Newer
Older
function varargout=ace(x,y,w,ii,oi)
%ACE Finds optimal transformation and maximal correlation.
% MCOR=ACE(X,Y [,W,II,OI]) estimates the maximal correlation
% of the system theta(X)=phi(Y), where X is one-dimensional
% and Y can be multi-dimensional.
%
% [THETA, PHI]=ACE(X,Y [,W,II,OI]) estimates the optimal
% transformations THETA and PHI of the system theta(X)=phi(Y).
%
% [THETA, PHI, MCOR]=ACE(X,Y [,W,II,OI]) estimates the optimal
% transformations THETA and PHI and the maximal correlation
% MCOR of the system theta(X)=phi(Y).
%
% [THETA, PHI, MCOR, I, O, Imax, Omax]=ACE(X,Y [,W,II,OI])
% estimates the THETA, PHI and MCOR and outputs the number of
% inner iterations I, break-up number of inner inner iterations,
% number of outer iterations O and break-up number of outer
% inner iterations. If the algorithm doesn't converge, the
% number of iterations will be negative signed.
%
% ACE(...) without parameters plots the optimal transformations
% THETA and PHI.
%
% Optional parameters:
% W is the half-length of the boxcar window, II is the maximal
% number of inner iterations, OI is the minimal number of outer
% iterations. If W=[], the default boxcar window size is 11.
%
% Examples: x = (-1:.002:1) + .3 * rand(1,1001);
% y = (-1:.002:1) .^ 2 + .3* rand(1,1001);
% corrcoef(x,y)
% ace(y,x)
%
% References:
% Breiman, L., Friedman, J. H.:
% Estimating Optimal Transformations for Multiple regression
% and Correlation, J. Am. Stat. Assoc., Vol. 80, No. 391, 1985.
% Voss, H., Kurths, J.:
% Reconstruction of nonlinear time delay models from data by the
% use of optimal transformations, Phys. Lett. A, 234, 1997.
%
% See also: MCF
% Copyright (c) 2001-2003 by AMRON
% Norbert Marwan, Potsdam University, Germany
% http://www.agnld.uni-potsdam.de
%
% $Date$
% $Revision$
%
% $Log$
% Revision 1.5 2004/11/10 07:05:02 marwan
% initial import
%
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
%
% This program is free software; you can redistribute it and/or
% modify it under the terms of the GNU General Public License
% as published by the Free Software Foundation; either version 2
% of the License, or any later version.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% check the in/out
error(nargchk(2,5,nargin))
error(nargoutchk(0,7,nargout))
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% splash the GPL
filename='ace';
which_res=which([filename,'.m']);
gplrc_path=[strrep(which_res,[filename,'.m'],''), 'private'];
gplrc_file=[gplrc_path, filesep, '.gpl.',filename];
if ~exist(gplrc_path)
mkdir(strrep(which_res,[filename,'.m'],''),'private')
end
if ~exist(gplrc_file)
fid=fopen(gplrc_file,'w');
fprintf(fid,'%s\n','If you delete this file, the GNU Public License will');
fprintf(fid,'%s','splash up at the next time the programme starts.');
fclose(fid);
if exist('gpl')
txt=gpl;
else
txt={'The GNU General Public License was not found.'};
end
h=figure('NumberTitle','off',...,
'ButtonDownFcn','close',...
'Name','GNU General Public License');
ha=get(h,'Position');
h=uicontrol('Style','Listbox',...
'ButtonDownFcn','close',...
'CallBack','close',...
'Position',[0 0 ha(3) ha(4)],...
'FontName','Courier',...
'BackgroundColor',[.8 .8 .8],...
