From 2fbff3f5c5f04f8d900f5271325441b9579f8a79 Mon Sep 17 00:00:00 2001 From: jaccard <jaccard@pik-potsdam.de> Date: Tue, 15 Dec 2020 19:17:18 -0800 Subject: [PATCH] edit full code --- analysis/preprocessing/full_code.Rmd | 20 ++++++++++++-------- 1 file changed, 12 insertions(+), 8 deletions(-) diff --git a/analysis/preprocessing/full_code.Rmd b/analysis/preprocessing/full_code.Rmd index 16dcc3c..3ffae21 100644 --- a/analysis/preprocessing/full_code.Rmd +++ b/analysis/preprocessing/full_code.Rmd @@ -7902,7 +7902,8 @@ write_csv(df_mapped_result_ntiles, ###### pxp version # 1) load MRIO result file -dat_results_raw = read_rds(here("data", "results_formatted_method1_pxp_pps_hh_no_rent.rds")) %>% +dat_results_raw = read_rds(here("analysis", "preprocessing", "income-stratified-footprints", + "results_formatted_method1_pxp_pps_hh_no_rent.rds")) %>% ungroup() %>% mutate(year= strtoi(year)) %>% rename(iso2 = geo) @@ -7915,7 +7916,8 @@ country_codes = ISOcodes::ISO_3166_1 %>% mutate(iso2 = if_else(iso2=="GB", "UK", iso2)) # 2) load Eurostat household data -hh_data = read_csv(here("data", "total_private_households.csv")) %>% +hh_data = read_csv(here("analysis", "preprocessing", "income-stratified-footprints", + "total_private_households.csv")) %>% mutate(imputed = if_else(is.na(total_private_households), TRUE, FALSE)) %>% rename(iso2 = geo) %>% group_by(iso2) %>% @@ -7925,7 +7927,7 @@ hh_data = read_csv(here("data", "total_private_households.csv")) %>% select(-total_private_households) #3) Eurostat mean expenditures per household income quintile per household and per adult equivalent -df_expenditure_long = read_csv(here("data", +df_expenditure_long = read_csv(here("analysis", "preprocessing", "income-stratified-footprints", "mean_expenditure_by_quintile_long.csv"), na = ":") %>% #filter(year >=2010, geo != "IT") %>% @@ -8205,7 +8207,7 @@ df_mapped_result_data = df_mapped_result_2005_data %>% #bind_rows(df_mapped_result_2015_data) write_csv(df_mapped_result_data, - here(paste0("data/mrio_results_eu_ntile_mapped_n_", target_eu_ntiles, "_pxp.csv"))) + here(paste0("analysyis/data/derived/si/mrio_results_eu_ntile_mapped_n_", target_eu_ntiles, "_pxp_check.csv"))) df_mapped_result_ntiles = df_mapped_result_2005_ntiles %>% mutate(year=2005) %>% @@ -8218,7 +8220,8 @@ write_csv(df_mapped_result_ntiles, ###### alternative method, ixi version # 1) load MRIO result file -dat_results_raw = read_rds(here("data", "results_formatted_method2_ixi_pps_hh_no_rent.rds")) %>% +dat_results_raw = read_rds(here("analysis", "preprocessing", "income-stratified-footprints", + "results_formatted_method2_ixi_pps_hh_no_rent.rds")) %>% ungroup() %>% mutate(year= strtoi(year)) %>% rename(iso2 = geo) @@ -8231,7 +8234,8 @@ country_codes = ISOcodes::ISO_3166_1 %>% mutate(iso2 = if_else(iso2=="GB", "UK", iso2)) # 2) load Eurostat household data -hh_data = read_csv(here("data", "total_private_households.csv")) %>% +hh_data = read_csv(here("analysis", "preprocessing", "income-stratified-footprints", + "total_private_households.csv")) %>% mutate(imputed = if_else(is.na(total_private_households), TRUE, FALSE)) %>% rename(iso2 = geo) %>% group_by(iso2) %>% @@ -8241,7 +8245,7 @@ hh_data = read_csv(here("data", "total_private_households.csv")) %>% select(-total_private_households) #3) Eurostat mean expenditures per household income quintile per household and per adult equivalent -df_expenditure_long = read_csv(here("data", +df_expenditure_long = read_csv(here("analysis", "preprocessing", "income-stratified-footprints", "mean_expenditure_by_quintile_long.csv"), na = ":") %>% #filter(year >=2010, geo != "IT") %>% @@ -8521,7 +8525,7 @@ df_mapped_result_data = df_mapped_result_2005_data %>% bind_rows(df_mapped_result_2015_data) write_csv(df_mapped_result_data, - here(paste0("data/mrio_results_eu_ntile_mapped_n_", target_eu_ntiles, "_method2_ixi.csv"))) + here(paste0("analysis/data/derived/si/mrio_results_eu_ntile_mapped_n_", target_eu_ntiles, "_method2_ixi_check.csv"))) df_mapped_result_ntiles = df_mapped_result_2005_ntiles %>% mutate(year=2005) %>% -- GitLab