Skip to content
Snippets Groups Projects
Commit 4905c491 authored by Ingram Jaccard's avatar Ingram Jaccard
Browse files

edit full code

parent 5c0f3f21
No related branches found
No related tags found
No related merge requests found
......@@ -55,83 +55,93 @@ Each year is available as a .zip file ('IOT_year_ixi' or 'IOT_year_pxp') from th
```{r exiobase, eval = FALSE}
# EXIOBASE_cluster_ixi_version
# data directories (on cluster)
#data_dir_exiobase = paste("/",file.path("data","metab","Exiobase", fsep=.Platform$file.sep),sep="")
# set data directory for EXIOBASE files
data_dir_exiobase = here("analysis", "preprocessing", "EXIOBASE")
##### EXIOBASE industry-by-industry version
# set study years
years_exiobase_ixi = c(2005,2010,2015)
# 'for' loop which writes 'total intensity vectors' (and row-wise breakdowns) for all study satellite extensions and years to 'data_dir_exiobase' using downloaded EXIOBASE files
for (i in years_exiobase_ixi){
year_current = i
# read in A table as table
A = read.delim(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/A.txt"),header = F)
# write A table as .csv file
write.csv(A, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/A.csv"))
# read in A table as .csv file and extract the data only (no labels), and convert to numeric
A = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/A.csv",sep = ""),row.names=NULL,as.is=TRUE)[4:7990,4:7990]
A[is.na(A)]=0
A = mapply(A, FUN = as.numeric)
A = matrix(data = A, ncol = 7987, nrow = 7987)
L = solve(diag(dim(A)[1])-A) # this solves the Leontief inverse initially
# solve the Leontief inverse
L = solve(diag(dim(A)[1])-A)
L[is.na(L)]=0
# final demand
# read in final demand table (Y) as table
FD = read.delim(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/Y.txt"),header = F)
# write final demand table (Y) as .csv file
write.csv(FD, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/Y.csv"))
# read in final demand table as .csv file and extract the production sector labels
Exiobase_T_labels_ixi = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/Y.csv"))[4:7990,1:3]
# write a .csv file with only the production sector labels
write.csv(Exiobase_T_labels_ixi, paste0(data_dir_exiobase, "/Exiobase_T_labels_ixi.csv"))
# read in final demand table as .csv file and extract the final demand category labels
Exiobase_FD_labels_ixi = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/Y.csv"))[1:3,4:346]
# write a .csv file with only the final demand category labels
write.csv(Exiobase_FD_labels_ixi, paste0(data_dir_exiobase, "/Exiobase_FD_labels_ixi.csv"))
# read in final demand table as .csv file and extract the data only (no labels), and convert to numeric
FD = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/Y.csv",sep=""),row.names=NULL,as.is=TRUE)[4:7990,4:346]
FD[is.na(FD)]=0
FD = mapply(FD, FUN = as.numeric)
FD = matrix(data=FD,ncol=343,nrow=7987)
# write a .csv file with final demand data only (no labels)
write.csv(FD, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/FD_",year_current,"_ixi.csv"))
# total output
# calculate total output
total_output = L %*% rowSums(FD)
# write total output as a .csv file
write.csv(total_output, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/total_output_",year_current,"_ixi.csv"))
# direct environmental vectors
# read in satellite extensions table (F) as table
satellite = read.delim(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/satellite/F.txt"),header = F)
# write satellite extensions table (F) as .csv file
write.csv(satellite, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/satellite/F.csv"))
# read in satellite extensions table (F) as .csv file and extract the data only (no labels), and convert to numeric
satellite = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/satellite/F.csv",sep=""),row.names=NULL,as.is=TRUE)[3:1115,3:7989]
satellite[is.na(satellite)]=0
satellite = mapply(satellite, FUN = as.numeric)
satellite = matrix(data=satellite,ncol=7987,nrow=1113)
# write a .csv file with satellite extensions data only (no labels)
write.csv(satellite, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/satellite/satellite_",year_current,"_ixi.csv"))