'String',txt);
waitfor(h)
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% initialization
flag=1;
if size(y,1)<size(y,2)
y=y';
end
if size(x,1)<size(x,2)
x=x';
end
if size(x,2)>1, error('The dimension of x must be one.'); end
if nargin<5 | isempty(oi)
oi=1000;
end
if nargin<4 | isempty(ii)
ii=100;
end
if nargin<3 | isempty(w)
w=round(.1*size(y,1));w=5;
end
N=size(y,1);
dim=size(y,2);
if size(x,1)~=N
error('The lengths of x and y must match.')
end
ocrit=1*eps; icrit=1*eps; % relative accuracy of the CPU
try
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% sorting
[xs ix]=sort(x); [ys iy]=sort(y);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% IID distributed data
xr(ix,1)=(1:N)';
for d=1:dim, yr(iy(:,d),d)=(1:N)'; end
theta=(xr-(N+1)/2)/sqrt(N*(N+1)/12);
phi=(yr-(N+1)/2)/sqrt(N*(N+1)/12);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% iteration process
ieps=1.; oeps=1.;
o=1; ocrit1=1;
maxi=0;
h0=waitbar(0,'','Name','Iteration`s Progress');
pos=get(h0,'Position'); set(h0,'Position',[pos(1) pos(2)+100 pos(3) pos(4)]);
h1=get(get(h0,'Children'),'Title');
while o<=oi & ocrit1>ocrit
% waitbar(log(eps/ocrit1)/36+1), set(h1,'String',['convergence: ', num2str(ocrit1)])
waitbar(o/oi), set(h1,'String',['convergence: ', num2str(ocrit1)])
o=o+1;
i=1; icrit1=1;
while i<=ii & icrit1>icrit
i=i+1;
for d=1:dim; sum0=0;
for dd=1:dim
if dd~=d sum0=sum0+phi(:,dd); end;
end;
A=theta-sum0;
A=A(iy(:,d)); % A=phi(xk) = sortierung
ww=-w:w;
% r=conv(A,exp((-ww.^2)/(.5*(ww(end)-ww(1)))^2)); % faltung = gleitender mittelwert
r=conv(A,ones(2*w+1,1)); % faltung = gleitender mittelwert
r=r(w+1:N+w)/(2*w+1); % bringt r wieder auf die laenge von y
switch flag
case 1
r(1:w)=interp1([w+1:2*w+1],r([w+1:2*w+1]),[1:w],'linear','extrap');
r(N-w+1:N)=interp1([N-2*w:N-w],r([N-2*w:N-w]),[N-w+1:N],'linear','extrap');
case 2
r(1:w)=mean(r(w+1:w+2)); r(N-w+1:N)=mean(r(N-w-1:N-w));
end
% phi(:,d)=r(:,d);
phi(:,d)=r(yr(:,d)); % sortiert r wieder auf ausgangssortierung
end;
icrit1=ieps;
if dim==1 sum0=phi;
else sum0=sum(phi')';
end;
ieps=sum((sum0-theta).^2)/N;
icrit1=abs(icrit1-ieps); % konvergiert die varianz noch?
