Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
calc_roc_data <- function(external_binary, #binary transgression: 0 - no,1 - yes
internal_continuous,
external_name,
range_internal, # range of internal data, e.g. c(0,1)
sampling_res = 0.01, # together with range used to create potential thresholds
cellArea = cellarea) {
# check dimensions
internal_continuous <- drop(internal_continuous)
external_binary <- drop(external_binary)
if (length(internal_continuous) != length(external_binary) ||
length(internal_continuous) != length(cellArea)) {
stop("Dimensions of external_binary (", length(external_binary),
"), internal_continuous (", length(internal_continuous),
"), cellArea (", length(cellArea),
") need to match. Aborting.")
}
# controls sampling distance
potential_thresholds <- seq(range_internal[1],range_internal[2],sampling_res)
values <- array(NA, dim=c(length(potential_thresholds),1,3))
dimnames(values) <- list(threshold = potential_thresholds,
indicator = external_name, value = c("TP","FP","slope"))
for (i in seq_along(potential_thresholds)) {
t <- potential_thresholds[i]
internal_cells <- which(internal_continuous > t)
TP <- sum(cellArea[which(external_binary == 1 & internal_continuous > t)]) # True Positive
FP <- sum(cellArea[which(!(external_binary == 1) & internal_continuous > t)]) # False Positive
values[i,1,1] <- TP
values[i,1,2] <- FP
}
#browser()
#plotGlobalManToScreen(data = external_binary, title = "change",
# brks = seq(0,1,0.05),legYes = T,palette = palette_viridis,
# legendtitle = "")
values[,1,1] <- values[,1,1]/max(values[,1,1])
values[,1,2] <- values[,1,2]/max(values[,1,2])
# calculate tangent angle between each pair of values
n <- length(potential_thresholds)
xs <- values[c(1,1:n,n),1,1]
ys <- values[c(1,1:n,n),1,2]
n_e <- length(xs)
slope <- (ys[1:(n_e-2)] - ys[3:n_e]) / (xs[1:(n_e-2)] - xs[3:n_e])
values[,1,3] <- slope
return(values)
}
calc_roc_data_3d <- function( external_continuous,
internal_continuous,
range_internal, # range of internal data, e.g. c(0,1)
range_external, # range of external data, e.g. c(0,1)
sampling = 101, # together with range used to create potential thresholds
cellArea = cellarea) {
# check dimensions
internal_continuous <- drop(internal_continuous)
external_continuous <- drop(external_continuous)
if (length(internal_continuous) != length(external_continuous) ||
length(internal_continuous) != length(cellArea)) {
stop("Dimensions of external_binary (", length(external_continuous),
"), internal_continuous (", length(internal_continuous),
"), cellArea (", length(cellArea),
") need to match. Aborting.")
}
# controls sampling distance
potential_thresholds_internal <- seq(range_internal[1],range_internal[2], length.out = sampling)
potential_thresholds_external <- seq(range_external[1],range_external[2], length.out = sampling)
values <- array(NA, dim=c(length(potential_thresholds_internal),length(potential_thresholds_external),3))
dimnames(values) <- list(threshold_internal = potential_thresholds_internal,
threshold_external = potential_thresholds_external,
value = c("TP","FP","diff"))
for (e in seq_along(potential_thresholds_internal)) {
for (i in seq_along(potential_thresholds_internal)) {
ti <- potential_thresholds_internal[i]
te <- potential_thresholds_external[e]
TP <- sum(cellArea[which(external_continuous > te & internal_continuous > ti)]) # True Positive
