltage"
G, br_markers, br_labels, cbar = _draw_br_voltage!(
G, network_data, br_settings
)
elseif br_coloring in ["MW-loading","Mvar-loading","MVA-loading"]
G, br_markers, br_labels, cbar = _draw_br_branchloads!(
G, network_data, br_settings
)
else
throw(ArgumentError("Unknown branch coloring $br_coloring."))
end
return G, br_markers, br_labels, cbar
end
#*------------------------------------------------------------------------------
#=
Draws branches contained in the NDD with coloring mode "equal". All branches are displayed using the same color.
=#
function _draw_br_equal!(
G::PyObject, # power grid graph
network_data::Dict{String,<:Any},
br_settings::Dict{String,<:Any} # dictionary containing plot settings
)
nx = pyimport("networkx")
pos = Dict(
b["index"] => (b["bus_lon"], b["bus_lat"])
for b in collect(values(network_data["bus"]))
) # geographic bus locations
branches = collect(values(network_data["branch"])) # branch dictionaries
### Get edges contained in the NDD
if br_settings["br_status"] == "active" # only plot active branches
edges = [(b["f_bus"],b["t_bus"]) for b in branches if b["br_status"]==1]
elseif br_settings["br_status"] == "inactive" # only plot active branches
edges = [(b["f_bus"],b["t_bus"]) for b in branches if b["br_status"]==0]
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
elseif br_settings["br_status"] == "all" # plot all branches
edges = [(b["f_bus"],b["t_bus"]) for b in branches]
else
br_status = br_settings["br_status"]
throw(ArgumentError("Unknown branch status $br_status."))
end
### Draw edges
drawn_edges = nx.draw_networkx_edges(
G, pos,
edgelist = edges,
width = br_settings["br_lw"],
edge_color = br_settings["br_color"],
alpha = br_settings["br_alpha"]
)
return G, [], [], nothing
end
#=
Draws branches contained in the NDD with coloring mode "MW-loading", "Mvar-loading" or "MVA-loading". The branches are colored depending on their loading (flow/capacity).
=#
function _draw_br_branchloads!(
G::PyObject, # power grid graph
network_data::Dict{String,<:Any},
br_settings::Dict{String,<:Any} # dictionary containing plot settings
)
nx = pyimport("networkx")
pos = Dict(
b["index"] => (b["bus_lon"], b["bus_lat"])
for b in collect(values(network_data["bus"]))
) # geographic bus locations
branches = collect(values(network_data["branch"])) # branch dictionaries
br_coloring = br_settings["br_coloring"] # what kind of loading to use
br_status = br_settings["br_status"]
### Get edges contained in the NDD and their loadings
if br_status == "active" # only plot active branches
edges = [(b["f_bus"],b["t_bus"]) for b in branches if b["br_status"]==1]
branchloads = [b[br_coloring] for b in branches if b["br_status"]==1]
elseif br_settings["br_status"] == "inactive" # only plot inactive branches
edges = [(b["f_bus"],b["t_bus"]) for b in branches if b["br_status"]==0]
branchloads = [b[br_coloring] for b in branches if b["br_status"]==0]
elseif br_status == "all" # plot all branches
edges = [(b["f_bus"],b["t_bus"]) for b in branches]
branchloads = [b[br_coloring] for b in branches]
else
throw(ArgumentError("Unknown branch status $br_status."))
end
### Draw edges
cmap = plt.cm.inferno_r
vmin, vmax = 0., 1.
drawnedges = nx.draw_networkx_edges(
G, pos,
edgelist = edges,
width = br_settings["br_lw"],
edge_color = branchloads,
edge_cmap = cmap,
edge_vmin = vmin,
edge_vmax = vmax,
alpha = br_settings["br_alpha"]
)
### Add colorbar
sm = plt.cm.ScalarMappable(cmap=cmap, norm=plt.Normalize(vmin, vmax))
cbar = plt.colorbar(sm)
cbar.ax.set_ylabel(
"Line $br_coloring " * L"$S_{ij}/C_{ij}$", rotation=-90, va="bottom"
)
return G, [], [], cbar
end
#=
Draws branches contained in the NDD with coloring mode "voltage". Transmission lines are colored according to their voltage levels.
=#
function _draw_br_voltage!(
G::PyObject, # power grid graph
network_data::Dict{String,<:Any},
br_settings::Dict{String,<:Any} # dictionary containing plot settings
)
nx = pyimport("networkx")
mlines = pyimport("matplotlib.lines")
pos = Dict(
b["index"] => (b["bus_lon"], b["bus_lat"])
for b in collect(values(network_data["bus"]))
) # geographic bus locations
branches = collect(values(network_data["branch"])) # branch dictionaries
br_markers = Array{PyObject,1}() # markers for legend
br_labels = Array{String,1}() # labels for legend
### Get edges contained in the NDD and their voltage levels
if br_settings["br_status"] == "active" # only plot active branches
edges = [
(b["f_bus"],b["t_bus"]) for b in branches
if b["br_status"] == 1
]
voltages = [
string(b["tl_voltage"]) for b in branches
if b["br_status"] == 1
]
elseif br_settings["br_status"] == "inactive" # only plot inactive branches
edges = [
(b["f_bus"],b["t_bus"]) for b in branches
if b["br_status"] == 0
]
voltages = [
string(b["tl_voltage"]) for b in branches
if b["br_status"] == 0
]
elseif br_settings["br_status"] == "all" # plot all branches
edges = [(b["f_bus"],b["t_bus"]) for b in branches]
voltages = [string(b["tl_voltage"]) for b in branches]
else
br_status = br_settings["br_status"]
throw(ArgumentError("Unknown branch status $br_status."))
end
### Assign colors to voltage levels and add markers and labels for legend
voltages[voltages .== "0.0"] .= "k" # transformers
mcolors = pyimport("matplotlib.colors")
tableau = [
key for key in keys(mcolors.TABLEAU_COLORS)
if key ∉ ["tab:orange", "tab:green"] # orange and green used for buses
]
for (i, v) in enumerate(sort(unique(filter(v -> v != "k", voltages))))
voltages[voltages .== v] .= tableau[i]
push!(br_markers, mlines.Line2D([], [], color=tableau[i], ls="-"))
push!(br_labels, string(v) * " kV")
end
### Draw edges
drawnedges = nx.draw_networkx_edges(
G, pos,
edgelist = edges,
width = br_settings["br_lw"],
edge_color = voltages,
alpha = br_settings["br_alpha"]
)
return G, br_markers, br_labels, nothing
end