Skip to content
Snippets Groups Projects
Commit 2fbff3f5 authored by Ingram Jaccard's avatar Ingram Jaccard
Browse files

edit full code

parent 22d79f3a
No related branches found
No related tags found
No related merge requests found
...@@ -7902,7 +7902,8 @@ write_csv(df_mapped_result_ntiles, ...@@ -7902,7 +7902,8 @@ write_csv(df_mapped_result_ntiles,
###### pxp version ###### pxp version
# 1) load MRIO result file # 1) load MRIO result file
dat_results_raw = read_rds(here("data", "results_formatted_method1_pxp_pps_hh_no_rent.rds")) %>% dat_results_raw = read_rds(here("analysis", "preprocessing", "income-stratified-footprints",
"results_formatted_method1_pxp_pps_hh_no_rent.rds")) %>%
ungroup() %>% ungroup() %>%
mutate(year= strtoi(year)) %>% mutate(year= strtoi(year)) %>%
rename(iso2 = geo) rename(iso2 = geo)
...@@ -7915,7 +7916,8 @@ country_codes = ISOcodes::ISO_3166_1 %>% ...@@ -7915,7 +7916,8 @@ country_codes = ISOcodes::ISO_3166_1 %>%
mutate(iso2 = if_else(iso2=="GB", "UK", iso2)) mutate(iso2 = if_else(iso2=="GB", "UK", iso2))
# 2) load Eurostat household data # 2) load Eurostat household data
hh_data = read_csv(here("data", "total_private_households.csv")) %>% hh_data = read_csv(here("analysis", "preprocessing", "income-stratified-footprints",
"total_private_households.csv")) %>%
mutate(imputed = if_else(is.na(total_private_households), TRUE, FALSE)) %>% mutate(imputed = if_else(is.na(total_private_households), TRUE, FALSE)) %>%
rename(iso2 = geo) %>% rename(iso2 = geo) %>%
group_by(iso2) %>% group_by(iso2) %>%
...@@ -7925,7 +7927,7 @@ hh_data = read_csv(here("data", "total_private_households.csv")) %>% ...@@ -7925,7 +7927,7 @@ hh_data = read_csv(here("data", "total_private_households.csv")) %>%
select(-total_private_households) select(-total_private_households)
#3) Eurostat mean expenditures per household income quintile per household and per adult equivalent #3) Eurostat mean expenditures per household income quintile per household and per adult equivalent
df_expenditure_long = read_csv(here("data", df_expenditure_long = read_csv(here("analysis", "preprocessing", "income-stratified-footprints",
"mean_expenditure_by_quintile_long.csv"), "mean_expenditure_by_quintile_long.csv"),
na = ":") %>% na = ":") %>%
#filter(year >=2010, geo != "IT") %>% #filter(year >=2010, geo != "IT") %>%
...@@ -8205,7 +8207,7 @@ df_mapped_result_data = df_mapped_result_2005_data %>% ...@@ -8205,7 +8207,7 @@ df_mapped_result_data = df_mapped_result_2005_data %>%
#bind_rows(df_mapped_result_2015_data) #bind_rows(df_mapped_result_2015_data)
write_csv(df_mapped_result_data, write_csv(df_mapped_result_data,
here(paste0("data/mrio_results_eu_ntile_mapped_n_", target_eu_ntiles, "_pxp.csv"))) here(paste0("analysyis/data/derived/si/mrio_results_eu_ntile_mapped_n_", target_eu_ntiles, "_pxp_check.csv")))
df_mapped_result_ntiles = df_mapped_result_ntiles =
df_mapped_result_2005_ntiles %>% mutate(year=2005) %>% df_mapped_result_2005_ntiles %>% mutate(year=2005) %>%
...@@ -8218,7 +8220,8 @@ write_csv(df_mapped_result_ntiles, ...@@ -8218,7 +8220,8 @@ write_csv(df_mapped_result_ntiles,
###### alternative method, ixi version ###### alternative method, ixi version
# 1) load MRIO result file # 1) load MRIO result file
dat_results_raw = read_rds(here("data", "results_formatted_method2_ixi_pps_hh_no_rent.rds")) %>% dat_results_raw = read_rds(here("analysis", "preprocessing", "income-stratified-footprints",
"results_formatted_method2_ixi_pps_hh_no_rent.rds")) %>%
ungroup() %>% ungroup() %>%
mutate(year= strtoi(year)) %>% mutate(year= strtoi(year)) %>%
rename(iso2 = geo) rename(iso2 = geo)
...@@ -8231,7 +8234,8 @@ country_codes = ISOcodes::ISO_3166_1 %>% ...@@ -8231,7 +8234,8 @@ country_codes = ISOcodes::ISO_3166_1 %>%
mutate(iso2 = if_else(iso2=="GB", "UK", iso2)) mutate(iso2 = if_else(iso2=="GB", "UK", iso2))
# 2) load Eurostat household data # 2) load Eurostat household data
hh_data = read_csv(here("data", "total_private_households.csv")) %>% hh_data = read_csv(here("analysis", "preprocessing", "income-stratified-footprints",
"total_private_households.csv")) %>%
mutate(imputed = if_else(is.na(total_private_households), TRUE, FALSE)) %>% mutate(imputed = if_else(is.na(total_private_households), TRUE, FALSE)) %>%
rename(iso2 = geo) %>% rename(iso2 = geo) %>%
group_by(iso2) %>% group_by(iso2) %>%
...@@ -8241,7 +8245,7 @@ hh_data = read_csv(here("data", "total_private_households.csv")) %>% ...@@ -8241,7 +8245,7 @@ hh_data = read_csv(here("data", "total_private_households.csv")) %>%
select(-total_private_households) select(-total_private_households)
#3) Eurostat mean expenditures per household income quintile per household and per adult equivalent #3) Eurostat mean expenditures per household income quintile per household and per adult equivalent
df_expenditure_long = read_csv(here("data", df_expenditure_long = read_csv(here("analysis", "preprocessing", "income-stratified-footprints",
"mean_expenditure_by_quintile_long.csv"), "mean_expenditure_by_quintile_long.csv"),
na = ":") %>% na = ":") %>%
#filter(year >=2010, geo != "IT") %>% #filter(year >=2010, geo != "IT") %>%
...@@ -8521,7 +8525,7 @@ df_mapped_result_data = df_mapped_result_2005_data %>% ...@@ -8521,7 +8525,7 @@ df_mapped_result_data = df_mapped_result_2005_data %>%
bind_rows(df_mapped_result_2015_data) bind_rows(df_mapped_result_2015_data)
write_csv(df_mapped_result_data, write_csv(df_mapped_result_data,
here(paste0("data/mrio_results_eu_ntile_mapped_n_", target_eu_ntiles, "_method2_ixi.csv"))) here(paste0("analysis/data/derived/si/mrio_results_eu_ntile_mapped_n_", target_eu_ntiles, "_method2_ixi_check.csv")))
df_mapped_result_ntiles = df_mapped_result_ntiles =
df_mapped_result_2005_ntiles %>% mutate(year=2005) %>% df_mapped_result_2005_ntiles %>% mutate(year=2005) %>%
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment