Newer
Older
---
title: "Compare scenarios Transport"
output:
pdf_document: default
html_document:
df_print: paged
classoption: landscape
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(dev = 'pdf')
```
```{r, echo=FALSE, message=FALSE, warning=FALSE}
require(ggplot2)
require(moinput)
require(rmndt)
require(quitte)
library(lucode)
library(magpie)
library(quitte)
Marianna Rottoli
committed
library(cowplot)
```
```{r, echo=FALSE, message=FALSE, warning=FALSE}
# Set RDS files path
EJmode_all = readRDS("EJmode_all.RDS")
EJroad_all = readRDS("EJroad_all.RDS")
fleet_all = readRDS("fleet_all.RDS")
salescomp_all = readRDS("salescomp_all.RDS")
ESmodecap_all = readRDS("ESmodecap_all.RDS")
CO2km_int_newsales_all = readRDS("CO2km_int_newsales_all.RDS")
Marianna Rottoli
committed
EJpass_all = readRDS("EJfuelsPass_all.RDS")
EJfrgt_all = readRDS("EJfuelsFrgt_all.RDS")
emidem_all = readRDS("emidem_all.RDS")
costs_all = readRDS("costs_all.RDS")
pref_FV_all = readRDS("pref_FV_all.RDS")
dempkm_cap_all = readRDS("demgdpcap_all.RDS")
setConfig(forcecache=T)
cols <- c("NG" = "#d11141",
"Liquids" = "#8c8c8c",
"Hybrid Liquids" = "#ffc425",
"Hybrid Electric" = "#f37735",
"BEV" = "#00b159",
"Electricity" = "#00b159",
"Electric" = "#00b159",
"FCEV" = "#00aedb",
"Hydrogen" = "#00aedb",
"Biodiesel" = "#66a182",
"Synfuel" = "orchid",
"Oil" = "#2e4057",
"Operating and maintenance" = "#edae49",
"Range anxiety" = "#e43f5a",
"Refuel availability" = "#f79071",
"Purchase" = "#d1495b",
"Model availability" = "#58b4ae",
"Inconvenience cost" = "#58b4ae",
"Charging" = "#007892",
"Policy induced inconvenience" = "#2e4057",
"Risk" = "#feb72b",
"Fuel" = "#035aa6",
"International Aviation" = "#9acd32",
"Domestic Aviation" = "#7cfc00",
"Bus" = "#32cd32",
"Passenger Rail" = "#2e8b57",
"Freight Rail" = "#ee4000",
"Trucks" = "#ff6a6a",
"International Shipping" = "#cd2626",
"Domestic Shipping" = "#ff4040",
"Shipping" = "#ff4040",
"Truck" = "#ff7f50",
"Trucks (<3.5t)" = "#ff7f50",
"Trucks (3.5t-16)" = "#8b0000",
"Trucks (>16)" = "#fa8072",
"Motorbikes" = "#1874cd", #"dodgerblue3",
"Small Cars" = "#87cefa",
"Large Cars" = "#6495ed",
"Van" = " #40e0d0",
"LDV" = "#00bfff",
"Non motorized" = "#da70d6",
"Freight"="#ff0000",
"Freight (Inland)" = "#cd5555",
"Pass non LDV" = "#6b8e23",
"Pass" = "#66cdaa",
"Pass non LDV (Domestic)" = "#54ff9f",
"refined liquids enduse" = "#8c8c8c",
"FE|Transport|Hydrogen" = "#00aedb",
"FE|Transport|NG" = "#d11141",
"FE|Transport|Liquids" = "#8c8c8c",
"FE|Transport|Electricity" = "#00b159",
"FE|Transport" = "#1e90ff",
"FE|Buildings" = "#d2b48c",
"FE|Industry" = "#919191",
"Electricity_push" = "#00b159",
"ElecEra" = "#00b159",
"ElecEraWise" = "#68c6a4",
"HydrHype" = "#00aedb",
"HydrHypeWise" = "#o3878f",
"Hydrogen_push" = "#00aedb",
"Smart_lifestyles_Electricity_push" = "#68c6a4",
# "Smart_lyfestiles_Electricity_push" = "#03878f", ##maybe "#o3878f"
"Conservative_liquids" = "#113245",
"ConvCase" = "#113245",
"ConvCaseWise" = "#d11141",
"Emi|CO2|Transport|Demand" = "#113245",
"Emi|CO2|Industry|Gross" = "#919191",
"Emi|CO2|Buildings|Direct" = "#d2b48c",
"Emi|CO2|Energy|Supply|Gross" = "#f2b531",
"Emi|CO2|CDR|BECCS" = "#ed5958",
"Emi|CO2|Land-Use Change" = "#66a182",
"Cons. + Synfuels" = "orchid",
"Ctax_Conservative" = "#d11141")
legend_ord_modes <- c("Freight Rail", "Truck", "Shipping", "International Shipping", "Domestic Shipping", "Trucks",
"Motorbikes", "Small Cars", "Large Cars", "Van",
"International Aviation", "Domestic Aviation","Bus", "Passenger Rail",
"Freight", "LDV", "Pass non LDV", "Freight (Inland)", "Pass non LDV (Domestic)", "Non motorized")
legend_ord_fuels <- c("BEV", "Electricity", "Hybrid Electric", "FCEV", "Hydrogen", "Hybrid Liquids", "Liquids", "Oil", "Biodiesel", "Synfuel", "NG")
legend_ord_costs <- c("Inconvenience cost", "Risk", "Charging", "Model availability", "Range anxiety", "Refuel availability", "Policy induced inconvenience","Fuel", "Purchase", "Operating and maintenance")
legend_ord_emissions <- c("Emi|CO2|Industry|Gross", "Emi|CO2|Buildings|Direct", "Emi|CO2|Transport|Demand", "Emi|CO2|Energy|Supply|Gross", "Emi|CO2|Land-Use Change","Emi|CO2|CDR|BECCS")
legend_ord = c(legend_ord_modes, legend_ord_fuels, legend_ord_costs)
