Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
*** | (C) 2006-2019 Potsdam Institute for Climate Impact Research (PIK)
*** | authors, and contributors see CITATION.cff file. This file is part
*** | of REMIND and licensed under AGPL-3.0-or-later. Under Section 7 of
*** | AGPL-3.0, you are granted additional permissions described in the
*** | REMIND License Exception, version 1.0 (see LICENSE file).
*** | Contact: remind@pik-potsdam.de
*** SOF ./core/equations.gms
***---------------------------------------------------------------------------
***---------------------------------------------------------------------------
***---------------------------------------------------------------------------
*** DEFINITION OF MODEL EQUATIONS:
***---------------------------------------------------------------------------
***---------------------------------------------------------------------------
***---------------------------------------------------------------------------
*' Fuel costs are associated with the use of exhaustible primary energy (fossils, uranium) and biomass.
***---------------------------------------------------------------------------
q_costFu(t,regi)..
v_costFu(t,regi)
=e=
vm_costFuBio(t,regi) + sum(peEx(enty), vm_costFuEx(t,regi,enty))
;
***---------------------------------------------------------------------------
*' Specific investment costs of learning technologies are a model-endogenous variable;
*' those of non-learning technologies are fixed to constant values.
*' Total investment costs are the product of specific costs and capacity additions plus adjustment costs.
***---------------------------------------------------------------------------
q_costInv(t,regi)..
v_costInv(t,regi)
=e=
sum(en2en(enty,enty2,te),
v_costInvTeDir(t,regi,te) + v_costInvTeAdj(t,regi,te)$teAdj(te)
)
+
sum(teNoTransform,
v_costInvTeDir(t,regi,teNoTransform) + v_costInvTeAdj(t,regi,teNoTransform)$teAdj(teNoTransform)
)
;
*RP* 2010-05-10 adjustment costs
q_costInvTeDir(t,regi,te)..
v_costInvTeDir(t,regi,te)
=e=
vm_costTeCapital(t,regi,te) * sum(te2rlf(te,rlf), vm_deltaCap(t,regi,te,rlf) )
;
*RP* 2011-12-01 remove global adjustment costs to decrease runtime, only keep regional adjustment costs. Maybe change in the future.
v_adjFactorGlob.fx(t,regi,te) = 0;
q_costInvTeAdj(t,regi,teAdj)..
v_costInvTeAdj(t,regi,teAdj)
=e=
vm_costTeCapital(t,regi,teAdj) * ( (p_adj_coeff(t,regi,teAdj) * v_adjFactor(t,regi,teAdj)) + (p_adj_coeff_glob(teAdj) * v_adjFactorGlob(t,regi,teAdj) ) )
;
***---------------------------------------------------------------------------
*' Operation and maintenance resut form costs maintenance of existing facilities according to their capacity and
*' operation of energy transformations according to the amount of produced secondary and final energy.
***---------------------------------------------------------------------------
q_costOM(t,regi)..
v_costOM(t,regi)
=e=
sum(en2en(enty,enty2,te),
pm_data(regi,"omf",te)
* sum(te2rlf(te,rlf), vm_costTeCapital(t,regi,te) * vm_cap(t,regi,te,rlf) )
+
pm_data(regi,"omv",te)
* (vm_prodSe(t,regi,enty,enty2,te)$entySe(enty2)
+ vm_prodFe(t,regi,enty,enty2,te)$entyFe(enty2))
)
+
sum(teNoTransform(te),
pm_data(regi,"omf",te)
* sum(te2rlf(te,rlf),
vm_costTeCapital(t,regi,te) * vm_cap(t,regi,te,rlf)
)
)
+ vm_omcosts_cdr(t,regi)
;
***---------------------------------------------------------------------------
*' Energy balance equations equate the production of and demand for each primary, secondary and final energy.
*' The balance equation for primary energy equals supply of primary energy demand on primary energy.
***---------------------------------------------------------------------------
q_balPe(t,regi,entyPe(enty))..
vm_prodPe(t,regi,enty) + p_macPE(t,regi,enty)
=e=
sum(pe2se(enty,enty2,te), vm_demPe(t,regi,enty,enty2,te))
*** through p_datacs one could correct for non-energetic use, e.g. bitumen for roads; set to 0 in current version, as the total oil value already contains the non-energy use part
+ p_datacs(regi,enty) / 0.95
;
***---------------------------------------------------------------------------
*' The secondary energy balance comprises the following terms (except power, defined on module):
*' 1. Secondary energy can be produced from primary or (another type of) secondary energy.
*' 2. Own consumption of secondary energy occurs from the production of secondary and final energy, and from CCS technologies.
*'Own consumption is calculated as the product of the respective production and a negative coefficient.
*'The mapping defines possible combinations: the first two enty types of the mapping define the underlying
*'transformation process, the 3rd argument the technology, and the 4th argument specifies the consumed energy type.
*' 3. Couple production is modeled as own consumption, but with a positive coefficient.
*' 4. Secondary energy can be demanded to produce final or (another type of) secondary energy.
