dtw.m 1.50 KiB
function y=dtw(a,b)
% DTW Calculates the dynamic time warping distance.
% D=DTW(A,B) calculates the dynamic time warping (DTW)
% distance between row vectors A and B. If A and B are
% arrays, DTW distances are calculated for all rows in
% these array, thus D is a column vector of length(A).
% The size(A,1) has to match size(B,1).
%
% Reference:
% Myers, C. S, Rabiner, L. R.:
% A comparative study of several dynamic time-warping algorithms
% for connected word recognition, The Bell System Technical
% Journal, 60(7), 1982, 1389-1409.
% FastDTW: Toward Accurate Dynamic Time Warping in Linear Time
% and Space, Stan Salvador and Philip Chan. Intelligent
% Data Analysis, 2007.
% Copyright (c) 2008 by AMRON
% Norbert Marwan, Potsdam University, Germany
% http://www.agnld.uni-potsdam.de
%
% $Date$
% $Revision$
if size(a,1) ~= size(b,1)
error('Array''s dimension 1 does not match.')
end
Na = size(a,2); Nb = size(b,2);
y = zeros(size(a,1),1);
%h = waitbar(0, 'Calculation DTW distance');
for k = 1:size(a,1), %if k/100 == fix(k/100), waitbar(k/size(a,1)), end
aa = a(k,:)'; bb = b(k,:)';
eucDis = (repmat(aa,1,Nb) - repmat(bb',Na,1)).^2;
D = zeros(size(eucDis));
D(1,1) = eucDis(1,1);
D(2:Na,1) = eucDis(2:Na,1) + D((2:Na)-1,1);
D(1,2:Nb) = eucDis(1,2:Nb) + D(1,(2:Nb)-1);
for n = 2:Na
for m = 2:Nb
D(n,m) = eucDis(n,m) + min([D(n-1,m), D(n-1,m-1), D(n,m-1)]);
end
end
y(k) = D(Na,Nb);
end
%delete(h)