FP <- sum(cellArea[which(external_continuous <= te & internal_continuous > ti)]) # False Positive
values[i,e,1] <- TP
values[i,e,2] <- FP
}
}
#values[,,1] <- values[,,1]/max(values[,,1])
#values[,,2] <- values[,,2]/max(values[,,2])
values[,,3] <- values[,,1] - values[,,2]
return(values)
}
roc_plot <- function(filename = NULL,
values # only one metric
) {
if (!is.null(filename)) {
png(filename, res = 300, width = 6, height = 7, units = "in",
pointsize = 6, type = "cairo")
}
par(oma = c(0,0,0,0), mar = c(6,10,5,0), bty = "o", xpd = F,xaxs="i",yaxs="i")
indizes <- dimnames(values)$indicator
auc <- array(NA,dim = c(length(indizes)))
dimnames(auc) <- list(indicator = indizes)
best_fit <- array(NA,dim=c(length(indizes),2))
dimnames(best_fit) <- list(indicator = indizes, type = c("max_diff","slope"))
# Set plot layout
#layout(mat = matrix(c(1,2,3), nrow = 1, ncol = 3, byrow = FALSE),
# heights = c(2,2), # Heights of the rows
# widths = c(1,0.4,0.4)) # Widths of the columns
#layout.show(3)
cex_perc = 2.5
colz <- RColorBrewer::brewer.pal(12,"Set3")[-c(2)]
plot(NA, type = "n", xlab = "FP", ylab = "TP", main = "ROC curve", cex.main = cex_perc,
xlim = c(0,1), ylim = c(0,1), cex.lab = cex_perc, cex.axis = cex_perc, mgp = c(3, 2, 0))
abline(a = 0, b = 1, lty = "dashed", col = "black")
for (ind in indizes) {
indx <- match(ind,indizes)
lines(x = values[,ind,2], y = values[,ind,1], col = colz[indx], lwd = cex_perc)
values[is.na(values[,ind,3]),ind,3] <- 0
best_max_diff <- sort(abs(values[,ind,2] - values[,ind,1]),decreasing = T)[1:5]
best_slope <- sort(abs(values[,ind,3] - 1 ),decreasing = F)[1:5]
closest <- function(x,y){abs((x - y)/sqrt(2))}
best_max_diff_thr <- names(sort(closest(x = values[names(best_max_diff),ind,2],
y = values[names(best_max_diff),ind,1]), decreasing = T)[1])
best_slope_thr <- names(sort(closest(x = values[names(best_slope),ind,2],
y = values[names(best_slope),ind,1]), decreasing = T)[1])
best_fit[ind,] <- c(best_max_diff_thr, best_slope_thr)
points(x = values[best_max_diff_thr,ind,2], y = values[best_max_diff_thr,ind,1],
col = colz[indx], cex = 4, lwd = cex_perc)
# AUC
n <- length(values[,ind,2])
auc[indx] <- sum(abs(values[2:n,ind,2] - values[1:(n - 1),ind,2]) *
values[1:(n - 1),ind,1])
}
legend("bottomright",legend = paste(indizes,round(auc,2)), col = colz,
cex = cex_perc, lwd = cex_perc)
if (!is.null(filename)) dev.off()
return(list(
auc = auc,
optimal_value = best_fit
))
}
roc_plot_paper <- function(filename = NULL,
values # both metric
) {
if (!is.null(filename)) {
png(filename, res = 300, width = 6, height = 7, units = "in",
pointsize = 6, type = "cairo")
}
par(oma = c(0,0,0,0), mar = c(6,10,5,0), bty = "o", xpd = F,xaxs="i",yaxs="i")
vars <- dimnames(values)$metric
indicators <- dimnames(values)$indicator
indizes <- seq_along(indicators)
best_fit <- array(NA,dim=c(length(indicators),2,2))
dimnames(best_fit) <- list(indicator = indicators,
metric = vars, type = c("max_diff","slope"))
auc <- array(NA,dim = c(length(indicators),length(vars)))
dimnames(auc) <- list(indicator = indicators, metric = vars)
# Set plot layout
layout(mat = matrix(c(1,2,3,4,5,6), nrow = 2, ncol = 3, byrow = FALSE),
heights = c(2,2), # Heights of the rows
widths = c(1,0.4,0.4)) # Widths of the columns
layout.show(6)
cex_perc = 2.5
colz <- RColorBrewer::brewer.pal(12,"Set3")[-c(2)]
for (var in vars){
plot(NA, type = "n", xlab = "FP", ylab = "TP", main = "ROC curve", cex.main = cex_perc,