# direct environmental vectors on final demand
# read in satellite extensions on final demand table (F_hh) as table
satellite_FD = read.delim(paste0(data_dir_exiobase, "/IOT_", year_current, "_ixi/satellite/F_hh.txt"),header = F)
# write satellite extensions on final demand table (F_hh) as .csv file
write.csv(satellite_FD, paste0(data_dir_exiobase, "/IOT_", year_current, "_ixi/satellite/F_hh.csv"))
## extract the relevant satellite extensions from the satellite table, calculate the 'total intensity
## vectors' (and their row-wise breakdowns), and save to 'data_dir_exiobase'
# CO2 combustion air
# CO2 - combustion - air
CO2_combustion_air = satellite[24,]
DIV_co2_combustion_air = CO2_combustion_air/total_output
DIV_co2_combustion_air[is.na(DIV_co2_combustion_air)]=0
......@@ -149,8 +159,7 @@ TIV_country_breakdown_co2_combustion_air_w_labels = t(TIV_breakdown_co2_combusti
write.csv(TIV_country_breakdown_co2_combustion_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_co2_combustion_air_",year_current,"_ixi.csv"))
# CO2 non-combustion air
# CO2 - non-combustion - air
## cement
CO2_noncombustion_cement_air = satellite[93,]
DIV_co2_noncombustion_cement_air = CO2_noncombustion_cement_air/total_output
......@@ -187,8 +196,7 @@ TIV_country_breakdown_co2_noncombustion_lime_air_w_labels = t(TIV_breakdown_co2_
write.csv(TIV_country_breakdown_co2_noncombustion_lime_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_co2_noncombustion_lime_air_",year_current,"_ixi.csv"))
# CO2 agriculture peat decay air
# CO2 - agriculture - peat decay - air
CO2_agriculture_peatdecay_air = satellite[428,]
DIV_co2_agriculture_peatdecay_air = CO2_agriculture_peatdecay_air/total_output
DIV_co2_agriculture_peatdecay_air[is.na(DIV_co2_agriculture_peatdecay_air)]=0
......@@ -206,7 +214,7 @@ TIV_country_breakdown_co2_agriculture_peatdecay_air_w_labels = t(TIV_breakdown_c
write.csv(TIV_country_breakdown_co2_agriculture_peatdecay_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_co2_agriculture_peatdecay_air_",year_current,"_ixi.csv"))
# CO2 waste air
# CO2 - waste - air
## biogenic
CO2_waste_biogenic_air = satellite[438,]
DIV_co2_waste_biogenic_air = CO2_waste_biogenic_air/total_output
......@@ -243,8 +251,7 @@ TIV_country_breakdown_co2_waste_fossil_air_w_labels = t(TIV_breakdown_co2_waste_
write.csv(TIV_country_breakdown_co2_waste_fossil_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_co2_waste_fossil_air_",year_current,"_ixi.csv"))
# CH4 combustion air
# CH4 - combustion - air
CH4_combustion_air = satellite[25,]
CH4_combustion_air = CH4_combustion_air*28
DIV_ch4_combustion_air = CH4_combustion_air/total_output
......@@ -263,8 +270,7 @@ TIV_country_breakdown_ch4_combustion_air_w_labels = t(TIV_breakdown_ch4_combusti
write.csv(TIV_country_breakdown_ch4_combustion_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_ch4_CO2eq_combustion_air_",year_current,"_ixi.csv"))
# CH4 noncombustion air
# CH4 - non-combustion - air
## gas
CH4_noncombustion_gas_air = satellite[68,]
CH4_noncombustion_gas_air = CH4_noncombustion_gas_air*28
......@@ -417,8 +423,7 @@ TIV_country_breakdown_ch4_noncombustion_oilrefinery_air_w_labels = t(TIV_breakdo
write.csv(TIV_country_breakdown_ch4_noncombustion_oilrefinery_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_ch4_CO2eq_noncombustion_oilrefinery_air_",year_current,"_ixi.csv"))
# CH4 agriculture air
# CH4 - agriculture - air
CH4_agriculture_air = satellite[427,]
CH4_agriculture_air = CH4_agriculture_air*28
DIV_ch4_agriculture_air = CH4_agriculture_air/total_output
......@@ -437,8 +442,7 @@ TIV_country_breakdown_ch4_agriculture_air_w_labels = t(TIV_breakdown_ch4_agricul
write.csv(TIV_country_breakdown_ch4_agriculture_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_ch4_CO2eq_agriculture_air_",year_current,"_ixi.csv"))
# CH4 waste air
# CH4 - waste - air
CH4_waste_air = satellite[436,]
CH4_waste_air = CH4_waste_air*28
DIV_ch4_waste_air = CH4_waste_air/total_output
......@@ -457,8 +461,7 @@ TIV_country_breakdown_ch4_waste_air_w_labels = t(TIV_breakdown_ch4_waste_air_w_l
write.csv(TIV_country_breakdown_ch4_waste_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_ch4_CO2eq_waste_air_",year_current,"_ixi.csv"))
# N2O combustion air
# N2O - combustion - air
N2O_combustion_air = satellite[26,]
N2O_combustion_air = N2O_combustion_air*265
DIV_n2o_combustion_air = N2O_combustion_air/total_output
......@@ -477,8 +480,7 @@ TIV_country_breakdown_n2o_combustion_air_w_labels = t(TIV_breakdown_n2o_combusti
write.csv(TIV_country_breakdown_n2o_combustion_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_n2o_CO2eq_combustion_air_",year_current,"_ixi.csv"))
# N2O agriculture air
# N2O - agriculture - air
N2O_agriculture_air = satellite[430,]
N2O_agriculture_air = N2O_agriculture_air*265
DIV_n2o_agriculture_air = N2O_agriculture_air/total_output
......@@ -497,8 +499,7 @@ TIV_country_breakdown_n2o_agriculture_air_w_labels = t(TIV_breakdown_n2o_agricul
write.csv(TIV_country_breakdown_n2o_agriculture_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_n2o_CO2eq_agriculture_air_",year_current,"_ixi.csv"))
# SF6 air
# SF6 - air
SF6_air = satellite[424,]
SF6_air = SF6_air*23500
DIV_sf6_air = SF6_air/total_output
......@@ -517,8 +518,7 @@ TIV_country_breakdown_sf6_air_w_labels = t(TIV_breakdown_sf6_air_w_labels %>%
write.csv(TIV_country_breakdown_sf6_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_sf6_CO2eq_air_",year_current,"_ixi.csv"))
# HFC air
# HFC - air
HFC_air = satellite[425,]
DIV_hfc_air = HFC_air/total_output
DIV_hfc_air[is.na(DIV_hfc_air)]=0
......@@ -536,8 +536,7 @@ TIV_country_breakdown_hfc_air_w_labels = t(TIV_breakdown_hfc_air_w_labels %>%
write.csv(TIV_country_breakdown_hfc_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_hfc_CO2eq_air_",year_current,"_ixi.csv"))
# PFC air
# PFC - air
PFC_air = satellite[426,]
DIV_pfc_air = PFC_air/total_output
DIV_pfc_air[is.na(DIV_pfc_air)]=0
......@@ -555,8 +554,7 @@ TIV_country_breakdown_pfc_air_w_labels = t(TIV_breakdown_pfc_air_w_labels %>%
write.csv(TIV_country_breakdown_pfc_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_pfc_CO2eq_air_",year_current,"_ixi.csv"))
# energy carrier use
# Energy carrier - use
energy_carrier_use = satellite[470,]
write.csv(energy_carrier_use, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/satellite/energy_carrier_use_",year_current,"_ixi.csv"))
DIV_e_u = energy_carrier_use/total_output
......@@ -577,79 +575,90 @@ write.csv(TIV_country_breakdown_e_u_w_labels, paste0(data_dir_exiobase, "/IOT_",
}
# EXIOBASE_cluster_pxp_version
##### EXIOBASE product-by-product version
# set study years
years_exiobase_pxp = c(2005,2010)
# 'for' loop which writes 'total intensity vectors' (and row-wise breakdowns) for all study satellite extensions and years to 'data_dir_exiobase' using downloaded EXIOBASE files
for (i in years_exiobase_pxp){
year_current = i
# read in A table as table
A = read.delim(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/A.txt"),header = F)
# write A table as .csv file
write.csv(A, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/A.csv"))
# read in A table as .csv file and extract the data only (no labels), and convert to numeric
A = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/A.csv",sep = ""),row.names=NULL,as.is=TRUE)[4:9803,4:9803]
A[is.na(A)]=0
A = mapply(A, FUN = as.numeric)
A = matrix(data = A, ncol = 9800, nrow = 9800)
L = solve(diag(dim(A)[1])-A) # this solves the Leontief inverse initially
# solve the Leontief inverse
L = solve(diag(dim(A)[1])-A)
L[is.na(L)]=0
# final demand
# read in final demand table (Y) as table
FD = read.delim(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/Y.txt"),header = F)
# write final demand table (Y) as .csv file
write.csv(FD, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/Y.csv"))
# read in final demand table as .csv file and extract the production sector labels
Exiobase_T_labels_pxp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/Y.csv"))[4:9803,1:3]
# write a .csv file with only the production sector labels
write.csv(Exiobase_T_labels_pxp, paste0(data_dir_exiobase, "/Exiobase_T_labels_pxp.csv"))