## mapping for scenario names
mapping_scens = data.table(scenario = c("Budg1100_ConvCase", "Budg1100_ElecEra", "Budg1100_HydrHype", "Budg1100_SynSurge", "NDC_ConvCase", "Budg1100_ConvCaseWise", "Budg1100_ElecEraWise", "Budg1100_HydrHypeWise", "Budg1100_SynSurgeWise", "NDC_ConvCaseWise"), scen_name = c("ConvCase", "ElecEra", "HydrHype", "SynSurge", "Baseline", "ConvCaseWise", "ElecEraWise", "HydrHypeWise", "SynSurgeWise", "BaselineWise"))
Marianna Rottoli
committed
regionplot = "EUR"
```
```{r, echo=FALSE, message=FALSE, warning=FALSE}
```
```{r, echo=FALSE, message=FALSE, warning=FALSE, fig.width=14, fig.height=12}
## Vintages
vintcomparisonpf = function(dt){
dt = dt[year %in% c(2015, 2050, 2100)]
plot = ggplot()+
geom_bar(data = dt,
aes(x=scenario, y=value, group=interaction(variable, technology),
fill = technology, width=.75), alpha = 0.5, position="stack", stat = "identity", width = 0.5)+
geom_bar(data = dt,
aes(x=scenario, y=value, group=interaction(variable, technology),
fill = technology, alpha = factor(alphaval), width=.75), position="stack", stat = "identity", width = 0.5, color = "black", size=0.05)+
guides(fill = guide_legend(reverse=TRUE))+
theme_minimal()+
facet_grid(year~region)+
theme(axis.text.x = element_text(angle = 90, size=14, vjust=0.5, hjust=1),
axis.text.y = element_text(size=14),
axis.title.y = element_text(size=14),
title = element_text(size=14),
axis.line = element_line(size = 0.5, colour = "grey"),
legend.text = element_text(size=14),
strip.text = element_text(size=14),
strip.background = element_rect(color = "grey"))+
scale_alpha_discrete(breaks = c(1,0), name = "Status", labels = c("Vintages","New additions")) +
guides(linetype=FALSE,
fill=guide_legend(reverse=FALSE, title="Transport mode"))+
scale_fill_manual(values = cols)+
labs(y = "[million Veh]", x="", title = "LDV fleet")
return(plot)
}
vintcomparisonpf(fleet_all)
```
Marianna Rottoli
committed
## Sales composition
```{r, echo=FALSE, message=FALSE, warning=FALSE, fig.width=14, fig.height=12}
salescompf = function(dt){
plot = ggplot()+
geom_bar(data = dt, aes(x=as.numeric(as.character(year)),y=shareFS1, group = technology, fill = technology), position = position_stack(), stat = "identity")+
theme_minimal()+
facet_grid(region ~ scenario)+
scale_fill_manual("Technology", values = cols)+
expand_limits(y = c(0,1))+
scale_x_continuous(breaks = c(2015,2030,2050, 2100))+
theme(axis.text.x = element_text(angle = 90, vjust=0.5, hjust=1, size = 14),
axis.text.y = element_text(size = 14),
axis.line = element_line(size = 0.5, colour = "grey"),
axis.title = element_text(size = 14),
title = element_text(size = 14),
legend.text = element_text(size = 14),
legend.title = element_text(size = 14),
strip.text = element_text(size = 14),
strip.background = element_rect(color = "grey"))+
labs(x = "", y = "[%]", title = "Market share of new LDV sales")
return(plot)
}
salescompf(salescomp_all)
```
```{r, echo=FALSE, message=FALSE, warning=FALSE, fig.width=14, fig.height=12}
EJroadpf = function(dt){
dt[, technology := factor(technology, levels = legend_ord)]
dt = dt[year >= 2020]
plotLDV = ggplot()+
geom_area(data = dt[subsector_L1 == "trn_pass_road_LDV_4W"], aes(x=year, y=demand_EJ, group = technology, fill = technology), color = "black", size=0.05, position= position_stack())+
labs(x = "", y = "[EJ]", title = "LDV Final Energy demand")+
theme_minimal()+
facet_grid(scenario~region)+
scale_fill_manual("Technology", values = cols, breaks=legend_ord)+
expand_limits(y = c(0,1))+
scale_x_continuous(breaks = c(2020, 2030,2050, 2100))+
theme(axis.text.x = element_text(angle = 90, size = 14, vjust=0.5, hjust=1),
axis.text.y = element_text(size = 14),
axis.title = element_text(size = 14),
axis.line = element_line(size = 0.5, colour = "grey"),
title = element_text(size = 14),
legend.text = element_text(size = 14),
legend.title = element_text(size = 14),
strip.text = element_text(size = 14),
strip.background = element_rect(color = "grey"))
plotBus = ggplot()+
geom_area(data = dt[subsector_L1 %in% c("trn_pass_road_bus_tmp_subsector_L1", "Bus_tmp_subsector_L1")], aes(x=year, y=demand_EJ, group = technology, fill = technology), color = "black", size=0.05, position= position_stack())+
labs(x = "", y = "[EJ]", title = "Buses Final Energy demand")+
theme_minimal()+
facet_grid(scenario~region)+
scale_fill_manual("Technology", values = cols, breaks=legend_ord)+
expand_limits(y = c(0,1))+
scale_x_continuous(breaks = c(2020, 2030,2050, 2100))+
theme(axis.text.x = element_text(angle = 90, size = 14, vjust=0.5, hjust=1),