xlim = c(0,1), ylim = c(0,1), cex.lab = cex_perc, cex.axis = cex_perc, mgp = c(3, 2, 0))
if (var == "BioCol") {
mtext(side = 3, at = -0.2, "A", xpd = NA, cex = 1.5, font = 2)
mtext(side = 2, at = 0.5, line = 6, var, xpd = NA, cex = 2, font = 2, srt = 90)
}else{ #var = "EcoRisk"
mtext(side = 3, at = -0.2, "B", xpd = NA, cex = 1.5, font = 2)
mtext(side = 2, at = 0.5, line = 6, var, xpd = NA, cex = 2, font = 2, srt = 90)
}
abline(a = 0, b = 1, lty = "dashed", col = "black")
for (ind in indizes) {
lines(x = values[,var,ind,2], y = values[,var,ind,1], col = colz[ind], lwd = cex_perc)
#points(x = values[,ind,2], y = values[,ind,1])
values[is.na(values[,var,ind,3]),var,ind,3] <- 0
best_max_diff <- sort(abs(values[,var,ind,2] - values[,var,ind,1]),decreasing = T)[1:5]
best_slope <- sort(abs(values[,var,ind,3] - 1 ),decreasing = F)[1:5]
closest <- function(x,y){abs((x - y)/sqrt(2))}
best_max_diff_thr <- names(sort(closest(x = values[names(best_max_diff),var,ind,2],
y = values[names(best_max_diff),var,ind,1]), decreasing = T)[1])
best_slope_thr <- names(sort(closest(x = values[names(best_slope),var,ind,2],
y = values[names(best_slope),var,ind,1]), decreasing = T)[1])
best_fit[ind,match(var,vars),] <- c(best_max_diff_thr, best_slope_thr)
points(x = values[best_max_diff_thr,var,ind,2], y = values[best_max_diff_thr,var,ind,1],
col = colz[ind], cex = 4, lwd = cex_perc)
# AUC
n <- length(values[,var,ind,2])
auc[ind,var] <- sum(abs(values[2:n,var,ind,2] - values[1:(n - 1),var,ind,2]) *
values[1:(n - 1),var,ind,1])
legend("bottomright",legend = indicators, col = colz[indizes],
cex = cex_perc, lwd = cex_perc)
}
}
# optimal thresholds boxplots
biocol_threshold <- boxplot(as.numeric(best_fit[indizes,"BioCol",1]), ylim = c(0,1), cex.main = cex_perc,
main = "optimal\nthreshold", cex.lab = cex_perc, cex.axis = cex_perc)
points(x = rep(0.7, length(indizes)), y = as.numeric(best_fit[indizes,"BioCol",1]),
col = scales::alpha(colz[indizes],1), lwd = 2)
text(x = 1, y = max(biocol_threshold$stats)+0.2, paste0("median:\n",median(biocol_threshold$stats)), cex = cex_perc)
mtext(side = 3, at = 0, "C", xpd = NA, cex = 1.5, font = 2)
ecorisk_threshold <- boxplot(as.numeric(best_fit[indizes,"EcoRisk",1]),
main = "optimal\nthreshold", cex.main = cex_perc,
ylim = c(0,1), cex.lab = cex_perc, cex.axis = cex_perc)
points(x = rep(0.7, length(indizes)), y = as.numeric(best_fit[indizes,"EcoRisk",1]),
col = scales::alpha(colz[indizes],1), lwd = 2)
text(x = 1, y = max(ecorisk_threshold$stats)+0.2, paste0("median:\n", median(ecorisk_threshold$stats)), cex = cex_perc)
mtext(side = 3, at = 0, "D", xpd = NA, cex = 1.5, font = 2)
# AUC boxplots
biocol_auc <- boxplot(auc[indizes,"BioCol"], ylim = c(0,1), main = "AUC", cex.main = cex_perc,
cex.lab = cex_perc, cex.axis = cex_perc)
points(x = rep(0.7, length(indizes)), y = auc[indizes,"BioCol"],
col = scales::alpha(colz[indizes],1), lwd = 2)
mtext(side = 3, at = 0, "E", xpd = NA, cex = 1.5, font = 2)
ecorisk_auc <- boxplot(auc[indizes,"EcoRisk"], main = "AUC", cex.main = cex_perc,
ylim = c(0,1), cex.lab = cex_perc, cex.axis = cex_perc)
points(x = rep(0.7, length(indizes)), y = auc[indizes,"EcoRisk"],
col = scales::alpha(colz[indizes],1), lwd = 2)
mtext(side = 3, at = 0, "F", xpd = NA, cex = 1.5, font = 2)
if (!is.null(filename)) dev.off()
return(list(
auc = auc,
biocol_threshold = biocol_threshold,
ecorisk_threshold = ecorisk_threshold
))
}