end;
A=sum0(ix);
% A=sum0;
% r=conv(A,exp((-ww.^2)/(.5*(ww(end)-ww(1)))^2)); % faltung = gleitender mittelwert
r=conv(A,ones(2*w+1,1));
r=r(w+1:N+w)/(2*w+1);
switch flag
case 1
r(1:w)=interp1([w+1:2*w+1],r([w+1:2*w+1]),[1:w],'linear','extrap');%
r(N-w+1:N)=interp1([N-2*w:N-w],r([N-2*w:N-w]),[N-w+1:N],'linear','extrap');
case 2
r(1:w)=mean(r(w+1:w+2)); r(N-w+1:N)=mean(r(N-w-1:N-w));
end
theta=r(xr);
% theta=r;
theta=(theta-mean(theta))/std(theta);
ocrit1=oeps;
oeps=sum((sum0-theta).^2)/N;
ocrit1=abs(ocrit1-oeps);
if maxi<i, maxi=i; end
end
waitbar(1), if ocrit1>ocrit, set(h1,'String','doesn`t converge!'), ocrit1=-ocrit1; pause(.8), end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% output
temp=corrcoef(theta,sum0);
if nargout==7
varargout(7)={ocrit1};
end
if nargout>=6
varargout(6)={icrit1};
end
if nargout>=5
varargout(5)={o-1};
end
if nargout>=4
varargout(4)={maxi-1};
end
if nargout>=3
varargout(3)={temp(1,2)};
end
if nargout>=2;
varargout(1)={theta};
varargout(2)={phi};
end
if nargout==1;
varargout(1)={temp(1,2)};
elseif nargout==0
a=theta;
b=phi;
c=temp(1,2);
d=maxi-1;
e=o-1;
f=icrit1;
g=ocrit1;
N=size(b,1);
dim=size(b,2);
figure
subplot(ceil((dim+2)/2),2,1)
plot(x,a,'k.','MarkerSize',0.5)
if isempty(inputname(1));
tx=['\Theta(x)'];
xlabel('x')
else
tx=['\Theta(',inputname(1) ,')'];
xlabel(inputname(1))
end
ylabel(tx)
for i=2:dim+1,
[s1 s2]=sort(y(:,i-1));
thetainv=interp1(a+.0000001.*randn(length(a),1),x,b(s2,i-1),'nearest');
subplot(ceil((dim+2)/2),2,i)
[hAX h1 h2]=plotyy(y(:,i-1),b(:,i-1), s1,thetainv);
set(h1,'Color','k','LineStyle','none','Marker','.','MarkerSize',0.5)
set(h2,'Color',[.6 .6 .6],'LineStyle','none','Marker','.','MarkerSize',0.5)
set(hAX(1),'ycolor','k'), set(hAX(2),'ycolor',.5.*[.6 .6 .6])
if isempty(inputname(2));
tx=['\Phi_{' num2str(i-1) '}(y)'];
tx2=['\Theta^{-1}(\Phi_{' num2str(i-1) '}(y))'];
xlabel('y_*')
else
tx=['\Phi_{' num2str(i-1) '}(',inputname(2) ,')'];
tx2=['\Theta^{-1}(\Phi_{' num2str(i-1) '}(',inputname(2) ,'))'];
xlabel(inputname(2))
end
ylabel(tx)
s1(find(isnan(thetainv)))=[];
thetainv(find(isnan(thetainv)))=[];
[smax sind]=max(s1);
h1=text(smax+.051*abs(max(s1)-min(s1)),thetainv(sind),tx2,'FontSize',8);
set(h1,'Parent',hAX(2))
end
sig=0;
h=subplot(ceil((dim+2)/2),2,2*ceil((dim+2)/2));
txt=char;
if f<0 | g<0
txt='doesn''t converge!';
end
tf=f/eps;tg=g/eps;
if tf>9999, tf=num2str(tf,'%1.0e'); else, tf=num2str(tf); end
if tg>9999, tg=num2str(tg,'%1.0e'); else, tg=num2str(tg); end
set(h,'Visible','off')
text(.1,-.18,date,'FontSize',8,'FontAngle','Italic')
text(.1,.8,['A C E'],'FontSize',14,'FontWeight','Bold','FontName','new century schoolbook')
text(.1,.6,['Max. Correlation \Psi: ' num2str(c)])
text(.1,.5,['5% Significance level: ...' ]) %num2str(sig)])
text(.1,.35,['Data length: ' num2str(N)])
text(.1,.25,['Window length: ' num2str(2*w+1)])
text(.1,.15,['Number of Iterations: ', num2str(d), '/ ', num2str(e)])
text(.1,.05,['divergence criteria/eps: ', tf, '/ ', tg])
if ~isempty(txt)
text(.1,-.05,txt,'Color',[.8 0 0],'FontWeight','Bold')
end
end
close(h0)
catch
delete(h0)
if ~strcmpi(lasterr,'Interrupt')
disp('Could not compute the optimal transformations.')
disp('Try other input arguments.')
end
for i=1:nargout,varargout(i)={NaN};end
end