--- title: "Compare scenarios Transport" output: pdf_document: default html_document: df_print: paged classoption: landscape --- ```{r setup, include=FALSE} knitr::opts_chunk$set(dev = 'pdf') ``` ```{r, echo=FALSE, message=FALSE, warning=FALSE} require(ggplot2) require(moinput) require(rmndt) require(quitte) library(lucode) library(magpie) library(quitte) library(cowplot) ``` ```{r, echo=FALSE, message=FALSE, warning=FALSE} # Set RDS files path EJmode_all = readRDS("EJmode_all.RDS") EJroad_all = readRDS("EJroad_all.RDS") fleet_all = readRDS("fleet_all.RDS") salescomp_all = readRDS("salescomp_all.RDS") ESmodecap_all = readRDS("ESmodecap_all.RDS") CO2km_int_newsales_all = readRDS("CO2km_int_newsales_all.RDS") EJpass_all = readRDS("EJfuelsPass_all.RDS") EJfrgt_all = readRDS("EJfuelsFrgt_all.RDS") emidem_all = readRDS("emidem_all.RDS") costs_all = readRDS("costs_all.RDS") pref_FV_all = readRDS("pref_FV_all.RDS") dempkm_cap_all = readRDS("demgdpcap_all.RDS") setConfig(forcecache=T) cols <- c("NG" = "#d11141", "Liquids" = "#8c8c8c", "Hybrid Liquids" = "#ffc425", "Hybrid Electric" = "#f37735", "BEV" = "#00b159", "Electricity" = "#00b159", "Electric" = "#00b159", "FCEV" = "#00aedb", "Hydrogen" = "#00aedb", "Biodiesel" = "#66a182", "Synfuel" = "orchid", "Oil" = "#2e4057", "Operating and maintenance" = "#edae49", "Range anxiety" = "#e43f5a", "Refuel availability" = "#f79071", "Purchase" = "#d1495b", "Model availability" = "#58b4ae", "Inconvenience cost" = "#58b4ae", "Charging" = "#007892", "Policy induced inconvenience" = "#2e4057", "Risk" = "#feb72b", "Fuel" = "#035aa6", "International Aviation" = "#9acd32", "Domestic Aviation" = "#7cfc00", "Bus" = "#32cd32", "Passenger Rail" = "#2e8b57", "Freight Rail" = "#ee4000", "Trucks" = "#ff6a6a", "International Shipping" = "#cd2626", "Domestic Shipping" = "#ff4040", "Shipping" = "#ff4040", "Truck" = "#ff7f50", "Trucks (<3.5t)" = "#ff7f50", "Trucks (3.5t-16)" = "#8b0000", "Trucks (>16)" = "#fa8072", "Motorbikes" = "#1874cd", #"dodgerblue3", "Small Cars" = "#87cefa", "Large Cars" = "#6495ed", "Van" = " #40e0d0", "LDV" = "#00bfff", "Non motorized" = "#da70d6", "Freight"="#ff0000", "Freight (Inland)" = "#cd5555", "Pass non LDV" = "#6b8e23", "Pass" = "#66cdaa", "Pass non LDV (Domestic)" = "#54ff9f", "refined liquids enduse" = "#8c8c8c", "FE|Transport|Hydrogen" = "#00aedb", "FE|Transport|NG" = "#d11141", "FE|Transport|Liquids" = "#8c8c8c", "FE|Transport|Electricity" = "#00b159", "FE|Transport" = "#1e90ff", "FE|Buildings" = "#d2b48c", "FE|Industry" = "#919191", "Electricity_push" = "#00b159", "ElecEra" = "#00b159", "ElecEraWise" = "#68c6a4", "HydrHype" = "#00aedb", "HydrHypeWise" = "#o3878f", "Hydrogen_push" = "#00aedb", "Smart_lifestyles_Electricity_push" = "#68c6a4", # "Smart_lyfestiles_Electricity_push" = "#03878f", ##maybe "#o3878f" "Conservative_liquids" = "#113245", "ConvCase" = "#113245", "ConvCaseWise" = "#d11141", "Emi|CO2|Transport|Demand" = "#113245", "Emi|CO2|Industry|Gross" = "#919191", "Emi|CO2|Buildings|Direct" = "#d2b48c", "Emi|CO2|Energy|Supply|Gross" = "#f2b531", "Emi|CO2|CDR|BECCS" = "#ed5958", "Emi|CO2|Land-Use Change" = "#66a182", "Cons. + Synfuels" = "orchid", "Ctax_Conservative" = "#d11141") legend_ord_modes <- c("Freight Rail", "Truck", "Shipping", "International Shipping", "Domestic Shipping", "Trucks", "Motorbikes", "Small Cars", "Large Cars", "Van", "International Aviation", "Domestic Aviation","Bus", "Passenger Rail", "Freight", "LDV", "Pass non LDV", "Freight (Inland)", "Pass non LDV (Domestic)", "Non motorized") legend_ord_fuels <- c("BEV", "Electricity", "Hybrid Electric", "FCEV", "Hydrogen", "Hybrid Liquids", "Liquids", "Oil", "Biodiesel", "Synfuel", "NG") legend_ord_costs <- c("Inconvenience cost", "Risk", "Charging", "Model availability", "Range anxiety", "Refuel availability", "Policy induced inconvenience","Fuel", "Purchase", "Operating and maintenance") legend_ord_emissions <- c("Emi|CO2|Industry|Gross", "Emi|CO2|Buildings|Direct", "Emi|CO2|Transport|Demand", "Emi|CO2|Energy|Supply|Gross", "Emi|CO2|Land-Use Change","Emi|CO2|CDR|BECCS") legend_ord = c(legend_ord_modes, legend_ord_fuels, legend_ord_costs) ## mapping for scenario names mapping_scens = data.table(scenario = c("Budg1100_ConvCase", "Budg1100_ElecEra", "Budg1100_HydrHype", "Budg1100_SynSurge", "NDC_ConvCase", "Budg1100_ConvCaseWise", "Budg1100_ElecEraWise", "Budg1100_HydrHypeWise", "Budg1100_SynSurgeWise", "NDC_ConvCaseWise"), scen_name = c("ConvCase", "ElecEra", "HydrHype", "SynSurge", "Baseline", "ConvCaseWise", "ElecEraWise", "HydrHypeWise", "SynSurgeWise", "BaselineWise")) regionplot = "EUR" ``` ```{r, echo=FALSE, message=FALSE, warning=FALSE} ``` ```{r, echo=FALSE, message=FALSE, warning=FALSE, fig.width=14, fig.height=12} ## Vintages vintcomparisonpf = function(dt){ dt = dt[year %in% c(2015, 2050, 2100)] plot = ggplot()+ geom_bar(data = dt, aes(x=scenario, y=value, group=interaction(variable, technology), fill = technology, width=.75), alpha = 0.5, position="stack", stat = "identity", width = 0.5)+ geom_bar(data = dt, aes(x=scenario, y=value, group=interaction(variable, technology), fill = technology, alpha = factor(alphaval), width=.75), position="stack", stat = "identity", width = 0.5, color = "black", size=0.05)+ guides(fill = guide_legend(reverse=TRUE))+ theme_minimal()+ facet_grid(year~region)+ theme(axis.text.x = element_text(angle = 90, size=14, vjust=0.5, hjust=1), axis.text.y = element_text(size=14), axis.title.y = element_text(size=14), title = element_text(size=14), axis.line = element_line(size = 0.5, colour = "grey"), legend.text = element_text(size=14), strip.text = element_text(size=14), strip.background = element_rect(color = "grey"))+ scale_alpha_discrete(breaks = c(1,0), name = "Status", labels = c("Vintages","New additions")) + guides(linetype=FALSE, fill=guide_legend(reverse=FALSE, title="Transport mode"))+ scale_fill_manual(values = cols)+ labs(y = "[million Veh]", x="", title = "LDV fleet") return(plot) } vintcomparisonpf(fleet_all) ``` ## Sales composition ```{r, echo=FALSE, message=FALSE, warning=FALSE, fig.width=14, fig.height=12} salescompf = function(dt){ plot = ggplot()+ geom_bar(data = dt, aes(x=as.numeric(as.character(year)),y=shareFS1, group = technology, fill = technology), position = position_stack(), stat = "identity")+ theme_minimal()+ facet_grid(region ~ scenario)+ scale_fill_manual("Technology", values = cols)+ expand_limits(y = c(0,1))+ scale_x_continuous(breaks = c(2015,2030,2050, 2100))+ theme(axis.text.x = element_text(angle = 90, vjust=0.5, hjust=1, size = 14), axis.text.y = element_text(size = 14), axis.line = element_line(size = 0.5, colour = "grey"), axis.title = element_text(size = 14), title = element_text(size = 14), legend.text = element_text(size = 14), legend.title = element_text(size = 14), strip.text = element_text(size = 14), strip.background = element_rect(color = "grey"))+ labs(x = "", y = "[%]", title = "Market share of new LDV sales") return(plot) } salescompf(salescomp_all) ``` ```{r, echo=FALSE, message=FALSE, warning=FALSE, fig.width=14, fig.height=12} EJroadpf = function(dt){ dt[, technology := factor(technology, levels = legend_ord)] dt = dt[year >= 2020] plotLDV = ggplot()+ geom_area(data = dt[subsector_L1 == "trn_pass_road_LDV_4W"], aes(x=year, y=demand_EJ, group = technology, fill = technology), color = "black", size=0.05, position= position_stack())+ labs(x = "", y = "[EJ]", title = "LDV Final Energy demand")+ theme_minimal()+ facet_grid(scenario~region)+ scale_fill_manual("Technology", values = cols, breaks=legend_ord)+ expand_limits(y = c(0,1))+ scale_x_continuous(breaks = c(2020, 2030,2050, 2100))+ theme(axis.text.x = element_text(angle = 90, size = 14, vjust=0.5, hjust=1), axis.text.y = element_text(size = 14), axis.title = element_text(size = 14), axis.line = element_line(size = 0.5, colour = "grey"), title = element_text(size = 14), legend.text = element_text(size = 14), legend.title = element_text(size = 14), strip.text = element_text(size = 14), strip.background = element_rect(color = "grey")) plotBus = ggplot()+ geom_area(data = dt[subsector_L1 %in% c("trn_pass_road_bus_tmp_subsector_L1", "Bus_tmp_subsector_L1")], aes(x=year, y=demand_EJ, group = technology, fill = technology), color = "black", size=0.05, position= position_stack())+ labs(x = "", y = "[EJ]", title = "Buses Final Energy demand")+ theme_minimal()+ facet_grid(scenario~region)+ scale_fill_manual("Technology", values = cols, breaks=legend_ord)+ expand_limits(y = c(0,1))+ scale_x_continuous(breaks = c(2020, 2030,2050, 2100))+ theme(axis.text.x = element_text(angle = 90, size = 14, vjust=0.5, hjust=1), axis.text.y = element_text(size = 14), axis.title = element_text(size = 14), axis.line = element_line(size = 0.5, colour = "grey"), title = element_text(size = 14), legend.text = element_text(size = 14), legend.title = element_text(size = 14), strip.text = element_text(size = 14), strip.background = element_rect(color = "grey")) plotTruck = ggplot()+ geom_area(data = dt[subsector_L1 %in% c("trn_freight_road_tmp_subsector_L1")], aes(x=year, y=demand_EJ, group = technology, fill = technology), color = "black", size=0.05, position= position_stack())+ labs(x = "", y = "[EJ]", title = "Trucks Final Energy demand")+ theme_minimal()+ facet_grid(scenario~region)+ scale_fill_manual("Technology", values = cols, breaks=legend_ord)+ expand_limits(y = c(0,1))+ scale_x_continuous(breaks = c(2020, 2030,2050, 2100))+ theme(axis.text.x = element_text(angle = 90, size = 14, vjust=0.5, hjust=1), axis.text.y = element_text(size = 14), axis.title = element_text(size = 14), axis.line = element_line(size = 0.5, colour = "grey"), title = element_text(size = 14), legend.text = element_text(size = 14), legend.title = element_text(size = 14), strip.text = element_text(size = 14), strip.background = element_rect(color = "grey")) return(plotlist = list(plotLDV = plotLDV, plotBus = plotBus, plotTruck = plotTruck)) } EJroadpf(EJroad_all) ``` ```{r, echo=FALSE, message=FALSE, warning=FALSE, fig.width=14, fig.height=12} EJmodepf = function(dt){ dt = dt[year >= 2020] plot = ggplot()+ geom_area(data = dt, aes(x=year, y=demand_EJ, group = interaction(vehicle_type_plot,aggr_mode), fill = vehicle_type_plot), color = "black", size=0.05, position= position_stack())+ labs(x = "", y = "[EJ]", title = "Total transport final energy demand")+ theme_minimal()+ facet_grid(scenario~region)+ scale_fill_manual("Vehicle Type",values = cols, breaks=legend_ord)+ expand_limits(y = c(0,1))+ scale_x_continuous(breaks = c(2020,2030,2050, 2100))+ theme(axis.text.x = element_text(angle = 90, size = 14, vjust=0.5, hjust=1), axis.text.y = element_text(size = 14), axis.title = element_text(size = 14), title = element_text(size = 14), legend.text = element_text(size = 14), legend.title = element_text(size = 14), strip.text = element_text(size = 14), axis.line = element_line(size = 0.5, colour = "grey"), strip.background = element_rect(color = "grey")) return(plot) } EJmodepf(EJmode_all) ``` ```{r, echo=FALSE, message=FALSE, warning=FALSE, fig.width=14, fig.height=12} ESmodecappf = function(dt){ dt[, vehicle_type_plot := factor(vehicle_type_plot, levels = legend_ord)] plot_frgt = ggplot()+ geom_area(data = dt[mode == "freight" & year >= 2020], aes(x=year, y=cap_dem, group = vehicle_type_plot, fill = vehicle_type_plot), color="black", size=0.05, position= position_stack())+ labs(x = "", y = "Energy Services demand [tkm/cap]")+ theme_minimal()+ facet_grid(scenario~region)+ scale_fill_manual("Vehicle Type",values = cols, breaks=legend_ord)+ expand_limits(y = c(0,1))+ scale_x_continuous(breaks = c(2020,2030,2050, 2100))+ theme(axis.text.x = element_text(angle = 90, size = 14, vjust=0.5, hjust=1), axis.text.y = element_text(size = 14), axis.title = element_text(size = 14), title = element_text(size = 14), legend.text = element_text(size = 14), legend.title = element_text(size = 14), strip.text = element_text(size = 14), strip.background = element_rect(color = "grey"), axis.line = element_line(size = 0.5, colour = "grey")) plot_pass = ggplot()+ geom_area(data = dt[mode == "pass" & year >= 2020], aes(x=year, y=cap_dem, group = vehicle_type_plot, fill = vehicle_type_plot), color="black", size=0.05, position= position_stack())+ labs(x = "", y = "Energy Services demand [pkm/cap]")+ theme_minimal()+ facet_grid(scenario~region)+ scale_fill_manual("Vehicle Type",values = cols, breaks=legend_ord)+ expand_limits(y = c(0,1))+ scale_x_continuous(breaks = c(2020,2030,2050, 2100))+ theme(axis.text.x = element_text(angle = 90, size = 14, vjust=0.5, hjust=1), axis.text.y = element_text(size = 14), axis.title = element_text(size = 14), title = element_text(size = 14), legend.text = element_text(size = 14), legend.title = element_text(size = 14), strip.text = element_text(size = 14), strip.background = element_rect(color = "grey"), axis.line = element_line(size = 0.5, colour = "grey")) return(list(plot_pass = plot_pass, plot_frgt = plot_frgt)) } ESmodecappf(ESmodecap_all) ``` ```{r, echo=FALSE, message=FALSE, warning=FALSE, fig.width=14, fig.height=12} CO2km_int_newsalespf = function(dt){ dt = dt[!is.na(gCO2_km_ave)] plot = ggplot()+ geom_line(data = dt[year >= 2020], aes(x = year, y = gCO2_km_ave, group = scenario, color = scenario))+ labs(title = expression(paste(CO["2"], " intensity of LDVs new additions")), y = expression(paste("[", gCO["2"], "/km]")), x = "")+ expand_limits(y = c(0,1))+ scale_x_continuous(breaks = c(2020, 2030, 2050, 2100))+ theme_minimal()+ facet_grid(~region)+ theme(axis.text.x = element_text(angle = 90, size = 14, vjust=0.5, hjust=1), axis.text.y = element_text(size = 14), axis.title = element_text(size = 14), title = element_text(size = 14), legend.text = element_text(size = 14), legend.title = element_text(size = 14), strip.text = element_text(size = 14), strip.background = element_rect(color = "grey"), axis.line = element_line(size = 0.5, colour = "grey"))+ guides(linetype = FALSE) return(plot) } CO2km_int_newsalespf(CO2km_int_newsales_all) ``` ```{r, echo=FALSE, message=FALSE, warning=FALSE, fig.width=14, fig.height=12} ## passenger by fuel EJfuels_pf = function(dt_p, dt_f){ dt_p = dt_p[year >= 2020] dt_p = dt_p[, .(demand_EJ = sum(demand_EJ)), by = c("subtech", "year", "region", "scenario")] plotp = ggplot()+ geom_area(data = dt_p, aes(x=year, y=demand_EJ, group = subtech, fill = subtech), color="black", size=0.05, position= position_stack())+ labs(x = "", y = "[EJ]", title = "Passenger transport FE demand by fuel")+ theme_minimal()+ facet_grid(scenario~region)+ scale_fill_manual("Technology",values = cols, breaks=legend_ord)+ expand_limits(y = c(0,1))+ scale_x_continuous(breaks = c(2020, 2030,2050, 2100))+ theme(axis.text.x = element_text(angle = 90, size = 14, vjust=0.5, hjust=1), axis.text.y = element_text(size = 14), axis.title = element_text(size = 14), title = element_text(size = 14), legend.text = element_text(size = 14), legend.title = element_text(size = 14), strip.text = element_text(size = 14), strip.background = element_rect(color = "grey"), axis.line = element_line(size = 0.5, colour = "grey")) dt_f = dt_f[year >= 2020] plotf_lo = ggplot()+ geom_area(data = dt_f[sector == "trn_shipping_intl"], aes(x=year, y=demand_EJ, group = subtech, fill = subtech), color="black", size=0.05, position= position_stack())+ labs(x = "", y = "[EJ]", title = "International freight FE demand by fuel")+ theme_minimal()+ facet_grid(scenario~region)+ scale_fill_manual("Technology",values = cols, breaks=legend_ord)+ expand_limits(y = c(0,1))+ scale_x_continuous(breaks = c(2020, 2030,2050, 2100))+ theme(axis.text.x = element_text(angle = 90, size = 14, vjust=0.5, hjust=1), axis.text.y = element_text(size = 14), axis.title = element_text(size = 14), title = element_text(size = 14), legend.text = element_text(size = 14), legend.title = element_text(size = 14), strip.text = element_text(size = 14), strip.background = element_rect(color = "grey"), axis.line = element_line(size = 0.5, colour = "grey")) plotf_sm = ggplot()+ geom_area(data = dt_f[sector == "trn_freight"], aes(x=year, y=demand_EJ, group = subtech, fill = subtech), color="black", size=0.05, position= position_stack())+ labs(x = "", y = "[EJ]", title = "Short-medium freight FE demand by fuel")+ theme_minimal()+ facet_grid(scenario~region)+ scale_fill_manual("Technology",values = cols, breaks=legend_ord)+ expand_limits(y = c(0,1))+ scale_x_continuous(breaks = c(2020, 2030,2050, 2100))+ theme(axis.text.x = element_text(angle = 90, size = 14, vjust=0.5, hjust=1), axis.text.y = element_text(size = 14), axis.title = element_text(size = 14), title = element_text(size = 14), legend.text = element_text(size = 14), legend.title = element_text(size = 14), strip.text = element_text(size = 14), strip.background = element_rect(color = "grey"), axis.line = element_line(size = 0.5, colour = "grey")) plot = list(plotf_lo = plotf_lo, plotf_sm = plotf_sm, plotp = plotp) return(plot) } EJfuels_pf(dt_p = EJpass_all, dt_f = EJfrgt_all) ``` ```{r, echo=FALSE, message=FALSE, warning=FALSE, fig.width=14, fig.height=12} emidem_pf = function(dt){ dt[, scenario := as.character(scenario)] plot = ggplot()+ geom_line(data = dt, aes(x = year, y = value, group = scenario, color = scenario))+ labs(x = "", y = "CO2 emissions [Mt/CO2]", title = "Emissions from transport demand")+ theme_minimal()+ facet_grid(~region)+ theme(axis.text.x = element_text(angle = 90, size = 14, vjust=0.5, hjust=1), axis.text.y = element_text(size = 14), axis.title = element_text(size = 14), title = element_text(size = 14), legend.text = element_text(size = 14), legend.title = element_text(size = 14), strip.text = element_text(size = 14), strip.background = element_rect(color = "grey"), axis.line = element_line(size = 0.5, colour = "grey")) return(plot) } emidem_pf(emidem_all) ``` ## demand per capita VS gdp per capita ```{r, echo=FALSE, message=FALSE, warning=FALSE, fig.width=14, fig.height=12} demcapgdpcap_pf = function(dt) { dt = dt[year >= 2005] dt = dt[, year := as.character(year)] ppass_sm = ggplot()+ geom_line(data = dt[sector == "trn_pass"], aes(x = GDP_cap, y = demcap, color = region, group = region))+ geom_point(data = dt[sector == "trn_pass" & year %in% c("2020", "2030", "2050", "2070", "2100")], aes(x = GDP_cap, y = demcap, shape = year, group = region, color = region))+ theme_minimal()+ facet_grid(scenario~sector)+ theme(axis.text.x = element_text(angle = 90, hjust = 1), axis.text = element_text(size=7), title = element_text(size=8), legend.text = element_text(size=8))+ labs(y = "Per capita demand [km/capita]", x="GDP per capita [$/person]", title = "Passenger short-medium") pfreigt_sm = ggplot()+ geom_line(data = dt[sector == "trn_freight"], aes(x = GDP_cap, y = demcap, color = region, group = region))+ geom_point(data = dt[sector == "trn_freight" & year %in% c("2020", "2030", "2050", "2070", "2100")], aes(x = GDP_cap, y = demcap, shape = year, group = region, color = region))+ theme_minimal()+ facet_grid(scenario~sector)+ theme(axis.text.x = element_text(angle = 90, hjust = 1), axis.text = element_text(size=7), title = element_text(size=8), legend.text = element_text(size=8))+ labs(y = "Per capita demand [km/capita]", x="GDP per capita [$/person]", title = "Freight short-medium") ppass_lo = ggplot()+ geom_line(data = dt[sector == "trn_aviation_intl"], aes(x = GDP_cap, y = demcap, color = region, group = region))+ geom_point(data = dt[sector == "trn_aviation_intl" & year %in% c("2020", "2030", "2050", "2070", "2100")], aes(x = GDP_cap, y = demcap, shape = year, group = region, color = region))+ theme_minimal()+ facet_grid(scenario~sector)+ theme(axis.text.x = element_text(angle = 90, hjust = 1), axis.text = element_text(size=7), title = element_text(size=8), legend.text = element_text(size=8))+ labs(y = "Per capita demand [km/capita]", x="GDP per capita [$/person]", title = "International aviation") pfreigt_lo = ggplot()+ geom_line(data = dt[sector == "trn_shipping_intl"], aes(x = GDP_cap, y = demcap, color = region, group = region))+ geom_point(data = dt[sector == "trn_shipping_intl" & year %in% c("2020", "2030", "2050", "2070", "2100")], aes(x = GDP_cap, y = demcap, shape = year, group = region, color = region))+ theme_minimal()+ facet_grid(scenario~sector)+ theme(axis.text.x = element_text(angle = 90, hjust = 1), axis.text = element_text(size=7), title = element_text(size=8), legend.text = element_text(size=8))+ labs(y = "Per capita demand [km/capita]", x="GDP per capita [$/person]", title = "International shipping") p = list(pfreigt_lo = pfreigt_lo, ppass_lo = ppass_lo, pfreigt_sm = pfreigt_sm, ppass_sm = ppass_sm) return(p) } demcapgdpcap_pf(dempkm_cap_all) ``` ## Focus on slected region ## vintages ```{r, echo=FALSE, message=FALSE, warning=FALSE, fig.width=14, fig.height=12} vintcomparison_regi_pf = function(dt, mapping_scens, rp){ dt = dt[year %in% c(2020, 2030, 2050) & region == rp] ## apply more esthetic scenario names dt = merge(dt, mapping_scens, by = "scenario") ## if scenario name not available in the mapping, apply scenario extended name (e.g. NPi, Budget950... are not recorded in the mapping) dt[is.na(scen_name), scen_name := scenario] ## define the maximum on the y-axis depending on the maximum value across scenarios dt[, sum := sum(value), by = c("year", "scenario")] dt[, maxval := max(sum)] ## select a random scenario for 2020 and attribute the label "Historical" p1 = ggplot()+ geom_bar(data = dt[year == 2020 & scenario == unique(dt$scenario)[1]][, scen_name := "Historical"], aes(x=scen_name, y=value, group= technology, fill = technology, width=.75), position="stack", stat = "identity", width = 0.5, alpha = 0.9)+ theme_minimal()+ ylim(0,unique(dt[, maxval]))+ facet_wrap(~ year, nrow = 1)+ theme(axis.text.x = element_text(angle = 90, size=14, vjust=0.5, hjust=1), axis.text.y = element_text(size=14), axis.title.y = element_text(size=14), title = element_text(size=14), axis.line = element_line(size = 0.5, colour = "grey"), legend.text = element_text(size=14), strip.text = element_text(size=14), strip.background = element_rect(color = "grey"), legend.position = "none")+ scale_fill_manual(values = cols)+ labs(y = "[million Veh]", x="") p2 = ggplot()+ geom_bar(data = dt[year != 2020], aes(x=scen_name, y=value, group=interaction(variable, technology), fill = technology, width=.75), position="stack", stat = "identity", width = 0.5, alpha = 0.9)+ theme_minimal()+ ylim(0,unique(dt[, maxval]))+ facet_wrap(~ year, nrow = 1)+ theme(axis.text.x = element_text(angle = 90, size=14, vjust=0.5, hjust=1), axis.text.y = element_blank(), axis.title.y = element_text(size=14), title = element_text(size=14), axis.line = element_line(size = 0.5, colour = "grey"), legend.text = element_text(size=14), strip.text = element_text(size=14), strip.background = element_rect(color = "grey"))+ guides(fill=guide_legend(title="Powertrain"))+ scale_fill_manual(values = cols)+ labs(y = "", x="") plot = plot_grid(p1, p2, align = "h", ncol = 2, rel_widths = c(0.15,0.85)) return(plot) } p = vintcomparison_regi_pf(fleet_all, mapping_scens, rp = regionplot) p aspect_ratio <- 1.5 height <- 6 ggsave("pvint.png", p, dpi=500, height = height , width = height * aspect_ratio) ``` ## Costs of LDVs by technology ```{r, echo=FALSE, message=FALSE, warning=FALSE, fig.width=14, fig.height=12} costspf = function(dt, rp){ dt = dt[region == rp] map = data.table(name = c("Risk", "Charging", "Model availability", "Range anxiety", "Refuel availability", "Fuel", "Policy induced inconvenience", "Purchase", "Operating and maintenance"), logit_type = c("prisk", "pchar", "pmod_av", "prange", "pref", "fuel_price", "pinco_tot", "purchase", "other"), type = c("inc", "inc", "inc", "inc", "inc", "real", "inc", "real", "real")) dt = merge(dt, map, by = "logit_type") dt_inc = dt[type == "inc"] dt_inc = dt_inc[,.(cost = sum(cost)), by = c("region", "year", "type", "technology", "scenario")] dt_tot = rbind(dt_inc[, c("name", "logit_type") := list("Inconvenience cost", "pinc")], dt[type == "real"]) dt[, name := factor(name, levels = legend_ord)] dt_tot[, name := factor(name, levels = legend_ord)] dt_tot[, alph := ifelse(logit_type=="pinc", 0.6, 1)] plot1 = ggplot()+ geom_bar(data = dt[type == "inc"], aes(x = year, y = cost, group = name, fill = name), position = "stack", stat = "identity")+ theme_minimal()+ facet_grid(scenario~technology)+ theme(axis.text.x = element_text(angle = 90, size=14, vjust=0.5, hjust=1), axis.text.y = element_text(size=14), axis.title.y = element_text(size=14), title = element_text(size=14), axis.line = element_line(size = 0.5, colour = "grey"), legend.text = element_text(size=14), strip.text = element_text(size=12), strip.background = element_rect(color = "grey"))+ guides(fill=guide_legend(title="Cost component"))+ scale_fill_manual(values = cols)+ labs(y = "Costs [$/pkm]", x="") plot2 = ggplot()+ geom_bar(data = dt_tot, aes(x = year, y = cost, group = name, fill = name, alpha = alph), position = "stack", stat = "identity")+ theme_minimal()+ facet_grid(scenario~technology)+ theme(axis.text.x = element_text(angle = 90, size=14, vjust=0.5, hjust=1), axis.text.y = element_text(size=14), axis.title.y = element_text(size=14), title = element_text(size=14), axis.line = element_line(size = 0.5, colour = "grey"), legend.text = element_text(size=14), strip.text = element_text(size=12), strip.background = element_rect(color = "grey"))+ scale_fill_manual(values = cols)+ labs(y = "Costs [$/pkm]", x="")+ scale_alpha(range=c(0.4,1)) + guides(alpha=FALSE, linetype=FALSE, fill=guide_legend(reverse=TRUE, title="Cost component")) plot = list(plot1 = plot1, plot2 = plot2) return(plot) } p = costspf(costs_all, rp = regionplot) p aspect_ratio <- 1.5 height <- 8 ggsave("LDVinccost.png", p$plot1, dpi=500, height = height , width = height * aspect_ratio) ggsave("LDVtotcost.png", p$plot2, dpi=500, height = height , width = height * aspect_ratio) ``` ## Sales composition ```{r, echo=FALSE, message=FALSE, warning=FALSE, fig.width=14, fig.height=12} salescom_regi_pf = function(dt, rp){ plot = ggplot()+ geom_area(data = dt[region == rp], aes(x=as.numeric(as.character(year)), y = shareFS1, group = technology, fill = technology), position = position_fill())+ theme_minimal()+ facet_wrap( ~ scenario, nrow = 1)+ scale_fill_manual("Technology", values = cols)+ expand_limits(y = c(0,1))+ scale_x_continuous(breaks = c(2015,2030,2050, 2100))+ scale_y_continuous(labels = scales::percent)+ theme(axis.text.x = element_text(angle = 90, vjust=0.5, hjust=1, size = 14), axis.text.y = element_text(size = 14), axis.line = element_line(size = 0.5, colour = "grey"), axis.title = element_text(size = 14), title = element_text(size = 14), legend.text = element_text(size = 14), legend.title = element_text(size = 14), strip.text = element_text(size = 14), strip.background = element_rect(color = "grey"))+ labs(x = "", y = "[%]", title = "Market share of new LDV sales") return(plot) } p = salescom_regi_pf(salescomp_all, rp = regionplot) p aspect_ratio <- 2 height <- 5 ggsave("psales.png", p, dpi=500, height = height , width = height * aspect_ratio) ``` ```{r, echo=FALSE, message=FALSE, warning=FALSE, fig.width=14, fig.height=12} CO2km_int_regi_newsalespf = function(dt, rp){ dt = dt[!is.na(gCO2_km_ave)] if (rp == "EUR"){ ## add historical values historical_values = data.table(year = c(2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018), emi = c(159, 157, 145, 140, 137, 132, 128, 124, 120, 119, 119, 120)) targets = data.table(name = c("2021 target", "2025 target", "2030 target"), value = c(95, 95*(1-0.15), 95*(1-0.37))) plot = ggplot()+ geom_line(data = dt[year >= 2020 & region == rp], aes(x = year, y = gCO2_km_ave, group = scenario, color = scenario))+ geom_point(data = historical_values, aes(x = year, y = emi), color = "grey20")+ geom_hline(data = targets, aes(yintercept = value, linetype = name), color = "grey20", size=0.1)+ geom_text(data = targets, aes(y = value+5, x = c(2025, 2030, 2035), label = name), size = 5)+ labs(title = expression(paste(CO["2"], " intensity of LDVs new additions")), y = expression(paste("[", gCO["2"], "/km]")), x = "")+ expand_limits(y = c(0,1))+ scale_x_continuous(breaks = c(2020, 2030, 2050, 2100))+ theme_minimal()+ theme(axis.text.x = element_text(angle = 90, size = 14, vjust=0.5, hjust=1), axis.text.y = element_text(size = 14), axis.title = element_text(size = 14), title = element_text(size = 14), legend.text = element_text(size = 14), legend.title = element_text(size = 14), strip.text = element_text(size = 14), strip.background = element_rect(color = "grey"), axis.line = element_line(size = 0.5, colour = "grey"))+ guides(linetype = FALSE) } else { ## historical values are not available plot = ggplot()+ geom_line(data = dt[year >= 2020 & region == rp], aes(x = year, y = gCO2_km_ave, group = scenario, color = scenario))+ labs(title = expression(paste(CO["2"], " intensity of LDVs new additions")), y = expression(paste("[", gCO["2"], "/km]")), x = "")+ expand_limits(y = c(0,1))+ scale_x_continuous(breaks = c(2020, 2030, 2050, 2100))+ theme_minimal()+ theme(axis.text.x = element_text(angle = 90, size = 14, vjust=0.5, hjust=1), axis.text.y = element_text(size = 14), axis.title = element_text(size = 14), title = element_text(size = 14), legend.text = element_text(size = 14), legend.title = element_text(size = 14), strip.text = element_text(size = 14), strip.background = element_rect(color = "grey"), axis.line = element_line(size = 0.5, colour = "grey"))+ guides(linetype = FALSE) } return(plot) } p = CO2km_int_regi_newsalespf(CO2km_int_newsales_all, rp = regionplot) p aspect_ratio <- 1.5 height <- 6 ggsave("pCO2int.png", p, dpi=500, height = height , width = height * aspect_ratio) ``` ```{r, echo=FALSE, message=FALSE, warning=FALSE, fig.width=14, fig.height=12} EJroad_regi_pf = function(dt, rp){ dt[, technology := factor(technology, levels = legend_ord)] dt = dt[year >= 2020] plotLDV = ggplot()+ geom_area(data = dt[subsector_L1 == "trn_pass_road_LDV_4W" & region == rp], aes(x=year, y=demand_EJ, group = technology, fill = technology), color = "black", size=0.05, position= position_stack())+ labs(x = "", y = "[EJ]", title = "LDV Final Energy demand")+ theme_minimal()+ facet_wrap(~scenario, nrow = 1)+ scale_fill_manual("Technology", values = cols, breaks=legend_ord)+ expand_limits(y = c(0,1))+ scale_x_continuous(breaks = c(2020, 2030,2050, 2100))+ theme(axis.text.x = element_text(angle = 90, size = 14, vjust=0.5, hjust=1), axis.text.y = element_text(size = 14), axis.title = element_text(size = 14), axis.line = element_line(size = 0.5, colour = "grey"), title = element_text(size = 14), legend.text = element_text(size = 14), legend.title = element_text(size = 14), strip.text = element_text(size = 14), strip.background = element_rect(color = "grey")) plotBus = ggplot()+ geom_area(data = dt[subsector_L1 %in% c("trn_pass_road_bus_tmp_subsector_L1", "Bus_tmp_subsector_L1") & region == rp], aes(x=year, y=demand_EJ, group = technology, fill = technology), color = "black", size=0.05, position= position_stack())+ labs(x = "", y = "[EJ]", title = "Buses Final Energy demand")+ theme_minimal()+ facet_wrap(~scenario, nrow = 1)+ scale_fill_manual("Technology", values = cols, breaks=legend_ord)+ expand_limits(y = c(0,1))+ scale_x_continuous(breaks = c(2020, 2030,2050, 2100))+ theme(axis.text.x = element_text(angle = 90, size = 14, vjust=0.5, hjust=1), axis.text.y = element_text(size = 14), axis.title = element_text(size = 14), axis.line = element_line(size = 0.5, colour = "grey"), title = element_text(size = 14), legend.text = element_text(size = 14), legend.title = element_text(size = 14), strip.text = element_text(size = 14), strip.background = element_rect(color = "grey")) plotTruck = ggplot()+ geom_area(data = dt[subsector_L1 %in% c("trn_freight_road_tmp_subsector_L1") & region == rp], aes(x=year, y=demand_EJ, group = technology, fill = technology), color = "black", size=0.05, position= position_stack())+ labs(x = "", y = "[EJ]", title = "Trucks Final Energy demand")+ theme_minimal()+ facet_wrap(~scenario, nrow = 1)+ scale_fill_manual("Technology", values = cols, breaks=legend_ord)+ expand_limits(y = c(0,1))+ scale_x_continuous(breaks = c(2020, 2030,2050, 2100))+ theme(axis.text.x = element_text(angle = 90, size = 14, vjust=0.5, hjust=1), axis.text.y = element_text(size = 14), axis.title = element_text(size = 14), axis.line = element_line(size = 0.5, colour = "grey"), title = element_text(size = 14), legend.text = element_text(size = 14), legend.title = element_text(size = 14), strip.text = element_text(size = 14), strip.background = element_rect(color = "grey")) return(plotlist = list(plotLDV = plotLDV, plotBus = plotBus, plotTruck = plotTruck)) } plist = EJroad_regi_pf(EJroad_all, rp = regionplot) plist pLDV = plist[["plotLDV"]] pBus = plist[["plotBus"]] pTruck = plist[["plotTruck"]] aspect_ratio <- 1.5 height <- 6 ggsave("pLDV.png", pLDV, dpi=500, height = height , width = height * aspect_ratio) ggsave("pBus.png", pBus, dpi=500, height = height , width = height * aspect_ratio) ggsave("pTruck.png", pTruck, dpi=500, height = height , width = height * aspect_ratio) ``` ## Trend of preference factors for Buses and Trucks ```{r, echo=FALSE, warning=FALSE} prefBusTrucksplotf = function(pref){ pref = pref[iso=="USA" & technology %in% c("Electric", "FCEV") & vehicle_type %in% c("Bus_tmp_vehicletype", "Truck (0-2.7t)")] pref = pref[year >= 2020 & year <= 2050] pref[, vehicle_type := ifelse(vehicle_type == "Bus_tmp_vehicletype", "Large Trucks and Buses", "Small Trucks")] p = ggplot()+ geom_line(data = pref, aes(x = year, y = value, group = interaction(technology, vehicle_type), color = technology, linetype = vehicle_type))+ facet_wrap(~scenario, ncol = 1)+ theme_minimal()+ theme(axis.text.x = element_text(angle = 90, hjust = 1), axis.text = element_text(size=7), title = element_text(size=7), legend.text = element_text(size=7), strip.text = element_text(size=7))+ labs(y = "Preference factor [-]", x="")+ scale_color_manual("Technology", values = cols,labels = c("Electric", "FCEV")) scale_linetype_manual("Vehicle", values = c(1,2), labels = c("Large Trucks and Buses", "Small Trucks")) return(p) } p = prefBusTrucksplotf(pref_FV_all) p aspect_ratio <- 1 height <- 4 ggsave("buses_trucks_SW.png", p, dpi=500, height = height , width = height * aspect_ratio) ```