***---------------------------------------------------------------------------
q_balSe(t,regi,enty2)$( entySE(enty2) AND (NOT (sameas(enty2,"seel"))) )..
sum(pe2se(enty,enty2,te), vm_prodSe(t,regi,enty,enty2,te))
+ sum(se2se(enty,enty2,te), vm_prodSe(t,regi,enty,enty2,te))
+ sum(pc2te(enty,entySE(enty3),te,enty2),
pm_prodCouple(regi,enty,enty3,te,enty2)
* vm_prodSe(t,regi,enty,enty3,te)
)
+ sum(pc2te(enty4,entyFE(enty5),te,enty2),
pm_prodCouple(regi,enty4,enty5,te,enty2)
* vm_prodFe(t,regi,enty4,enty5,te)
)
+ sum(pc2te(enty,enty3,te,enty2),
sum(teCCS2rlf(te,rlf),
pm_prodCouple(regi,enty,enty3,te,enty2)
* vm_co2CCS(t,regi,enty,enty3,te,rlf)
)
)
*** add (reused gas from waste landfills) to segas to not account for CO2
*** emissions - it comes from biomass
+ ( sm_MtCH4_2_TWa
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
* ( vm_macBase(t,regi,"ch4wstl")
- vm_emiMacSector(t,regi,"ch4wstl")
)
)$( sameas(enty2,"segabio") AND t.val gt 2005 )
+ sum(prodSeOth2te(enty2,te), vm_prodSeOth(t,regi,enty2,te) )
=e=
sum(se2fe(enty2,enty3,te), vm_demSe(t,regi,enty2,enty3,te))
+ sum(se2se(enty2,enty3,te), vm_demSe(t,regi,enty2,enty3,te))
+ sum(demSeOth2te(enty2,te), vm_demSeOth(t,regi,enty2,te) )
;
***---------------------------------------------------------------------------
*' Taking the technology-specific transformation eficiency into account,
*' the equations describe the transformation of an energy type to another type.
*' Depending on the detail of the technology representation, the transformation technology's eficiency
*' can depend either only on the current year or on the year when a specific technology was built.
*' Transformation from primary to secondary energy:
***---------------------------------------------------------------------------
*MLB 05/2008* correction factor included to avoid pre-triangular infeasibility
q_transPe2se(ttot,regi,pe2se(enty,enty2,te))$(ttot.val ge cm_startyear)..
vm_demPe(ttot,regi,enty,enty2,te)
=e=
(1 / pm_eta_conv(ttot,regi,te) * vm_prodSe(ttot,regi,enty,enty2,te))$teEtaConst(te)
+
***cb early retirement for some fossil technologies
(1 - vm_capEarlyReti(ttot,regi,te))
*
sum(teSe2rlf(teEtaIncr(te),rlf),
vm_capFac(ttot,regi,te)
* (
sum(opTimeYr2te(te,opTimeYr)$(tsu2opTimeYr(ttot,opTimeYr) AND (opTimeYr.val gt 1) ),
pm_ts(ttot-(pm_tsu2opTimeYr(ttot,opTimeYr)-1))
/ pm_dataeta(ttot-(pm_tsu2opTimeYr(ttot,opTimeYr)-1),regi,te)
* pm_omeg(regi,opTimeYr+1,te)
* vm_deltaCap(ttot-(pm_tsu2opTimeYr(ttot,opTimeYr)-1),regi,te,rlf)
)
*LB* add half of the last time step ttot
+ pm_dt(ttot)/2 / pm_dataeta(ttot,regi,te)
* pm_omeg(regi,"2",te)
* vm_deltaCap(ttot,regi,te,rlf)
$ifthen setglobal END2110
- (pm_ts(ttot) / pm_dataeta(ttot,regi,te) * pm_omeg(regi,"11",te)
* 0.5*vm_deltaCap(ttot,regi,te,rlf))$(ord(ttot) eq card(ttot))
$endif
)
);
***---------------------------------------------------------------------------
*' Transformation from secondary to final energy:
***---------------------------------------------------------------------------
q_transSe2fe(t,regi,se2fe(entySE,entyFE,te)) ..
pm_eta_conv(t,regi,te)
* vm_demSE(t,regi,entySE,entyFE,te)
=e=
vm_prodFE(t,regi,entySE,entyFE,te)
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
;
***---------------------------------------------------------------------------
*' Transformation between secondary energy types:
***---------------------------------------------------------------------------
q_transSe2se(t,regi,se2se(enty,enty2,te))..
pm_eta_conv(t,regi,te) * vm_demSe(t,regi,enty,enty2,te)
=e=
vm_prodSe(t,regi,enty,enty2,te);
***---------------------------------------------------------------------------
*' Final energy pathway I: Direct hand-over of FEs to CES.
***---------------------------------------------------------------------------
*MLB 5/2008* add correction for initial imbalance of fehes
qm_balFeForCesAndEs(t,regi,entyFe)$(feForCes(entyFe) OR feForEs(entyFe)) ..
sum(se2fe(entySe,entyFe,te), vm_prodFE(t,regi,entySe,entyFe,te))
=e=
*** FE Pathway I: Direct hand-over of FEs to CES
sum(fe2ppfEn(entyFe,ppfEn),
vm_cesIO(t,regi,ppfEn)
+ pm_cesdata(t,regi,ppfEn,"offset_quantity")
)
*** FE Pathway III: Energy service layer (prodFe -> demFeForEs -> prodEs)
+ sum(fe2es(entyFe,esty,teEs), vm_demFeForEs(t,regi,entyFe,esty,teEs) )
*** Other demand which is not Pathway II
+ vm_otherFEdemand(t,regi,entyFe)
;
***---------------------------------------------------------------------------
*' Final energy pathway II: Useful energy layer (prodFe -> demFe -> prodUe), with capacaity tracking.