# read in final demand table as .csv file and extract the final demand category labels
Exiobase_FD_labels_pxp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/Y.csv"))[1:3,4:346]
# write a .csv file with only the final demand category labels
write.csv(Exiobase_FD_labels_pxp, paste0(data_dir_exiobase, "/Exiobase_FD_labels_pxp.csv"))
# read in final demand table as .csv file and extract the data only (no labels), and convert to numeric
FD = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/Y.csv",sep=""),row.names=NULL,as.is=TRUE)[4:9803,4:346]
FD[is.na(FD)]=0
FD = mapply(FD, FUN = as.numeric)
FD = matrix(data=FD,ncol=343,nrow=9800)
# write a .csv file with final demand data only (no labels)
write.csv(FD, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/FD_",year_current,"_pxp.csv"))
# total output
# calculate total output
total_output = L %*% rowSums(FD)
# write total output as a .csv file
write.csv(total_output, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/total_output_",year_current,"_pxp.csv"))
# direct environmental vectors
# read in satellite extensions table (F) as table
satellite = read.delim(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/satellite/F.txt"),header = F)
# write satellite extensions table (F) as .csv file
write.csv(satellite, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/satellite/F.csv"))
# read in satellite extensions table (F) as .csv file and extract the data only (no labels), and convert to numeric
satellite = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/satellite/F.csv",sep=""),row.names=NULL,as.is=TRUE)[3:1106,3:9802]
satellite[is.na(satellite)]=0
satellite = mapply(satellite, FUN = as.numeric)
satellite = matrix(data=satellite,ncol=9800,nrow=1104)
# write a .csv file with satellite extensions data only (no labels)
write.csv(satellite, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/satellite/satellite_",year_current,"_pxp.csv"))
# direct environmental vectors on final demand
# read in satellite extensions on final demand table (F_hh) as table
satellite_FD = read.delim(paste0(data_dir_exiobase, "/IOT_", year_current, "_pxp/satellite/F_hh.txt"),header = F)
# write satellite extensions on final demand table (F_hh) as .csv file
write.csv(satellite_FD, paste0(data_dir_exiobase, "/IOT_", year_current, "_pxp/satellite/F_hh.csv"))
## extract the relevant satellite extensions from the satellite table, calculate the 'total intensity
## vectors' (and their row-wise breakdowns), and save to 'data_dir_exiobase'
# CO2 combustion air
# CO2 - combustion - air
CO2_combustion_air = satellite[24,]
DIV_co2_combustion_air = CO2_combustion_air/total_output
DIV_co2_combustion_air[is.na(DIV_co2_combustion_air)]=0
......@@ -667,8 +676,7 @@ TIV_country_breakdown_co2_combustion_air_w_labels = t(TIV_breakdown_co2_combusti
write.csv(TIV_country_breakdown_co2_combustion_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_co2_combustion_air_",year_current,"_pxp.csv"))
# CO2 non-combustion air
# CO2 - non-combustion - air
## cement
CO2_noncombustion_cement_air = satellite[93,]
DIV_co2_noncombustion_cement_air = CO2_noncombustion_cement_air/total_output
......@@ -705,8 +713,7 @@ TIV_country_breakdown_co2_noncombustion_lime_air_w_labels = t(TIV_breakdown_co2_
write.csv(TIV_country_breakdown_co2_noncombustion_lime_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_co2_noncombustion_lime_air_",year_current,"_pxp.csv"))
# CO2 agriculture peat decay air
# CO2 - agriculture - peat decay - air
CO2_agriculture_peatdecay_air = satellite[428,]
DIV_co2_agriculture_peatdecay_air = CO2_agriculture_peatdecay_air/total_output
DIV_co2_agriculture_peatdecay_air[is.na(DIV_co2_agriculture_peatdecay_air)]=0
......@@ -724,8 +731,7 @@ TIV_country_breakdown_co2_agriculture_peatdecay_air_w_labels = t(TIV_breakdown_c
write.csv(TIV_country_breakdown_co2_agriculture_peatdecay_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_co2_agriculture_peatdecay_air_",year_current,"_pxp.csv"))
# CO2 waste air
# CO2 - waste - air
## biogenic
CO2_waste_biogenic_air = satellite[438,]
DIV_co2_waste_biogenic_air = CO2_waste_biogenic_air/total_output
