function y=dtw(a,b) % DTW Calculates the dynamic time warping distance. % D=DTW(A,B) calculates the dynamic time warping (DTW) % distance between row vectors A and B. If A and B are % arrays, DTW distances are calculated for all rows in % these array, thus D is a column vector of length(A). % The size(A,1) has to match size(B,1). % % Reference: % Myers, C. S, Rabiner, L. R.: % A comparative study of several dynamic time-warping algorithms % for connected word recognition, The Bell System Technical % Journal, 60(7), 1982, 1389-1409. % FastDTW: Toward Accurate Dynamic Time Warping in Linear Time % and Space, Stan Salvador and Philip Chan. Intelligent % Data Analysis, 2007. % Copyright (c) 2008 by AMRON % Norbert Marwan, Potsdam University, Germany % http://www.agnld.uni-potsdam.de % % $Date$ % $Revision$ if size(a,1) ~= size(b,1) error('Array''s dimension 1 does not match.') end Na = size(a,2); Nb = size(b,2); y = zeros(size(a,1),1); %h = waitbar(0, 'Calculation DTW distance'); for k = 1:size(a,1), %if k/100 == fix(k/100), waitbar(k/size(a,1)), end aa = a(k,:)'; bb = b(k,:)'; eucDis = (repmat(aa,1,Nb) - repmat(bb',Na,1)).^2; D = zeros(size(eucDis)); D(1,1) = eucDis(1,1); D(2:Na,1) = eucDis(2:Na,1) + D((2:Na)-1,1); D(1,2:Nb) = eucDis(1,2:Nb) + D(1,(2:Nb)-1); for n = 2:Na for m = 2:Nb D(n,m) = eucDis(n,m) + min([D(n-1,m), D(n-1,m-1), D(n,m-1)]); end end y(k) = D(Na,Nb); end %delete(h)