***---------------------------------------------------------------------------
*' Final energy balance
q_balFe(t,regi,entyFe)$feForUe(entyFe)..
sum(se2fe(enty,entyFe,te), vm_prodFe(t,regi,enty,entyFe,te) )
*** couple production from FE to ES for heavy duty vehicles
+ sum(pc2te(entyFE2,entyUe,te,entyFE),
pm_prodCouple(regi,entyFE2,entyUe,te,entyFE) * vm_prodUe(t,regi,entyFE2,entyUe,te) )
=e=
sum(fe2ue(entyFe,entyUe,te), v_demFe(t,regi,entyFe,entyUe,te) )
+ vm_otherFEdemand(t,regi,entyFe)
;
*' Transformation from final energy to useful energy:
q_transFe2Ue(t,regi,fe2ue(entyFe,entyUe,te))..
pm_eta_conv(t,regi,te) * v_demFe(t,regi,entyFe,entyUe,te)
=e=
vm_prodUe(t,regi,entyFe,entyUe,te);
*' Hand-over to CES:
q_esm2macro(t,regi,in)$ppfenFromUe(in)..
vm_cesIO(t,regi,in) + pm_cesdata(t,regi,in,"offset_quantity")
=e=
*** all entyFe that are first transformed into entyUe and then fed into the CES production function
sum(fe2ue(entyFe,entyUe,te)$ue2ppfen(entyUe,in), vm_prodUe(t,regi,entyFe,entyUe,te))
;
*' Definition of capacity constraints for FE to ES transformation:
q_limitCapUe(t,regi,fe2ue(entyFe,entyUe,te))..
vm_prodUe(t,regi,entyFe,entyUe,te)
=l=
sum(teue2rlf(te,rlf),
vm_capFac(t,regi,te) * vm_cap(t,regi,te,rlf)
)
;
***---------------------------------------------------------------------------
*' FE Pathway III: Energy service layer (prodFe -> demFeForEs -> prodEs), no capacity tracking.
***---------------------------------------------------------------------------
*' Transformation from final energy to useful energy:
q_transFe2Es(t,regi,fe2es(entyFe,esty,teEs))..
pm_fe2es(t,regi,teEs) * vm_demFeForEs(t,regi,entyFe,esty,teEs)
=e=
v_prodEs(t,regi,entyFe,esty,teEs);
*' Hand-over to CES:
q_es2ppfen(t,regi,in)$ppfenFromEs(in)..
vm_cesIO(t,regi,in) + pm_cesdata(t,regi,in,"offset_quantity")
=e=
sum(fe2es(entyFe,esty,teEs)$es2ppfen(esty,in), v_prodEs(t,regi,entyFe,esty,teEs))
;
*' Shares of FE carriers w.r.t. a CES node:
q_shFeCes(t,regi,entyFe,in,teEs)$feViaEs2ppfen(entyFe,in,teEs)..
sum(fe2es(entyFe2,esty,teEs2)$es2ppfen(esty,in), vm_demFeForEs(t,regi,entyFe2,esty,teEs2))
* pm_shFeCes(t,regi,entyFe,in,teEs)
=e=
sum(fe2es(entyFe,esty,teEs)$es2ppfen(esty,in), vm_demFeForEs(t,regi,entyFe,esty,teEs))
;
***---------------------------------------------------------------------------
*' Definition of capacity constraints for primary energy to secondary energy transformation:
***--------------------------------------------------------------------------
q_limitCapSe(t,regi,pe2se(enty,enty2,te))..
vm_prodSe(t,regi,enty,enty2,te)
=e=
sum(teSe2rlf(te,rlf),
vm_capFac(t,regi,te) * pm_dataren(regi,"nur",rlf,te)
* vm_cap(t,regi,te,rlf)
)$(NOT teReNoBio(te))
+
sum(teRe2rlfDetail(te,rlf),
( 1$teRLDCDisp(te) + pm_dataren(regi,"nur",rlf,te)$(NOT teRLDCDisp(te)) ) * vm_capFac(t,regi,te)
* vm_capDistr(t,regi,te,rlf)
)$(teReNoBio(te))
;
***----------------------------------------------------------------------------
*' Definition of capacity constraints for secondary energy to secondary energy transformation:
***---------------------------------------------------------------------------
q_limitCapSe2se(t,regi,se2se(enty,enty2,te))..
vm_prodSe(t,regi,enty,enty2,te)
=e=
sum(teSe2rlf(te,rlf),
vm_capFac(t,regi,te) * pm_dataren(regi,"nur",rlf,te)
* vm_cap(t,regi,te,rlf)
);
***---------------------------------------------------------------------------
*' Definition of capacity constraints for secondary energy to final energy transformation:
***---------------------------------------------------------------------------
q_limitCapFe(t,regi,te)..
sum((entySe,entyFe)$(se2fe(entySe,entyFe,te)), vm_prodFe(t,regi,entySe,entyFe,te))
=l=
sum(teFe2rlf(te,rlf), vm_capFac(t,regi,te) * vm_cap(t,regi,te,rlf));
***---------------------------------------------------------------------------
*' Definition of capacity constraints for CCS technologies:
***---------------------------------------------------------------------------
q_limitCapCCS(t,regi,ccs2te(enty,enty2,te),rlf)$teCCS2rlf(te,rlf)..
vm_co2CCS(t,regi,enty,enty2,te,rlf)
=e=
sum(teCCS2rlf(te,rlf), vm_capFac(t,regi,te) * vm_cap(t,regi,te,rlf));
***-----------------------------------------------------------------------------
*' The capacities of vintaged technologies depreciate according to a vintage depreciation scheme,
*' with generally low depreciation at the beginning of the lifetime, and fast depreciation around the average lifetime.