......@@ -762,8 +768,7 @@ TIV_country_breakdown_co2_waste_fossil_air_w_labels = t(TIV_breakdown_co2_waste_
write.csv(TIV_country_breakdown_co2_waste_fossil_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_co2_waste_fossil_air_",year_current,"_pxp.csv"))
# CH4 combustion air
# CH4 - combustion - air
CH4_combustion_air = satellite[25,]
CH4_combustion_air = CH4_combustion_air*28
DIV_ch4_combustion_air = CH4_combustion_air/total_output
......@@ -782,8 +787,7 @@ TIV_country_breakdown_ch4_combustion_air_w_labels = t(TIV_breakdown_ch4_combusti
write.csv(TIV_country_breakdown_ch4_combustion_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_ch4_CO2eq_combustion_air_",year_current,"_pxp.csv"))
# CH4 non-combustion air
# CH4 - non-combustion - air
## gas
CH4_noncombustion_gas_air = satellite[68,]
CH4_noncombustion_gas_air = CH4_noncombustion_gas_air*28
......@@ -936,8 +940,7 @@ TIV_country_breakdown_ch4_noncombustion_oilrefinery_air_w_labels = t(TIV_breakdo
write.csv(TIV_country_breakdown_ch4_noncombustion_oilrefinery_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_ch4_CO2eq_noncombustion_oilrefinery_air_",year_current,"_pxp.csv"))
# CH4 agriculture air
# CH4 - agriculture - air
CH4_agriculture_air = satellite[427,]
CH4_agriculture_air = CH4_agriculture_air*28
DIV_ch4_agriculture_air = CH4_agriculture_air/total_output
......@@ -956,8 +959,7 @@ TIV_country_breakdown_ch4_agriculture_air_w_labels = t(TIV_breakdown_ch4_agricul
write.csv(TIV_country_breakdown_ch4_agriculture_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_ch4_CO2eq_agriculture_air_",year_current,"_pxp.csv"))
# CH4 waste air
# CH4 - waste - air
CH4_waste_air = satellite[436,]
CH4_waste_air = CH4_waste_air*28
DIV_ch4_waste_air = CH4_waste_air/total_output
......@@ -976,8 +978,7 @@ TIV_country_breakdown_ch4_waste_air_w_labels = t(TIV_breakdown_ch4_waste_air_w_l
write.csv(TIV_country_breakdown_ch4_waste_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_ch4_CO2eq_waste_air_",year_current,"_pxp.csv"))
# N2O combustion air
# N2O - combustion - air
N2O_combustion_air = satellite[26,]
N2O_combustion_air = N2O_combustion_air*265
DIV_n2o_combustion_air = N2O_combustion_air/total_output
......@@ -996,8 +997,7 @@ TIV_country_breakdown_n2o_combustion_air_w_labels = t(TIV_breakdown_n2o_combusti
write.csv(TIV_country_breakdown_n2o_combustion_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_n2o_CO2eq_combustion_air_",year_current,"_pxp.csv"))
# N2O agriculture air
# N2O - agriculture - air
N2O_agriculture_air = satellite[430,]
N2O_agriculture_air = N2O_agriculture_air*265
DIV_n2o_agriculture_air = N2O_agriculture_air/total_output
......@@ -1016,8 +1016,7 @@ TIV_country_breakdown_n2o_agriculture_air_w_labels = t(TIV_breakdown_n2o_agricul
write.csv(TIV_country_breakdown_n2o_agriculture_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_n2o_CO2eq_agriculture_air_",year_current,"_pxp.csv"))
# SF6 air
# SF6 - air
SF6_air = satellite[424,]
SF6_air = SF6_air*23500
DIV_sf6_air = SF6_air/total_output
......@@ -1036,8 +1035,7 @@ TIV_country_breakdown_sf6_air_w_labels = t(TIV_breakdown_sf6_air_w_labels %>%
write.csv(TIV_country_breakdown_sf6_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_sf6_CO2eq_air_",year_current,"_pxp.csv"))
# HFC air
# HFC - air
HFC_air = satellite[425,]
DIV_hfc_air = HFC_air/total_output
DIV_hfc_air[is.na(DIV_hfc_air)]=0
......@@ -1055,8 +1053,7 @@ TIV_country_breakdown_hfc_air_w_labels = t(TIV_breakdown_hfc_air_w_labels %>%
write.csv(TIV_country_breakdown_hfc_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_hfc_CO2eq_air_",year_current,"_pxp.csv"))
# PFC air
# PFC - air
PFC_air = satellite[426,]
DIV_pfc_air = PFC_air/total_output
DIV_pfc_air[is.na(DIV_pfc_air)]=0
......@@ -1074,8 +1071,7 @@ TIV_country_breakdown_pfc_air_w_labels = t(TIV_breakdown_pfc_air_w_labels %>%
write.csv(TIV_country_breakdown_pfc_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_pfc_CO2eq_air_",year_current,"_pxp.csv"))
# energy carrier use
# Energy carrier - use
energy_carrier_use = satellite[470,]
DIV_e_u = energy_carrier_use/total_output
DIV_e_u[is.na(DIV_e_u)]=0
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment