diff --git a/analysis/preprocessing/full_code.Rmd b/analysis/preprocessing/full_code.Rmd index e5e5aee96722f7b5adba8652560401130db45926..9e8deca663e24a24f2f154c924573b44b77d80c3 100644 --- a/analysis/preprocessing/full_code.Rmd +++ b/analysis/preprocessing/full_code.Rmd @@ -55,83 +55,93 @@ Each year is available as a .zip file ('IOT_year_ixi' or 'IOT_year_pxp') from th ```{r exiobase, eval = FALSE} -# EXIOBASE_cluster_ixi_version - -# data directories (on cluster) -#data_dir_exiobase = paste("/",file.path("data","metab","Exiobase", fsep=.Platform$file.sep),sep="") +# set data directory for EXIOBASE files data_dir_exiobase = here("analysis", "preprocessing", "EXIOBASE") +##### EXIOBASE industry-by-industry version + +# set study years years_exiobase_ixi = c(2005,2010,2015) +# 'for' loop which writes 'total intensity vectors' (and row-wise breakdowns) for all study satellite extensions and years to 'data_dir_exiobase' using downloaded EXIOBASE files for (i in years_exiobase_ixi){ year_current = i +# read in A table as table A = read.delim(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/A.txt"),header = F) +# write A table as .csv file write.csv(A, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/A.csv")) +# read in A table as .csv file and extract the data only (no labels), and convert to numeric A = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/A.csv",sep = ""),row.names=NULL,as.is=TRUE)[4:7990,4:7990] A[is.na(A)]=0 A = mapply(A, FUN = as.numeric) A = matrix(data = A, ncol = 7987, nrow = 7987) -L = solve(diag(dim(A)[1])-A) # this solves the Leontief inverse initially +# solve the Leontief inverse +L = solve(diag(dim(A)[1])-A) L[is.na(L)]=0 - -# final demand +# read in final demand table (Y) as table FD = read.delim(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/Y.txt"),header = F) +# write final demand table (Y) as .csv file write.csv(FD, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/Y.csv")) - +# read in final demand table as .csv file and extract the production sector labels Exiobase_T_labels_ixi = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/Y.csv"))[4:7990,1:3] +# write a .csv file with only the production sector labels write.csv(Exiobase_T_labels_ixi, paste0(data_dir_exiobase, "/Exiobase_T_labels_ixi.csv")) +# read in final demand table as .csv file and extract the final demand category labels Exiobase_FD_labels_ixi = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/Y.csv"))[1:3,4:346] +# write a .csv file with only the final demand category labels write.csv(Exiobase_FD_labels_ixi, paste0(data_dir_exiobase, "/Exiobase_FD_labels_ixi.csv")) - +# read in final demand table as .csv file and extract the data only (no labels), and convert to numeric FD = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/Y.csv",sep=""),row.names=NULL,as.is=TRUE)[4:7990,4:346] FD[is.na(FD)]=0 FD = mapply(FD, FUN = as.numeric) FD = matrix(data=FD,ncol=343,nrow=7987) +# write a .csv file with final demand data only (no labels) write.csv(FD, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/FD_",year_current,"_ixi.csv")) - -# total output +# calculate total output total_output = L %*% rowSums(FD) +# write total output as a .csv file write.csv(total_output, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/total_output_",year_current,"_ixi.csv")) - -# direct environmental vectors +# read in satellite extensions table (F) as table satellite = read.delim(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/satellite/F.txt"),header = F) +# write satellite extensions table (F) as .csv file write.csv(satellite, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/satellite/F.csv")) - +# read in satellite extensions table (F) as .csv file and extract the data only (no labels), and convert to numeric satellite = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/satellite/F.csv",sep=""),row.names=NULL,as.is=TRUE)[3:1115,3:7989] satellite[is.na(satellite)]=0 satellite = mapply(satellite, FUN = as.numeric) satellite = matrix(data=satellite,ncol=7987,nrow=1113) - +# write a .csv file with satellite extensions data only (no labels) write.csv(satellite, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/satellite/satellite_",year_current,"_ixi.csv")) - -# direct environmental vectors on final demand - +# read in satellite extensions on final demand table (F_hh) as table satellite_FD = read.delim(paste0(data_dir_exiobase, "/IOT_", year_current, "_ixi/satellite/F_hh.txt"),header = F) +# write satellite extensions on final demand table (F_hh) as .csv file write.csv(satellite_FD, paste0(data_dir_exiobase, "/IOT_", year_current, "_ixi/satellite/F_hh.csv")) +## extract the relevant satellite extensions from the satellite table, calculate the 'total intensity +## vectors' (and their row-wise breakdowns), and save to 'data_dir_exiobase' -# CO2 combustion air +# CO2 - combustion - air CO2_combustion_air = satellite[24,] DIV_co2_combustion_air = CO2_combustion_air/total_output DIV_co2_combustion_air[is.na(DIV_co2_combustion_air)]=0 @@ -149,8 +159,7 @@ TIV_country_breakdown_co2_combustion_air_w_labels = t(TIV_breakdown_co2_combusti write.csv(TIV_country_breakdown_co2_combustion_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_co2_combustion_air_",year_current,"_ixi.csv")) - -# CO2 non-combustion air +# CO2 - non-combustion - air ## cement CO2_noncombustion_cement_air = satellite[93,] DIV_co2_noncombustion_cement_air = CO2_noncombustion_cement_air/total_output @@ -187,8 +196,7 @@ TIV_country_breakdown_co2_noncombustion_lime_air_w_labels = t(TIV_breakdown_co2_ write.csv(TIV_country_breakdown_co2_noncombustion_lime_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_co2_noncombustion_lime_air_",year_current,"_ixi.csv")) - -# CO2 agriculture peat decay air +# CO2 - agriculture - peat decay - air CO2_agriculture_peatdecay_air = satellite[428,] DIV_co2_agriculture_peatdecay_air = CO2_agriculture_peatdecay_air/total_output DIV_co2_agriculture_peatdecay_air[is.na(DIV_co2_agriculture_peatdecay_air)]=0 @@ -206,7 +214,7 @@ TIV_country_breakdown_co2_agriculture_peatdecay_air_w_labels = t(TIV_breakdown_c write.csv(TIV_country_breakdown_co2_agriculture_peatdecay_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_co2_agriculture_peatdecay_air_",year_current,"_ixi.csv")) -# CO2 waste air +# CO2 - waste - air ## biogenic CO2_waste_biogenic_air = satellite[438,] DIV_co2_waste_biogenic_air = CO2_waste_biogenic_air/total_output @@ -243,8 +251,7 @@ TIV_country_breakdown_co2_waste_fossil_air_w_labels = t(TIV_breakdown_co2_waste_ write.csv(TIV_country_breakdown_co2_waste_fossil_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_co2_waste_fossil_air_",year_current,"_ixi.csv")) - -# CH4 combustion air +# CH4 - combustion - air CH4_combustion_air = satellite[25,] CH4_combustion_air = CH4_combustion_air*28 DIV_ch4_combustion_air = CH4_combustion_air/total_output @@ -263,8 +270,7 @@ TIV_country_breakdown_ch4_combustion_air_w_labels = t(TIV_breakdown_ch4_combusti write.csv(TIV_country_breakdown_ch4_combustion_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_ch4_CO2eq_combustion_air_",year_current,"_ixi.csv")) - -# CH4 noncombustion air +# CH4 - non-combustion - air ## gas CH4_noncombustion_gas_air = satellite[68,] CH4_noncombustion_gas_air = CH4_noncombustion_gas_air*28 @@ -417,8 +423,7 @@ TIV_country_breakdown_ch4_noncombustion_oilrefinery_air_w_labels = t(TIV_breakdo write.csv(TIV_country_breakdown_ch4_noncombustion_oilrefinery_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_ch4_CO2eq_noncombustion_oilrefinery_air_",year_current,"_ixi.csv")) - -# CH4 agriculture air +# CH4 - agriculture - air CH4_agriculture_air = satellite[427,] CH4_agriculture_air = CH4_agriculture_air*28 DIV_ch4_agriculture_air = CH4_agriculture_air/total_output @@ -437,8 +442,7 @@ TIV_country_breakdown_ch4_agriculture_air_w_labels = t(TIV_breakdown_ch4_agricul write.csv(TIV_country_breakdown_ch4_agriculture_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_ch4_CO2eq_agriculture_air_",year_current,"_ixi.csv")) - -# CH4 waste air +# CH4 - waste - air CH4_waste_air = satellite[436,] CH4_waste_air = CH4_waste_air*28 DIV_ch4_waste_air = CH4_waste_air/total_output @@ -457,8 +461,7 @@ TIV_country_breakdown_ch4_waste_air_w_labels = t(TIV_breakdown_ch4_waste_air_w_l write.csv(TIV_country_breakdown_ch4_waste_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_ch4_CO2eq_waste_air_",year_current,"_ixi.csv")) - -# N2O combustion air +# N2O - combustion - air N2O_combustion_air = satellite[26,] N2O_combustion_air = N2O_combustion_air*265 DIV_n2o_combustion_air = N2O_combustion_air/total_output @@ -477,8 +480,7 @@ TIV_country_breakdown_n2o_combustion_air_w_labels = t(TIV_breakdown_n2o_combusti write.csv(TIV_country_breakdown_n2o_combustion_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_n2o_CO2eq_combustion_air_",year_current,"_ixi.csv")) - -# N2O agriculture air +# N2O - agriculture - air N2O_agriculture_air = satellite[430,] N2O_agriculture_air = N2O_agriculture_air*265 DIV_n2o_agriculture_air = N2O_agriculture_air/total_output @@ -497,8 +499,7 @@ TIV_country_breakdown_n2o_agriculture_air_w_labels = t(TIV_breakdown_n2o_agricul write.csv(TIV_country_breakdown_n2o_agriculture_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_n2o_CO2eq_agriculture_air_",year_current,"_ixi.csv")) - -# SF6 air +# SF6 - air SF6_air = satellite[424,] SF6_air = SF6_air*23500 DIV_sf6_air = SF6_air/total_output @@ -517,8 +518,7 @@ TIV_country_breakdown_sf6_air_w_labels = t(TIV_breakdown_sf6_air_w_labels %>% write.csv(TIV_country_breakdown_sf6_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_sf6_CO2eq_air_",year_current,"_ixi.csv")) - -# HFC air +# HFC - air HFC_air = satellite[425,] DIV_hfc_air = HFC_air/total_output DIV_hfc_air[is.na(DIV_hfc_air)]=0 @@ -536,8 +536,7 @@ TIV_country_breakdown_hfc_air_w_labels = t(TIV_breakdown_hfc_air_w_labels %>% write.csv(TIV_country_breakdown_hfc_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_hfc_CO2eq_air_",year_current,"_ixi.csv")) - -# PFC air +# PFC - air PFC_air = satellite[426,] DIV_pfc_air = PFC_air/total_output DIV_pfc_air[is.na(DIV_pfc_air)]=0 @@ -555,8 +554,7 @@ TIV_country_breakdown_pfc_air_w_labels = t(TIV_breakdown_pfc_air_w_labels %>% write.csv(TIV_country_breakdown_pfc_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_pfc_CO2eq_air_",year_current,"_ixi.csv")) - -# energy carrier use +# Energy carrier - use energy_carrier_use = satellite[470,] write.csv(energy_carrier_use, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/satellite/energy_carrier_use_",year_current,"_ixi.csv")) DIV_e_u = energy_carrier_use/total_output @@ -577,79 +575,90 @@ write.csv(TIV_country_breakdown_e_u_w_labels, paste0(data_dir_exiobase, "/IOT_", } -# EXIOBASE_cluster_pxp_version +##### EXIOBASE product-by-product version +# set study years years_exiobase_pxp = c(2005,2010) +# 'for' loop which writes 'total intensity vectors' (and row-wise breakdowns) for all study satellite extensions and years to 'data_dir_exiobase' using downloaded EXIOBASE files for (i in years_exiobase_pxp){ year_current = i +# read in A table as table A = read.delim(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/A.txt"),header = F) +# write A table as .csv file write.csv(A, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/A.csv")) +# read in A table as .csv file and extract the data only (no labels), and convert to numeric A = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/A.csv",sep = ""),row.names=NULL,as.is=TRUE)[4:9803,4:9803] A[is.na(A)]=0 A = mapply(A, FUN = as.numeric) A = matrix(data = A, ncol = 9800, nrow = 9800) -L = solve(diag(dim(A)[1])-A) # this solves the Leontief inverse initially +# solve the Leontief inverse +L = solve(diag(dim(A)[1])-A) L[is.na(L)]=0 - -# final demand +# read in final demand table (Y) as table FD = read.delim(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/Y.txt"),header = F) +# write final demand table (Y) as .csv file write.csv(FD, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/Y.csv")) - +# read in final demand table as .csv file and extract the production sector labels Exiobase_T_labels_pxp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/Y.csv"))[4:9803,1:3] +# write a .csv file with only the production sector labels write.csv(Exiobase_T_labels_pxp, paste0(data_dir_exiobase, "/Exiobase_T_labels_pxp.csv")) +# read in final demand table as .csv file and extract the final demand category labels Exiobase_FD_labels_pxp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/Y.csv"))[1:3,4:346] +# write a .csv file with only the final demand category labels write.csv(Exiobase_FD_labels_pxp, paste0(data_dir_exiobase, "/Exiobase_FD_labels_pxp.csv")) - +# read in final demand table as .csv file and extract the data only (no labels), and convert to numeric FD = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/Y.csv",sep=""),row.names=NULL,as.is=TRUE)[4:9803,4:346] FD[is.na(FD)]=0 FD = mapply(FD, FUN = as.numeric) FD = matrix(data=FD,ncol=343,nrow=9800) +# write a .csv file with final demand data only (no labels) write.csv(FD, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/FD_",year_current,"_pxp.csv")) - -# total output +# calculate total output total_output = L %*% rowSums(FD) +# write total output as a .csv file write.csv(total_output, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/total_output_",year_current,"_pxp.csv")) - -# direct environmental vectors +# read in satellite extensions table (F) as table satellite = read.delim(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/satellite/F.txt"),header = F) +# write satellite extensions table (F) as .csv file write.csv(satellite, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/satellite/F.csv")) - +# read in satellite extensions table (F) as .csv file and extract the data only (no labels), and convert to numeric satellite = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/satellite/F.csv",sep=""),row.names=NULL,as.is=TRUE)[3:1106,3:9802] satellite[is.na(satellite)]=0 satellite = mapply(satellite, FUN = as.numeric) satellite = matrix(data=satellite,ncol=9800,nrow=1104) - +# write a .csv file with satellite extensions data only (no labels) write.csv(satellite, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/satellite/satellite_",year_current,"_pxp.csv")) - -# direct environmental vectors on final demand - +# read in satellite extensions on final demand table (F_hh) as table satellite_FD = read.delim(paste0(data_dir_exiobase, "/IOT_", year_current, "_pxp/satellite/F_hh.txt"),header = F) +# write satellite extensions on final demand table (F_hh) as .csv file write.csv(satellite_FD, paste0(data_dir_exiobase, "/IOT_", year_current, "_pxp/satellite/F_hh.csv")) +## extract the relevant satellite extensions from the satellite table, calculate the 'total intensity +## vectors' (and their row-wise breakdowns), and save to 'data_dir_exiobase' -# CO2 combustion air +# CO2 - combustion - air CO2_combustion_air = satellite[24,] DIV_co2_combustion_air = CO2_combustion_air/total_output DIV_co2_combustion_air[is.na(DIV_co2_combustion_air)]=0 @@ -667,8 +676,7 @@ TIV_country_breakdown_co2_combustion_air_w_labels = t(TIV_breakdown_co2_combusti write.csv(TIV_country_breakdown_co2_combustion_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_co2_combustion_air_",year_current,"_pxp.csv")) - -# CO2 non-combustion air +# CO2 - non-combustion - air ## cement CO2_noncombustion_cement_air = satellite[93,] DIV_co2_noncombustion_cement_air = CO2_noncombustion_cement_air/total_output @@ -705,8 +713,7 @@ TIV_country_breakdown_co2_noncombustion_lime_air_w_labels = t(TIV_breakdown_co2_ write.csv(TIV_country_breakdown_co2_noncombustion_lime_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_co2_noncombustion_lime_air_",year_current,"_pxp.csv")) - -# CO2 agriculture peat decay air +# CO2 - agriculture - peat decay - air CO2_agriculture_peatdecay_air = satellite[428,] DIV_co2_agriculture_peatdecay_air = CO2_agriculture_peatdecay_air/total_output DIV_co2_agriculture_peatdecay_air[is.na(DIV_co2_agriculture_peatdecay_air)]=0 @@ -724,8 +731,7 @@ TIV_country_breakdown_co2_agriculture_peatdecay_air_w_labels = t(TIV_breakdown_c write.csv(TIV_country_breakdown_co2_agriculture_peatdecay_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_co2_agriculture_peatdecay_air_",year_current,"_pxp.csv")) - -# CO2 waste air +# CO2 - waste - air ## biogenic CO2_waste_biogenic_air = satellite[438,] DIV_co2_waste_biogenic_air = CO2_waste_biogenic_air/total_output @@ -762,8 +768,7 @@ TIV_country_breakdown_co2_waste_fossil_air_w_labels = t(TIV_breakdown_co2_waste_ write.csv(TIV_country_breakdown_co2_waste_fossil_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_co2_waste_fossil_air_",year_current,"_pxp.csv")) - -# CH4 combustion air +# CH4 - combustion - air CH4_combustion_air = satellite[25,] CH4_combustion_air = CH4_combustion_air*28 DIV_ch4_combustion_air = CH4_combustion_air/total_output @@ -782,8 +787,7 @@ TIV_country_breakdown_ch4_combustion_air_w_labels = t(TIV_breakdown_ch4_combusti write.csv(TIV_country_breakdown_ch4_combustion_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_ch4_CO2eq_combustion_air_",year_current,"_pxp.csv")) - -# CH4 non-combustion air +# CH4 - non-combustion - air ## gas CH4_noncombustion_gas_air = satellite[68,] CH4_noncombustion_gas_air = CH4_noncombustion_gas_air*28 @@ -936,8 +940,7 @@ TIV_country_breakdown_ch4_noncombustion_oilrefinery_air_w_labels = t(TIV_breakdo write.csv(TIV_country_breakdown_ch4_noncombustion_oilrefinery_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_ch4_CO2eq_noncombustion_oilrefinery_air_",year_current,"_pxp.csv")) - -# CH4 agriculture air +# CH4 - agriculture - air CH4_agriculture_air = satellite[427,] CH4_agriculture_air = CH4_agriculture_air*28 DIV_ch4_agriculture_air = CH4_agriculture_air/total_output @@ -956,8 +959,7 @@ TIV_country_breakdown_ch4_agriculture_air_w_labels = t(TIV_breakdown_ch4_agricul write.csv(TIV_country_breakdown_ch4_agriculture_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_ch4_CO2eq_agriculture_air_",year_current,"_pxp.csv")) - -# CH4 waste air +# CH4 - waste - air CH4_waste_air = satellite[436,] CH4_waste_air = CH4_waste_air*28 DIV_ch4_waste_air = CH4_waste_air/total_output @@ -976,8 +978,7 @@ TIV_country_breakdown_ch4_waste_air_w_labels = t(TIV_breakdown_ch4_waste_air_w_l write.csv(TIV_country_breakdown_ch4_waste_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_ch4_CO2eq_waste_air_",year_current,"_pxp.csv")) - -# N2O combustion air +# N2O - combustion - air N2O_combustion_air = satellite[26,] N2O_combustion_air = N2O_combustion_air*265 DIV_n2o_combustion_air = N2O_combustion_air/total_output @@ -996,8 +997,7 @@ TIV_country_breakdown_n2o_combustion_air_w_labels = t(TIV_breakdown_n2o_combusti write.csv(TIV_country_breakdown_n2o_combustion_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_n2o_CO2eq_combustion_air_",year_current,"_pxp.csv")) - -# N2O agriculture air +# N2O - agriculture - air N2O_agriculture_air = satellite[430,] N2O_agriculture_air = N2O_agriculture_air*265 DIV_n2o_agriculture_air = N2O_agriculture_air/total_output @@ -1016,8 +1016,7 @@ TIV_country_breakdown_n2o_agriculture_air_w_labels = t(TIV_breakdown_n2o_agricul write.csv(TIV_country_breakdown_n2o_agriculture_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_n2o_CO2eq_agriculture_air_",year_current,"_pxp.csv")) - -# SF6 air +# SF6 - air SF6_air = satellite[424,] SF6_air = SF6_air*23500 DIV_sf6_air = SF6_air/total_output @@ -1036,8 +1035,7 @@ TIV_country_breakdown_sf6_air_w_labels = t(TIV_breakdown_sf6_air_w_labels %>% write.csv(TIV_country_breakdown_sf6_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_sf6_CO2eq_air_",year_current,"_pxp.csv")) - -# HFC air +# HFC - air HFC_air = satellite[425,] DIV_hfc_air = HFC_air/total_output DIV_hfc_air[is.na(DIV_hfc_air)]=0 @@ -1055,8 +1053,7 @@ TIV_country_breakdown_hfc_air_w_labels = t(TIV_breakdown_hfc_air_w_labels %>% write.csv(TIV_country_breakdown_hfc_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_hfc_CO2eq_air_",year_current,"_pxp.csv")) - -# PFC air +# PFC - air PFC_air = satellite[426,] DIV_pfc_air = PFC_air/total_output DIV_pfc_air[is.na(DIV_pfc_air)]=0 @@ -1074,8 +1071,7 @@ TIV_country_breakdown_pfc_air_w_labels = t(TIV_breakdown_pfc_air_w_labels %>% write.csv(TIV_country_breakdown_pfc_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_pfc_CO2eq_air_",year_current,"_pxp.csv")) - -# energy carrier use +# Energy carrier - use energy_carrier_use = satellite[470,] DIV_e_u = energy_carrier_use/total_output DIV_e_u[is.na(DIV_e_u)]=0