*' Depreciation can generally be tracked for each grade separately.
*' By implementation, however, only grades of level 1 are affected. The depreciation of any fossil
*' technology can be accelerated by early retirement, which is a crucial way to quickly phase out emissions
*' after the implementation of stringent climate policies.
*' Calculation of actual capacities (exponential and vintage growth TE):
***-----------------------------------------------------------------------------
q_cap(ttot,regi,te2rlf(te,rlf))$(ttot.val ge cm_startyear)..
vm_cap(ttot,regi,te,rlf)
=e=
***cb early retirement for some fossil technologies
(1 - vm_capEarlyReti(ttot,regi,te))
*
(sum(opTimeYr2te(te,opTimeYr)$(tsu2opTimeYr(ttot,opTimeYr) AND (opTimeYr.val gt 1) ),
pm_ts(ttot-(pm_tsu2opTimeYr(ttot,opTimeYr)-1))
* pm_omeg(regi,opTimeYr+1,te)
* vm_deltaCap(ttot-(pm_tsu2opTimeYr(ttot,opTimeYr)-1),regi,te,rlf)
)
*LB* half of the last time step ttot
+ pm_dt(ttot)/2
* pm_omeg(regi,"2",te)
* vm_deltaCap(ttot,regi,te,rlf)
$ifthen setGlobal END2110
- (pm_ts(ttot)* pm_omeg(regi,"11",te)
* 0.5 * vm_deltaCap(ttot,regi,te,rlf))$(ord(ttot) eq card(ttot))
$endif
);
q_capDistr(t,regi,teReNoBio(te))..
sum(teRe2rlfDetail(te,rlf), vm_capDistr(t,regi,te,rlf) )
=e=
vm_cap(t,regi,te,"1")
;
***---------------------------------------------------------------------------
*' Technological change is an important driver of the evolution of energy systems.
*' For mature technologies, such as coal-fired power plants, the evolution
*' of techno-economic parameters is prescribed exogenously. For less mature
*' technologies with substantial potential for cost decreases via learning-bydoing,
*' investment costs are determined via an endogenous one-factor learning
*' curve approach that assumes floor costs.
***---------------------------------------------------------------------------
***---------------------------------------------------------------------------
*' Calculation of cumulated capacities (learning technologies only):
***---------------------------------------------------------------------------
qm_deltaCapCumNet(ttot,regi,teLearn)$(ord(ttot) lt card(ttot) AND pm_ttot_val(ttot+1) ge max(2010, cm_startyear))..
vm_capCum(ttot+1,regi,teLearn)
=e=
sum(te2rlf(teLearn,rlf),
(pm_ts(ttot) / 2 * vm_deltaCap(ttot,regi,teLearn,rlf)) + (pm_ts(ttot+1) / 2 * vm_deltaCap(ttot+1,regi,teLearn,rlf))
)
+
vm_capCum(ttot,regi,teLearn);
***---------------------------------------------------------------------------
*' Initial values for cumulated capacities (learning technologies only):
***---------------------------------------------------------------------------
q_capCumNet(t0,regi,teLearn)..
vm_capCum(t0,regi,teLearn)
=e=
pm_data(regi,"ccap0",teLearn);
***---------------------------------------------------------------------------
*' Additional equation for fuel shadow price calulation:
***---------------------------------------------------------------------------
*ml* reasonable results only for members of peExGrade and peren2rlf30
*NB*110625 changes for transition towards grades
qm_fuel2pe(t,regi,peRicardian(enty))..
vm_prodPe(t,regi,enty)
=e=
sum(pe2rlf(enty,rlf2),vm_fuExtr(t,regi,enty,rlf2))-(vm_Xport(t,regi,enty)-(1-pm_costsPEtradeMp(regi,enty))*vm_Mport(t,regi,enty))$(tradePe(enty)) -
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
sum(pe2rlf(enty2,rlf2), (pm_fuExtrOwnCons(regi, enty, enty2) * vm_fuExtr(t,regi,enty2,rlf2))$(pm_fuExtrOwnCons(regi, enty, enty2) gt 0));
***---------------------------------------------------------------------------
*' Definition of resource constraints for renewable energy types:
***---------------------------------------------------------------------------
*ml* assuming maxprod to be technical potential
q_limitProd(t,regi,teRe2rlfDetail(teReNoBio(te),rlf))..
pm_dataren(regi,"maxprod",rlf,te)
=g=
( 1$teRLDCDisp(te) + pm_dataren(regi,"nur",rlf,te)$(NOT teRLDCDisp(te)) ) * vm_capFac(t,regi,te) * vm_capDistr(t,regi,te,rlf);
***-----------------------------------------------------------------------------
*' Definition of competition for geographical potential for renewable energy types:
***-----------------------------------------------------------------------------
*RP* assuming q_limitGeopot to be geographical potential, whith luse equivalent to the land use parameter
q_limitGeopot(t,regi,peReComp(enty),rlf)..
p_datapot(regi,"limitGeopot",rlf,enty)
=g=
sum(te$teReComp2pe(enty,te,rlf), (vm_capDistr(t,regi,te,rlf) / (pm_data(regi,"luse",te)/1000)));
*** learning curve for investment costs
q_costTeCapital(t,regi,teLearn) ..
vm_costTeCapital(t,regi,teLearn)
=e=
*** special treatment for first time steps: using global estimates better
*** matches historic values
( fm_dataglob("learnMult_wFC",teLearn)
* ( ( sum(regi2, vm_capCum(t,regi2,teLearn))
+ pm_capCumForeign(t,regi,teLearn)
)
** fm_dataglob("learnExp_wFC",teLearn)
)
)$( t.val le 2005 )
Robert Pietzcker
committed
*** special treatment for 2010, 2015: start divergence of regional values by using a
*** t-split of global 2005 to regional 2020 in order to phase-in the observed 2020 regional
Robert Pietzcker
committed
+ ( (2020 - t.val)/15 * fm_dataglob("learnMult_wFC",teLearn)
* ( sum(regi2, vm_capCum(t,regi2,teLearn))
+ pm_capCumForeign(t,regi,teLearn)
Robert Pietzcker
committed
+ (t.val - 2005)/15 * pm_data(regi,"learnMult_wFC",teLearn)
* ( sum(regi2, vm_capCum(t,regi2,teLearn))
+ pm_capCumForeign(t,regi,teLearn)
Robert Pietzcker
committed
)$( (t.val gt 2005) AND (t.val lt 2020) )
*** assuming linear convergence of regional learning curves to global values until 2050
Robert Pietzcker
committed
+ ( (pm_ttot_val(t) - 2020) / 30 * fm_dataglob("learnMult_wFC",teLearn)
* ( sum(regi2, vm_capCum(t,regi2,teLearn))
+ pm_capCumForeign(t,regi,teLearn)
)
** fm_dataglob("learnExp_wFC",teLearn)
Robert Pietzcker
committed
+ (2050 - pm_ttot_val(t)) / 30 * pm_data(regi,"learnMult_wFC",teLearn)
* ( sum(regi2, vm_capCum(t,regi2,teLearn))
+ pm_capCumForeign(t,regi,teLearn)
)
** pm_data(regi,"learnExp_wFC",teLearn)
Robert Pietzcker
committed
)$( t.val ge 2020 AND t.val le 2050 )
*** globally harmonized costs after 2050
+ ( fm_dataglob("learnMult_wFC",teLearn)
* (sum(regi2, vm_capCum(t,regi2,teLearn)) + pm_capCumForeign(t,regi,teLearn) )
**(fm_dataglob("learnExp_wFC",teLearn))
)$(t.val gt 2050)
*** floor costs - calculated such that they coincide for all regions
+ pm_data(regi,"floorcost",teLearn)
;
***---------------------------------------------------------------------------
*' EMF27 limits on fluctuating renewables, only turned on for special EMF27 and AWP 2 scenarios, not for SSP
***---------------------------------------------------------------------------
*** this is to prevent that in the long term, all solids are supplied by biomass. Residential solids can be fully supplied by biomass (-> wood pellets), so the FE residential demand is subtracted
*** vm_cesIO(t,regi,"fesob") will be 0 in the stationary realization
q_limitBiotrmod(t,regi)$(t.val > 2020)..
vm_prodSe(t,regi,"pebiolc","sesobio","biotrmod")
- sum (in$sameAs("fesob",in), vm_cesIO(t,regi,in))
- sum (fe2es(entyFe,esty,teEs)$buildMoBio(esty), vm_demFeForEs(t,regi,entyFe,esty,teEs) )
=l=
(2 + max(0,min(1,( 2100 - pm_ttot_val(t)) / ( 2100 - 2020 ))) * 3) !! 5 in 2020 and 2 in 2100
* vm_prodSe(t,regi,"pecoal","sesofos","coaltr")
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
;
***-----------------------------------------------------------------------------
*' Emissions result from primary to secondary energy transformation,
*' from secondary to final energy transformation (some air pollutants), or
*' transformations within the chain of CCS steps (Leakage).
***-----------------------------------------------------------------------------
q_emiTeDetail(t,regi,enty,enty2,te,enty3)$( emi2te(enty,enty2,te,enty3)
OR ( pe2se(enty,enty2,te)
AND sameas(enty3,"cco2")) ) ..
vm_emiTeDetail(t,regi,enty,enty2,te,enty3)
=e=
sum(emi2te(enty,enty2,te,enty3),
sum(pe2se(enty,enty2,te),
pm_emifac(t,regi,enty,enty2,te,enty3)
* vm_demPE(t,regi,enty,enty2,te)
)
+ sum(se2fe(enty,enty2,te),
pm_emifac(t,regi,enty,enty2,te,enty3)
* vm_prodFE(t,regi,enty,enty2,te)
)
+ sum((ccs2Leak(enty,enty2,te,enty3),teCCS2rlf(te,rlf)),
pm_emifac(t,regi,enty,enty2,te,enty3)
* vm_co2CCS(t,regi,enty,enty2,te,rlf)
)
)
;
***--------------------------------------------------
*' Total energy-emissions:
***--------------------------------------------------
*mh calculate total energy system emissions for each region and timestep:
q_emiTe(t,regi,emiTe(enty)) ..