axis.text.y = element_text(size = 14),
axis.title = element_text(size = 14),
axis.line = element_line(size = 0.5, colour = "grey"),
title = element_text(size = 14),
legend.text = element_text(size = 14),
legend.title = element_text(size = 14),
strip.text = element_text(size = 14),
strip.background = element_rect(color = "grey"))
Marianna Rottoli
committed
plotTruck = ggplot()+
geom_area(data = dt[subsector_L1 %in% c("trn_freight_road_tmp_subsector_L1")], aes(x=year, y=demand_EJ, group = technology, fill = technology), color = "black", size=0.05, position= position_stack())+
labs(x = "", y = "[EJ]", title = "Trucks Final Energy demand")+
theme_minimal()+
facet_grid(scenario~region)+
scale_fill_manual("Technology", values = cols, breaks=legend_ord)+
expand_limits(y = c(0,1))+
scale_x_continuous(breaks = c(2020, 2030,2050, 2100))+
theme(axis.text.x = element_text(angle = 90, size = 14, vjust=0.5, hjust=1),
axis.text.y = element_text(size = 14),
axis.title = element_text(size = 14),
axis.line = element_line(size = 0.5, colour = "grey"),
title = element_text(size = 14),
legend.text = element_text(size = 14),
legend.title = element_text(size = 14),
strip.text = element_text(size = 14),
strip.background = element_rect(color = "grey"))
Marianna Rottoli
committed
return(plotlist = list(plotLDV = plotLDV, plotBus = plotBus, plotTruck = plotTruck))
}
```
```{r, echo=FALSE, message=FALSE, warning=FALSE, fig.width=14, fig.height=12}
EJmodepf = function(dt){
plot = ggplot()+
geom_area(data = dt, aes(x=year, y=demand_EJ, group = interaction(vehicle_type_plot,aggr_mode), fill = vehicle_type_plot), color = "black", size=0.05, position= position_stack())+
labs(x = "", y = "[EJ]", title = "Total transport final energy demand")+
theme_minimal()+
facet_grid(scenario~region)+
scale_fill_manual("Vehicle Type",values = cols, breaks=legend_ord)+
expand_limits(y = c(0,1))+
scale_x_continuous(breaks = c(2020,2030,2050, 2100))+
theme(axis.text.x = element_text(angle = 90, size = 14, vjust=0.5, hjust=1),
axis.text.y = element_text(size = 14),
axis.title = element_text(size = 14),
title = element_text(size = 14),
legend.text = element_text(size = 14),
legend.title = element_text(size = 14),
strip.text = element_text(size = 14),
axis.line = element_line(size = 0.5, colour = "grey"),
strip.background = element_rect(color = "grey"))
return(plot)
}
EJmodepf(EJmode_all)
```
```{r, echo=FALSE, message=FALSE, warning=FALSE, fig.width=14, fig.height=12}
ESmodecappf = function(dt){
dt[, vehicle_type_plot := factor(vehicle_type_plot, levels = legend_ord)]
plot_frgt = ggplot()+
geom_area(data = dt[mode == "freight" & year >= 2020], aes(x=year, y=cap_dem, group = vehicle_type_plot, fill = vehicle_type_plot), color="black", size=0.05, position= position_stack())+
labs(x = "", y = "Energy Services demand [tkm/cap]")+
theme_minimal()+
facet_grid(scenario~region)+
scale_fill_manual("Vehicle Type",values = cols, breaks=legend_ord)+
expand_limits(y = c(0,1))+
scale_x_continuous(breaks = c(2020,2030,2050, 2100))+
theme(axis.text.x = element_text(angle = 90, size = 14, vjust=0.5, hjust=1),
axis.text.y = element_text(size = 14),
axis.title = element_text(size = 14),
title = element_text(size = 14),
legend.text = element_text(size = 14),
legend.title = element_text(size = 14),
strip.text = element_text(size = 14),
strip.background = element_rect(color = "grey"),
axis.line = element_line(size = 0.5, colour = "grey"))
plot_pass = ggplot()+
geom_area(data = dt[mode == "pass" & year >= 2020], aes(x=year, y=cap_dem, group = vehicle_type_plot, fill = vehicle_type_plot), color="black", size=0.05, position= position_stack())+
labs(x = "", y = "Energy Services demand [pkm/cap]")+
theme_minimal()+
facet_grid(scenario~region)+
scale_fill_manual("Vehicle Type",values = cols, breaks=legend_ord)+
expand_limits(y = c(0,1))+
scale_x_continuous(breaks = c(2020,2030,2050, 2100))+
theme(axis.text.x = element_text(angle = 90, size = 14, vjust=0.5, hjust=1),
axis.text.y = element_text(size = 14),
axis.title = element_text(size = 14),
title = element_text(size = 14),
legend.text = element_text(size = 14),
legend.title = element_text(size = 14),
strip.text = element_text(size = 14),
strip.background = element_rect(color = "grey"),
axis.line = element_line(size = 0.5, colour = "grey"))
return(list(plot_pass = plot_pass, plot_frgt = plot_frgt))
}
ESmodecappf(ESmodecap_all)