!! emissions from fuel combustion
sum(emi2te(enty2,enty3,te,enty),
vm_emiTeDetail(t,regi,enty2,enty3,te,enty)
)
!! emissions from non-conventional fuel extraction
+ sum(emi2fuelMine(enty,enty2,rlf),
p_cint(regi,enty,enty2,rlf)
* vm_fuExtr(t,regi,enty2,rlf)
)$( c_cint_scen eq 1 )
!! emissions from conventional fuel extraction
+ sum((pe2rlf(enty3,rlf2),enty2)$( pm_fuExtrOwnCons(regi,enty,enty2) gt 0 ),
p_cintraw(enty2)
* pm_fuExtrOwnCons(regi,enty2,enty3)
* vm_fuExtr(t,regi,enty3,rlf2)
)
!! Industry CCS emissions
- sum(emiMac2mac(emiInd37_fuel,enty2),
vm_emiIndCCS(t,regi,emiInd37_fuel)
)$( sameas(enty,"co2") )
!! Valve from cco2 capture step, to mangage if capture capacity and CCU/CCS
!! capacity don't have the same lifetime
!! CO2 from short-term CCU
+ sum(teCCU2rlf(te2,rlf),
vm_co2CCUshort(t,regi,"cco2","ccuco2short",te2,rlf)
)
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
;
***------------------------------------------------------
*' Mitigation options that are independent of energy consumption are represented
*' using marginal abatement cost (MAC) curves, which describe the
*' percentage of abated emissions as a function of the costs.
*' Baseline emissions are obtained by three different methods: by source (via emission factors),
*' by econometric estimate, and exogenous. Emissions are calculated as
*' baseline emissions times (1 - relative emission reduction).
*' In case of CO2 from landuse (co2luc), emissions can be negative.
*' To treat these emissions in the same framework, we subtract the minimal emission level from
*' baseline emissions. This shift factor is then added again when calculating total emissions.
*' The ndogenous baselines of non-energy emissions are calculated in the following equation:
***------------------------------------------------------
q_macBase(t,regi,enty)$( emiFuEx(enty) OR sameas(enty,"n2ofertin") ) ..
vm_macBase(t,regi,enty)
=e=
sum(emi2fuel(enty2,enty),
p_efFossilFuelExtr(regi,enty2,enty)
* sum(pe2rlf(enty2,rlf), vm_fuExtr(t,regi,enty2,rlf))
)$( emiFuEx(enty) )
+ ( p_macBaseMagpie(t,regi,enty)
+ p_efFossilFuelExtr(regi,"pebiolc","n2obio")
* vm_fuExtr(t,regi,"pebiolc","1")
)$( sameas(enty,"n2ofertin") )
;
***------------------------------------------------------
*' Total non-energy emissions:
***------------------------------------------------------
q_emiMacSector(t,regi,emiMacSector(enty))..
vm_emiMacSector(t,regi,enty)
=e=
( vm_macBase(t,regi,enty)
* sum(emiMac2mac(enty,enty2),
1 - (pm_macSwitch(enty) * pm_macAbatLev(t,regi,enty2))
)
)$( NOT sameas(enty,"co2cement_process") )
*** cement process emissions are accounted for in the industry module
+ ( vm_macBaseInd(t,regi,enty,"cement")
- vm_emiIndCCS(t,regi,enty)
)$( sameas(enty,"co2cement_process") )
+ p_macPolCO2luc(t,regi)$( sameas(enty,"co2luc") )
;
q_emiMac(t,regi,emiMac) ..
vm_emiMac(t,regi,emiMac)
=e=
sum(emiMacSector2emiMac(emiMacSector,emiMac),
vm_emiMacSector(t,regi,emiMacSector)
)
;
***------------------------------------------------------
*' Total regional emissions are the sum of emissions from technologies, MAC-curves, CDR-technologies and emissions that are exogenously given for REMIND.
***------------------------------------------------------
*LB* calculate total emissions for each region at each time step
q_emiAll(t,regi,emi(enty))..
vm_emiAll(t,regi,enty)
=e=
vm_emiTe(t,regi,enty)
+ vm_emiMac(t,regi,enty)
+ vm_emiCdr(t,regi,enty)
+ pm_emiExog(t,regi,enty)
;
***------------------------------------------------------
*' Total global emissions are calculated for each GHG emission type and links the energy system to the climate module.
***------------------------------------------------------
*LB* calculate total global emissions for each timestep - link to the climate module
q_emiAllGlob(t,emi(enty))..
vm_emiAllGlob(t,enty)
=e=
sum(regi,
vm_emiAll(t,regi,enty)
+ pm_emissionsForeign(t,regi,enty)
)
;
***------------------------------------------------------
*' Total regional emissions in CO2 equivalents that are part of the climate policy are computed based on regional GHG
*' emissions from different sectors(energy system, non-energy system, exogenous, CDR technologies).
***------------------------------------------------------
*mlb 8/2010* extension for multigas accounting/trading
*cb only "static" equation to be active before cm_startyear, as multigasscen could be different from a scenario to another that is fixed on the first
q_co2eq(ttot,regi)$(ttot.val ge cm_startyear)..
vm_co2eq(ttot,regi)
=e=
vm_emiAll(ttot,regi,"co2")
+ (s_tgn_2_pgc * vm_emiAll(ttot,regi,"n2o") + s_tgch4_2_pgc * vm_emiAll(ttot,regi,"ch4")) $(cm_multigasscen eq 2 or cm_multigasscen eq 3)
- vm_emiMacSector(ttot,regi,"co2luc") $(cm_multigasscen eq 3);
***------------------------------------------------------
*' Total global emissions in CO2 equivalents that are part of the climate policy also take into account foreign emissions.
***------------------------------------------------------
*mlb 20140108* computation of global emissions (related to cap)
q_co2eqGlob(t) $(t.val > 2010)..
vm_co2eqGlob(t) =e= sum(regi, vm_co2eq(t,regi) + pm_co2eqForeign(t,regi));
***------------------------------------
*' Linking GHG emissions to tradable emission permits.
***------------------------------------
*mh for each region and time step: emissions + permit trade balance < emission cap
q_emiCap(t,regi) ..
vm_co2eq(t,regi) + vm_Xport(t,regi,"perm") - vm_Mport(t,regi,"perm")
+ vm_banking(t,regi)
=l= vm_perm(t,regi);
***-----------------------------------------------------------------
*** Budgets on GHG emissions (single or two subsequent time periods)
***-----------------------------------------------------------------
qm_co2eqCum(regi)..
v_co2eqCum(regi)
=e=
sum(ttot$(ttot.val lt sm_endBudgetCO2eq and ttot.val gt s_t_start),
pm_ts(ttot)
* vm_co2eq(ttot,regi)
)
+ sum(ttot$(ttot.val eq sm_endBudgetCO2eq or ttot.val eq s_t_start),
pm_ts(ttot)
/ 2
* vm_co2eq(ttot,regi)
)
;
q_budgetCO2eqGlob$(cm_emiscen=6)..
sum(regi, v_co2eqCum(regi))
=l=
sum(regi, pm_budgetCO2eq(regi));
***---------------------------------------------------------------------------
*' Definition of carbon capture :
***---------------------------------------------------------------------------
q_balcapture(t,regi,ccs2te(ccsCO2(enty),enty2,te)) ..
sum(teCCS2rlf(te,rlf),vm_co2capture(t,regi,enty,enty2,te,rlf))
=e=
sum(emi2te(enty3,enty4,te2,enty),
vm_emiTeDetail(t,regi,enty3,enty4,te2,enty)
)
+ sum(teCCS2rlf(te,rlf),
vm_ccs_cdr(t,regi,enty,enty2,te,rlf)
)
*** CCS from industry
+ sum(emiInd37,
vm_emiIndCCS(t,regi,emiInd37)
)
;
***---------------------------------------------------------------------------
*' Definition of splitting of captured CO2 to CCS, CCU and a valve (the valve
*' accounts for different lifetimes of capture, CCS and CCU technologies s.t.
*' extra capture capacities of CO2 capture can release CO2 directly to the
*' atmosphere)
***---------------------------------------------------------------------------
q_balCCUvsCCS(t,regi) ..
sum(teCCS2rlf(te,rlf), vm_co2capture(t,regi,"cco2","ico2",te,rlf))
=e=
sum(teCCS2rlf(te,rlf), vm_co2CCS(t,regi,"cco2","ico2",te,rlf))
+ sum(teCCU2rlf(te,rlf), vm_co2CCUshort(t,regi,"cco2","ccuco2short",te,rlf))
+ v_co2capturevalve(t,regi)
;
***---------------------------------------------------------------------------
*' Definition of the CCS transformation chain:
***---------------------------------------------------------------------------
*** no effect while CCS chain is limited to just one step (ccsinje)
q_transCCS(t,regi,ccs2te(enty,enty2,te),ccs2te2(enty2,enty3,te2),rlf)$teCCS2rlf(te2,rlf)..
(1-pm_emifac(t,regi,enty,enty2,te,"co2")) * vm_co2CCS(t,regi,enty,enty2,te,rlf)
=e=
vm_co2CCS(t,regi,enty2,enty3,te2,rlf);
q_limitCCS(regi,ccs2te2(enty,"ico2",te),rlf)$teCCS2rlf(te,rlf)..
sum(ttot $(ttot.val ge 2005), pm_ts(ttot) * vm_co2CCS(ttot,regi,enty,"ico2",te,rlf))
=l=
pm_dataccs(regi,"quan",rlf);
***---------------------------------------------------------------------------
*' Emission constraint on SO2 after 2050:
***---------------------------------------------------------------------------
q_limitSo2(ttot+1,regi) $((pm_ttot_val(ttot+1) ge max(cm_startyear,2055)) AND (cm_emiscen gt 1) AND (ord(ttot) lt card(ttot))) ..
vm_emiTe(ttot+1,regi,"so2")
=l=
vm_emiTe(ttot,regi,"so2");
q_limitCO2(ttot+1,regi) $((pm_ttot_val(ttot+1) ge max(cm_startyear,2055)) AND (ttot.val le 2100) AND (cm_emiscen eq 8)) ..
vm_emiTe(ttot+1,regi,"co2")
=l=
vm_emiTe(ttot,regi,"co2");
q_eqadj(regi,ttot,teAdj(te))$(ttot.val ge max(2010, cm_startyear)) ..
v_adjFactor(ttot,regi,te)
=e=
power(
(sum(te2rlf(te,rlf),vm_deltaCap(ttot,regi,te,rlf)) - sum(te2rlf(te,rlf),vm_deltaCap(ttot-1,regi,te,rlf)))/(pm_ttot_val(ttot)-pm_ttot_val(ttot-1))
,2)
/( sum(te2rlf(te,rlf),vm_deltaCap(ttot-1,regi,te,rlf)) + p_adj_seed_reg(ttot,regi) * p_adj_seed_te(ttot,regi,te)
+ p_adj_deltacapoffset("2010",regi,te)$(ttot.val eq 2010) + p_adj_deltacapoffset("2015",regi,te)$(ttot.val eq 2015)
);
***---------------------------------------------------------------------------
*' The use of early retirement is restricted by the following equations:
***---------------------------------------------------------------------------
q_limitCapEarlyReti(ttot,regi,te)$(ttot.val lt 2109 AND pm_ttot_val(ttot+1) ge max(2010, cm_startyear))..
vm_capEarlyReti(ttot+1,regi,te)
=g=
vm_capEarlyReti(ttot,regi,te);
q_smoothphaseoutCapEarlyReti(ttot,regi,te)$(ttot.val lt 2120 AND pm_ttot_val(ttot+1) ge max(2010, cm_startyear))..
vm_capEarlyReti(ttot+1,regi,te)
=l=
vm_capEarlyReti(ttot,regi,te) + (pm_ttot_val(ttot+1)-pm_ttot_val(ttot)) * (cm_earlyreti_rate
*** more retirement possible for coal power plants in early time steps for Europe and USA, to account for relatively old fleet
+ p_earlyreti_adjRate(regi,te)$(ttot.val lt 2035)
*** more retirement possible for first generation biofuels
+ 0.05$(sameas(te,"biodiesel") or sameas(te, "bioeths")));
*JK* Result of split of budget equation. Sum of all energy related costs.
q_costEnergySys(ttot,regi)$( ttot.val ge cm_startyear ) ..
vm_costEnergySys(ttot,regi)
=e=
( v_costFu(ttot,regi)
+ v_costOM(ttot,regi)
+ v_costInv(ttot,regi)
)
+ sum(emiInd37, vm_IndCCSCost(ttot,regi,emiInd37))
+ pm_CementDemandReductionCost(ttot,regi)
;
***---------------------------------------------------------------------------
*' Investment equation for end-use capital investments (energy service layer):
***---------------------------------------------------------------------------
q_esCapInv(ttot,regi,teEs)$pm_esCapCost(ttot,regi,teEs) ..
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
=e=
sum (fe2es(entyFe,esty,teEs),
pm_esCapCost(ttot,regi,teEs) * v_prodEs(ttot,regi,entyFe,esty,teEs)
);
;
*' Limit electricity use for fehes to 1/4th of total electricity use:
q_limitSeel2fehes(t,regi)..
1/4 * vm_usableSe(t,regi,"seel")
=g=
- vm_prodSe(t,regi,"pegeo","sehe","geohe") * pm_prodCouple(regi,"pegeo","sehe","geohe","seel")
;
*' Requires minimum share of liquids from oil in total liquids of 5%:
q_limitShOil(t,regi)..
sum(pe2se("peoil",enty2,te)$(sameas(te,"refliq") ),
vm_prodSe(t,regi,"peoil",enty2,te)
)
=g=
0.05 *
sum(se2fe(enty,enty2,te)$(sameas(te,"tdfoshos") OR sameas(te,"tdfospet") OR sameas(te,"tdfosdie") ),
vm_demSe(t,regi,enty,enty2,te)
)
;
***---------------------------------------------------------------------------
*' PE Historical Capacity:
*** set the bound at 0.9*historic capacities so that the model still needs to build additional capacity beyond the bound in order to fulfill FE demand, otherwise the calibration routine has problems
***---------------------------------------------------------------------------
q_PE_histCap(t,regi,entyPe,entySe)$(p_PE_histCap(t,regi,entyPe,entySe))..
sum(te$pe2se(entyPe,entySe,te),
sum(te2rlf(te,rlf), vm_cap(t,regi,te,rlf))
)
=g=
0.9 * p_PE_histCap(t,regi,entyPe,entySe)
;
***---------------------------------------------------------------------------
*' Share of green hydrogen in all hydrogen.
***---------------------------------------------------------------------------
q_shGreenH2(t,regi)..
sum(se2se("seel","seh2",te), vm_prodSe(t,regi,"seel","seh2",te))
=e=
(
sum(pe2se(entyPe,"seh2",te), vm_prodSe(t,regi,entyPe,"seh2",te))
+ sum(se2se(entySe,"seh2",te), vm_prodSe(t,regi,entySe,"seh2",te))
) * v_shGreenH2(t,regi)
;
Alois Dirnaichner
committed
***---------------------------------------------------------------------------
*' Share of biofuels in transport liquids
***---------------------------------------------------------------------------
q_shBioliq(t,regi)..
sum(se2se(entyPe,"seliqbio",te), vm_prodSe(t,regi,entyPe,"seliqbio",te))
=e=
(
sum(pe2se(entyPe,entySe,te)$seAgg2se("all_seliq",entySe), vm_prodSe(t,regi,entyPe,entySe,te))
+ sum(se2se(entySe,entySe2,te)$seAgg2se("all_seliq",entySe2), vm_prodSe(t,regi,entySe,entySe2,te))
) * v_shGreenH2(t,regi)
Alois Dirnaichner
committed
;