```
```{r, echo=FALSE, message=FALSE, warning=FALSE, fig.width=14, fig.height=12}
CO2km_int_newsalespf = function(dt){
dt = dt[!is.na(gCO2_km_ave)]
plot = ggplot()+
geom_line(data = dt[year >= 2020], aes(x = year, y = gCO2_km_ave, group = scenario, color = scenario))+
labs(title = expression(paste(CO["2"], " intensity of LDVs new additions")), y = expression(paste("[", gCO["2"], "/km]")), x = "")+
expand_limits(y = c(0,1))+
scale_x_continuous(breaks = c(2020, 2030, 2050, 2100))+
theme_minimal()+
facet_grid(~region)+
theme(axis.text.x = element_text(angle = 90, size = 14, vjust=0.5, hjust=1),
axis.text.y = element_text(size = 14),
axis.title = element_text(size = 14),
title = element_text(size = 14),
legend.text = element_text(size = 14),
legend.title = element_text(size = 14),
strip.text = element_text(size = 14),
strip.background = element_rect(color = "grey"),
axis.line = element_line(size = 0.5, colour = "grey"))+
guides(linetype = FALSE)
return(plot)
}
CO2km_int_newsalespf(CO2km_int_newsales_all)
```
```{r, echo=FALSE, message=FALSE, warning=FALSE, fig.width=14, fig.height=12}
Marianna Rottoli
committed
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
## passenger by fuel
EJfuels_pf = function(dt_p, dt_f){
dt_p = dt_p[year >= 2020]
dt_p = dt_p[, .(demand_EJ = sum(demand_EJ)), by = c("subtech", "year", "region", "scenario")]
plotp = ggplot()+
geom_area(data = dt_p, aes(x=year, y=demand_EJ, group = subtech, fill = subtech), color="black", size=0.05, position= position_stack())+
labs(x = "", y = "[EJ]", title = "Passenger transport FE demand by fuel")+
theme_minimal()+
facet_grid(scenario~region)+
scale_fill_manual("Technology",values = cols, breaks=legend_ord)+
expand_limits(y = c(0,1))+
scale_x_continuous(breaks = c(2020, 2030,2050, 2100))+
theme(axis.text.x = element_text(angle = 90, size = 14, vjust=0.5, hjust=1),
axis.text.y = element_text(size = 14),
axis.title = element_text(size = 14),
title = element_text(size = 14),
legend.text = element_text(size = 14),
legend.title = element_text(size = 14),
strip.text = element_text(size = 14),
strip.background = element_rect(color = "grey"),
axis.line = element_line(size = 0.5, colour = "grey"))
dt_f = dt_f[year >= 2020]
plotf_lo = ggplot()+
geom_area(data = dt_f[sector == "trn_shipping_intl"], aes(x=year, y=demand_EJ, group = subtech, fill = subtech), color="black", size=0.05, position= position_stack())+
labs(x = "", y = "[EJ]", title = "International freight FE demand by fuel")+
theme_minimal()+
facet_grid(scenario~region)+
scale_fill_manual("Technology",values = cols, breaks=legend_ord)+
expand_limits(y = c(0,1))+
scale_x_continuous(breaks = c(2020, 2030,2050, 2100))+
theme(axis.text.x = element_text(angle = 90, size = 14, vjust=0.5, hjust=1),
axis.text.y = element_text(size = 14),
axis.title = element_text(size = 14),
title = element_text(size = 14),
legend.text = element_text(size = 14),
legend.title = element_text(size = 14),
strip.text = element_text(size = 14),
strip.background = element_rect(color = "grey"),
axis.line = element_line(size = 0.5, colour = "grey"))
Marianna Rottoli
committed
plotf_sm = ggplot()+
geom_area(data = dt_f[sector == "trn_freight"], aes(x=year, y=demand_EJ, group = subtech, fill = subtech), color="black", size=0.05, position= position_stack())+
labs(x = "", y = "[EJ]", title = "Short-medium freight FE demand by fuel")+
theme_minimal()+
facet_grid(scenario~region)+
scale_fill_manual("Technology",values = cols, breaks=legend_ord)+
expand_limits(y = c(0,1))+
scale_x_continuous(breaks = c(2020, 2030,2050, 2100))+
theme(axis.text.x = element_text(angle = 90, size = 14, vjust=0.5, hjust=1),
axis.text.y = element_text(size = 14),
axis.title = element_text(size = 14),
title = element_text(size = 14),
legend.text = element_text(size = 14),
legend.title = element_text(size = 14),
strip.text = element_text(size = 14),
strip.background = element_rect(color = "grey"),
axis.line = element_line(size = 0.5, colour = "grey"))
plot = list(plotf_lo = plotf_lo, plotf_sm = plotf_sm, plotp = plotp)
return(plot)
}
Marianna Rottoli
committed
EJfuels_pf(dt_p = EJpass_all, dt_f = EJfrgt_all)
```
```{r, echo=FALSE, message=FALSE, warning=FALSE, fig.width=14, fig.height=12}
emidem_pf = function(dt){
dt[, scenario := as.character(scenario)]
plot = ggplot()+
geom_line(data = dt, aes(x = year, y = value, group = scenario, color = scenario))+
labs(x = "", y = "CO2 emissions [Mt/CO2]", title = "Emissions from transport demand")+
theme_minimal()+
facet_grid(~region)+
theme(axis.text.x = element_text(angle = 90, size = 14, vjust=0.5, hjust=1),
axis.text.y = element_text(size = 14),
axis.title = element_text(size = 14),
title = element_text(size = 14),
legend.text = element_text(size = 14),
legend.title = element_text(size = 14),
strip.text = element_text(size = 14),
strip.background = element_rect(color = "grey"),
axis.line = element_line(size = 0.5, colour = "grey"))
return(plot)
}
emidem_pf(emidem_all)
Marianna Rottoli
committed
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
## demand per capita VS gdp per capita
```{r, echo=FALSE, message=FALSE, warning=FALSE, fig.width=14, fig.height=12}
demcapgdpcap_pf = function(dt) {
dt = dt[year >= 2005]
dt = dt[, year := as.character(year)]
ppass_sm = ggplot()+
geom_line(data = dt[sector == "trn_pass"], aes(x = GDP_cap, y = demcap, color = region, group = region))+
geom_point(data = dt[sector == "trn_pass" & year %in% c("2020", "2030", "2050", "2070", "2100")], aes(x = GDP_cap, y = demcap, shape = year, group = region, color = region))+
theme_minimal()+
facet_grid(scenario~sector)+
theme(axis.text.x = element_text(angle = 90, hjust = 1),
axis.text = element_text(size=7),
title = element_text(size=8),
legend.text = element_text(size=8))+
labs(y = "Per capita demand [km/capita]", x="GDP per capita [$/person]", title = "Passenger short-medium")
pfreigt_sm = ggplot()+
geom_line(data = dt[sector == "trn_freight"], aes(x = GDP_cap, y = demcap, color = region, group = region))+
geom_point(data = dt[sector == "trn_freight" & year %in% c("2020", "2030", "2050", "2070", "2100")], aes(x = GDP_cap, y = demcap, shape = year, group = region, color = region))+
theme_minimal()+
facet_grid(scenario~sector)+
theme(axis.text.x = element_text(angle = 90, hjust = 1),
axis.text = element_text(size=7),
title = element_text(size=8),
legend.text = element_text(size=8))+
labs(y = "Per capita demand [km/capita]", x="GDP per capita [$/person]", title = "Freight short-medium")
ppass_lo = ggplot()+
geom_line(data = dt[sector == "trn_aviation_intl"], aes(x = GDP_cap, y = demcap, color = region, group = region))+
geom_point(data = dt[sector == "trn_aviation_intl" & year %in% c("2020", "2030", "2050", "2070", "2100")], aes(x = GDP_cap, y = demcap, shape = year, group = region, color = region))+
theme_minimal()+
facet_grid(scenario~sector)+
theme(axis.text.x = element_text(angle = 90, hjust = 1),
axis.text = element_text(size=7),
title = element_text(size=8),
legend.text = element_text(size=8))+
labs(y = "Per capita demand [km/capita]", x="GDP per capita [$/person]", title = "International aviation")
pfreigt_lo = ggplot()+
geom_line(data = dt[sector == "trn_shipping_intl"], aes(x = GDP_cap, y = demcap, color = region, group = region))+
geom_point(data = dt[sector == "trn_shipping_intl" & year %in% c("2020", "2030", "2050", "2070", "2100")], aes(x = GDP_cap, y = demcap, shape = year, group = region, color = region))+
theme_minimal()+
facet_grid(scenario~sector)+
theme(axis.text.x = element_text(angle = 90, hjust = 1),
axis.text = element_text(size=7),
title = element_text(size=8),
legend.text = element_text(size=8))+
labs(y = "Per capita demand [km/capita]", x="GDP per capita [$/person]", title = "International shipping")
p = list(pfreigt_lo = pfreigt_lo, ppass_lo = ppass_lo, pfreigt_sm = pfreigt_sm, ppass_sm = ppass_sm)
return(p)
}
Marianna Rottoli
committed
demcapgdpcap_pf(dempkm_cap_all)
```
Marianna Rottoli
committed
## Focus on slected region
## vintages
```{r, echo=FALSE, message=FALSE, warning=FALSE, fig.width=14, fig.height=12}
vintcomparison_regi_pf = function(dt, mapping_scens, rp){
Marianna Rottoli
committed
dt = dt[year %in% c(2020, 2030, 2050) & region == rp]
## apply more esthetic scenario names
dt = merge(dt, mapping_scens, by = "scenario")
## if scenario name not available in the mapping, apply scenario extended name (e.g. NPi, Budget950... are not recorded in the mapping)
dt[is.na(scen_name), scen_name := scenario]
## define the maximum on the y-axis depending on the maximum value across scenarios
dt[, sum := sum(value), by = c("year", "scenario")]
dt[, maxval := max(sum)]
## select a random scenario for 2020 and attribute the label "Historical"
Marianna Rottoli
committed
p1 = ggplot()+
geom_bar(data = dt[year == 2020 & scenario == unique(dt$scenario)[1]][, scen_name := "Historical"],
aes(x=scen_name, y=value, group= technology,
fill = technology, width=.75), position="stack", stat = "identity", width = 0.5, alpha = 0.9)+
Marianna Rottoli
committed
theme_minimal()+
ylim(0,unique(dt[, maxval]))+
Marianna Rottoli
committed
facet_wrap(~ year, nrow = 1)+
theme(axis.text.x = element_text(angle = 90, size=14, vjust=0.5, hjust=1),
axis.text.y = element_text(size=14),
axis.title.y = element_text(size=14),
title = element_text(size=14),
axis.line = element_line(size = 0.5, colour = "grey"),
legend.text = element_text(size=14),
strip.text = element_text(size=14),
strip.background = element_rect(color = "grey"),
legend.position = "none")+
scale_fill_manual(values = cols)+
labs(y = "[million Veh]", x="")
p2 = ggplot()+
geom_bar(data = dt[year != 2020],
aes(x=scen_name, y=value, group=interaction(variable, technology),
fill = technology, width=.75), position="stack", stat = "identity", width = 0.5, alpha = 0.9)+
Marianna Rottoli
committed
theme_minimal()+
ylim(0,unique(dt[, maxval]))+
Marianna Rottoli
committed
facet_wrap(~ year, nrow = 1)+
theme(axis.text.x = element_text(angle = 90, size=14, vjust=0.5, hjust=1),
axis.text.y = element_blank(),
Marianna Rottoli
committed
axis.title.y = element_text(size=14),
title = element_text(size=14),
axis.line = element_line(size = 0.5, colour = "grey"),
legend.text = element_text(size=14),
strip.text = element_text(size=14),
strip.background = element_rect(color = "grey"))+
guides(fill=guide_legend(title="Powertrain"))+
Marianna Rottoli
committed
scale_fill_manual(values = cols)+
Marianna Rottoli
committed
labs(y = "", x="")
plot = plot_grid(p1, p2, align = "h", ncol = 2, rel_widths = c(0.15,0.85))
return(plot)
Marianna Rottoli
committed
}
p = vintcomparison_regi_pf(fleet_all, mapping_scens, rp = regionplot)
Marianna Rottoli
committed
p
aspect_ratio <- 1.5
height <- 6
ggsave("pvint.png", p, dpi=500, height = height , width = height * aspect_ratio)
```
## Costs of LDVs by technology
```{r, echo=FALSE, message=FALSE, warning=FALSE, fig.width=14, fig.height=12}
costspf = function(dt, rp){
dt = dt[region == rp]
map = data.table(name = c("Risk", "Charging", "Model availability", "Range anxiety", "Refuel availability", "Fuel", "Policy induced inconvenience", "Purchase", "Operating and maintenance"),
logit_type = c("prisk", "pchar", "pmod_av", "prange", "pref", "fuel_price", "pinco_tot", "purchase", "other"),
type = c("inc", "inc", "inc", "inc", "inc", "real", "inc", "real", "real"))
dt = merge(dt, map, by = "logit_type")
dt_inc = dt[type == "inc"]
dt_inc = dt_inc[,.(cost = sum(cost)), by = c("region", "year", "type", "technology", "scenario")]
dt_tot = rbind(dt_inc[, c("name", "logit_type") := list("Inconvenience cost", "pinc")], dt[type == "real"])
dt[, name := factor(name, levels = legend_ord)]
dt_tot[, name := factor(name, levels = legend_ord)]
dt_tot[, alph := ifelse(logit_type=="pinc", 0.6, 1)]
plot1 = ggplot()+
geom_bar(data = dt[type == "inc"], aes(x = year, y = cost, group = name, fill = name), position = "stack", stat = "identity")+
theme_minimal()+
facet_grid(scenario~technology)+
theme(axis.text.x = element_text(angle = 90, size=14, vjust=0.5, hjust=1),
axis.text.y = element_text(size=14),
axis.title.y = element_text(size=14),
title = element_text(size=14),
axis.line = element_line(size = 0.5, colour = "grey"),
legend.text = element_text(size=14),
strip.background = element_rect(color = "grey"))+
guides(fill=guide_legend(title="Cost component"))+
scale_fill_manual(values = cols)+
labs(y = "Costs [$/pkm]", x="")
plot2 = ggplot()+
geom_bar(data = dt_tot, aes(x = year, y = cost, group = name, fill = name, alpha = alph), position = "stack", stat = "identity")+
theme_minimal()+
facet_grid(scenario~technology)+
theme(axis.text.x = element_text(angle = 90, size=14, vjust=0.5, hjust=1),
axis.text.y = element_text(size=14),
axis.title.y = element_text(size=14),
title = element_text(size=14),
axis.line = element_line(size = 0.5, colour = "grey"),
legend.text = element_text(size=14),
strip.background = element_rect(color = "grey"))+
scale_fill_manual(values = cols)+
labs(y = "Costs [$/pkm]", x="")+
scale_alpha(range=c(0.4,1)) +
guides(alpha=FALSE, linetype=FALSE,
fill=guide_legend(reverse=TRUE, title="Cost component"))
plot = list(plot1 = plot1, plot2 = plot2)
return(plot)
}
p = costspf(costs_all, rp = regionplot)
p
aspect_ratio <- 1.5
height <- 8
ggsave("LDVinccost.png", p$plot1, dpi=500, height = height , width = height * aspect_ratio)
ggsave("LDVtotcost.png", p$plot2, dpi=500, height = height , width = height * aspect_ratio)
Marianna Rottoli
committed
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
## Sales composition
```{r, echo=FALSE, message=FALSE, warning=FALSE, fig.width=14, fig.height=12}
salescom_regi_pf = function(dt, rp){
plot = ggplot()+
geom_area(data = dt[region == rp], aes(x=as.numeric(as.character(year)), y = shareFS1, group = technology, fill = technology), position = position_fill())+
theme_minimal()+
facet_wrap( ~ scenario, nrow = 1)+
scale_fill_manual("Technology", values = cols)+
expand_limits(y = c(0,1))+
scale_x_continuous(breaks = c(2015,2030,2050, 2100))+
scale_y_continuous(labels = scales::percent)+
theme(axis.text.x = element_text(angle = 90, vjust=0.5, hjust=1, size = 14),
axis.text.y = element_text(size = 14),
axis.line = element_line(size = 0.5, colour = "grey"),
axis.title = element_text(size = 14),
title = element_text(size = 14),
legend.text = element_text(size = 14),
legend.title = element_text(size = 14),
strip.text = element_text(size = 14),
strip.background = element_rect(color = "grey"))+
labs(x = "", y = "[%]", title = "Market share of new LDV sales")
return(plot)
}
p = salescom_regi_pf(salescomp_all, rp = regionplot)
p
aspect_ratio <- 2
height <- 5
ggsave("psales.png", p, dpi=500, height = height , width = height * aspect_ratio)
```
```{r, echo=FALSE, message=FALSE, warning=FALSE, fig.width=14, fig.height=12}
CO2km_int_regi_newsalespf = function(dt, rp){
dt = dt[!is.na(gCO2_km_ave)]
if (rp == "EUR"){
## add historical values
historical_values = data.table(year = c(2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018), emi = c(159, 157, 145, 140, 137, 132, 128, 124, 120, 119, 119, 120))
targets = data.table(name = c("2021 target", "2025 target", "2030 target"), value = c(95, 95*(1-0.15), 95*(1-0.37)))
plot = ggplot()+
geom_line(data = dt[year >= 2020 & region == rp], aes(x = year, y = gCO2_km_ave, group = scenario, color = scenario))+
geom_point(data = historical_values, aes(x = year, y = emi), color = "grey20")+
geom_hline(data = targets, aes(yintercept = value, linetype = name), color = "grey20", size=0.1)+
geom_text(data = targets, aes(y = value+5, x = c(2025, 2030, 2035), label = name), size = 5)+
labs(title = expression(paste(CO["2"], " intensity of LDVs new additions")), y = expression(paste("[", gCO["2"], "/km]")), x = "")+
expand_limits(y = c(0,1))+
scale_x_continuous(breaks = c(2020, 2030, 2050, 2100))+
theme_minimal()+
theme(axis.text.x = element_text(angle = 90, size = 14, vjust=0.5, hjust=1),
axis.text.y = element_text(size = 14),
axis.title = element_text(size = 14),
title = element_text(size = 14),
legend.text = element_text(size = 14),
legend.title = element_text(size = 14),
strip.text = element_text(size = 14),
strip.background = element_rect(color = "grey"),
axis.line = element_line(size = 0.5, colour = "grey"))+
guides(linetype = FALSE)
} else {
## historical values are not available
plot = ggplot()+
geom_line(data = dt[year >= 2020 & region == rp], aes(x = year, y = gCO2_km_ave, group = scenario, color = scenario))+
labs(title = expression(paste(CO["2"], " intensity of LDVs new additions")), y = expression(paste("[", gCO["2"], "/km]")), x = "")+
expand_limits(y = c(0,1))+
scale_x_continuous(breaks = c(2020, 2030, 2050, 2100))+
theme_minimal()+
theme(axis.text.x = element_text(angle = 90, size = 14, vjust=0.5, hjust=1),
axis.text.y = element_text(size = 14),
axis.title = element_text(size = 14),
title = element_text(size = 14),
legend.text = element_text(size = 14),
legend.title = element_text(size = 14),
strip.text = element_text(size = 14),
strip.background = element_rect(color = "grey"),
axis.line = element_line(size = 0.5, colour = "grey"))+
guides(linetype = FALSE)
}
return(plot)
}
p = CO2km_int_regi_newsalespf(CO2km_int_newsales_all, rp = regionplot)
p
aspect_ratio <- 1.5
height <- 6
ggsave("pCO2int.png", p, dpi=500, height = height , width = height * aspect_ratio)
```
```{r, echo=FALSE, message=FALSE, warning=FALSE, fig.width=14, fig.height=12}
EJroad_regi_pf = function(dt, rp){
dt[, technology := factor(technology, levels = legend_ord)]
dt = dt[year >= 2020]
plotLDV = ggplot()+
geom_area(data = dt[subsector_L1 == "trn_pass_road_LDV_4W" & region == rp], aes(x=year, y=demand_EJ, group = technology, fill = technology), color = "black", size=0.05, position= position_stack())+
labs(x = "", y = "[EJ]", title = "LDV Final Energy demand")+
theme_minimal()+
facet_wrap(~scenario, nrow = 1)+
scale_fill_manual("Technology", values = cols, breaks=legend_ord)+
expand_limits(y = c(0,1))+
scale_x_continuous(breaks = c(2020, 2030,2050, 2100))+
theme(axis.text.x = element_text(angle = 90, size = 14, vjust=0.5, hjust=1),
axis.text.y = element_text(size = 14),
axis.title = element_text(size = 14),
axis.line = element_line(size = 0.5, colour = "grey"),
title = element_text(size = 14),
legend.text = element_text(size = 14),
legend.title = element_text(size = 14),
strip.text = element_text(size = 14),
strip.background = element_rect(color = "grey"))
plotBus = ggplot()+
geom_area(data = dt[subsector_L1 %in% c("trn_pass_road_bus_tmp_subsector_L1", "Bus_tmp_subsector_L1") & region == rp], aes(x=year, y=demand_EJ, group = technology, fill = technology), color = "black", size=0.05, position= position_stack())+
labs(x = "", y = "[EJ]", title = "Buses Final Energy demand")+
theme_minimal()+
facet_wrap(~scenario, nrow = 1)+
scale_fill_manual("Technology", values = cols, breaks=legend_ord)+
expand_limits(y = c(0,1))+
scale_x_continuous(breaks = c(2020, 2030,2050, 2100))+
theme(axis.text.x = element_text(angle = 90, size = 14, vjust=0.5, hjust=1),
axis.text.y = element_text(size = 14),
axis.title = element_text(size = 14),
axis.line = element_line(size = 0.5, colour = "grey"),
title = element_text(size = 14),
legend.text = element_text(size = 14),
legend.title = element_text(size = 14),
strip.text = element_text(size = 14),
strip.background = element_rect(color = "grey"))
plotTruck = ggplot()+
geom_area(data = dt[subsector_L1 %in% c("trn_freight_road_tmp_subsector_L1") & region == rp], aes(x=year, y=demand_EJ, group = technology, fill = technology), color = "black", size=0.05, position= position_stack())+
labs(x = "", y = "[EJ]", title = "Trucks Final Energy demand")+
theme_minimal()+
facet_wrap(~scenario, nrow = 1)+
scale_fill_manual("Technology", values = cols, breaks=legend_ord)+
expand_limits(y = c(0,1))+
scale_x_continuous(breaks = c(2020, 2030,2050, 2100))+
theme(axis.text.x = element_text(angle = 90, size = 14, vjust=0.5, hjust=1),
axis.text.y = element_text(size = 14),
axis.title = element_text(size = 14),
axis.line = element_line(size = 0.5, colour = "grey"),
title = element_text(size = 14),
legend.text = element_text(size = 14),
legend.title = element_text(size = 14),
strip.text = element_text(size = 14),
strip.background = element_rect(color = "grey"))
return(plotlist = list(plotLDV = plotLDV, plotBus = plotBus, plotTruck = plotTruck))
}
plist = EJroad_regi_pf(EJroad_all, rp = regionplot)
plist
pLDV = plist[["plotLDV"]]
pBus = plist[["plotBus"]]
pTruck = plist[["plotTruck"]]
aspect_ratio <- 1.5
height <- 6
ggsave("pLDV.png", pLDV, dpi=500, height = height , width = height * aspect_ratio)
ggsave("pBus.png", pBus, dpi=500, height = height , width = height * aspect_ratio)
ggsave("pTruck.png", pTruck, dpi=500, height = height , width = height * aspect_ratio)
```
## Trend of preference factors for Buses and Trucks
```{r, echo=FALSE, warning=FALSE}
prefBusTrucksplotf = function(pref){
pref = pref[iso=="USA" & technology %in% c("Electric", "FCEV") & vehicle_type %in% c("Bus_tmp_vehicletype", "Truck (0-2.7t)")]
pref = pref[year >= 2020 & year <= 2050]
pref[, vehicle_type := ifelse(vehicle_type == "Bus_tmp_vehicletype", "Large Trucks and Buses", "Small Trucks")]
p = ggplot()+
geom_line(data = pref, aes(x = year, y = value, group = interaction(technology, vehicle_type), color = technology, linetype = vehicle_type))+
theme_minimal()+
theme(axis.text.x = element_text(angle = 90, hjust = 1),
axis.text = element_text(size=7),
title = element_text(size=7),
legend.text = element_text(size=7),
strip.text = element_text(size=7))+
labs(y = "Preference factor [-]", x="")+
scale_color_manual("Technology", values = cols,labels = c("Electric", "FCEV"))
scale_linetype_manual("Vehicle", values = c(1,2),
labels = c("Large Trucks and Buses", "Small Trucks"))
return(p)
}
p = prefBusTrucksplotf(pref_FV_all)
aspect_ratio <- 1
ggsave("buses_trucks_SW.png", p, dpi=500, height = height , width = height * aspect_ratio)