Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
*** | (C) 2006-2019 Potsdam Institute for Climate Impact Research (PIK)
*** | authors, and contributors see CITATION.cff file. This file is part
*** | of REMIND and licensed under AGPL-3.0-or-later. Under Section 7 of
*** | AGPL-3.0, you are granted additional permissions described in the
*** | REMIND License Exception, version 1.0 (see LICENSE file).
*** | Contact: remind@pik-potsdam.de
*** SOF ./core/equations.gms
***---------------------------------------------------------------------------
***---------------------------------------------------------------------------
***---------------------------------------------------------------------------
*** DEFINITION OF MODEL EQUATIONS:
***---------------------------------------------------------------------------
***---------------------------------------------------------------------------
***---------------------------------------------------------------------------
*' Fuel costs are associated with the use of exhaustible primary energy (fossils, uranium) and biomass.
***---------------------------------------------------------------------------
q_costFu(t,regi)..
v_costFu(t,regi)
=e=
vm_costFuBio(t,regi) + sum(peEx(enty), vm_costFuEx(t,regi,enty))
;
***---------------------------------------------------------------------------
*' Specific investment costs of learning technologies are a model-endogenous variable;
*' those of non-learning technologies are fixed to constant values.
*' Total investment costs are the product of specific costs and capacity additions plus adjustment costs.
***---------------------------------------------------------------------------
q_costInv(t,regi)..
v_costInv(t,regi)
=e=
sum(en2en(enty,enty2,te),
v_costInvTeDir(t,regi,te) + v_costInvTeAdj(t,regi,te)$teAdj(te)
)
+
sum(teNoTransform,
v_costInvTeDir(t,regi,teNoTransform) + v_costInvTeAdj(t,regi,teNoTransform)$teAdj(teNoTransform)
)
;
*RP* 2010-05-10 adjustment costs
q_costInvTeDir(t,regi,te)..
v_costInvTeDir(t,regi,te)
=e=
vm_costTeCapital(t,regi,te) * sum(te2rlf(te,rlf), vm_deltaCap(t,regi,te,rlf) )
;
*RP* 2011-12-01 remove global adjustment costs to decrease runtime, only keep regional adjustment costs. Maybe change in the future.
v_adjFactorGlob.fx(t,regi,te) = 0;
q_costInvTeAdj(t,regi,teAdj)..
v_costInvTeAdj(t,regi,teAdj)
=e=
vm_costTeCapital(t,regi,teAdj) * ( (p_adj_coeff(t,regi,teAdj) * v_adjFactor(t,regi,teAdj)) + (p_adj_coeff_glob(teAdj) * v_adjFactorGlob(t,regi,teAdj) ) )
;
***---------------------------------------------------------------------------
*' Operation and maintenance resut form costs maintenance of existing facilities according to their capacity and
*' operation of energy transformations according to the amount of produced secondary and final energy.
***---------------------------------------------------------------------------
q_costOM(t,regi)..
v_costOM(t,regi)
=e=
sum(en2en(enty,enty2,te),
pm_data(regi,"omf",te)
* sum(te2rlf(te,rlf), vm_costTeCapital(t,regi,te) * vm_cap(t,regi,te,rlf) )
+
pm_data(regi,"omv",te)
* (vm_prodSe(t,regi,enty,enty2,te)$entySe(enty2)
+ vm_prodFe(t,regi,enty,enty2,te)$entyFe(enty2))
)
+
sum(teNoTransform(te),
pm_data(regi,"omf",te)
* sum(te2rlf(te,rlf),
vm_costTeCapital(t,regi,te) * vm_cap(t,regi,te,rlf)
)
)
+ vm_omcosts_cdr(t,regi)
;
***---------------------------------------------------------------------------
*' Energy balance equations equate the production of and demand for each primary, secondary and final energy.
*' The balance equation for primary energy equals supply of primary energy demand on primary energy.
***---------------------------------------------------------------------------
q_balPe(t,regi,entyPe(enty))..
vm_prodPe(t,regi,enty) + p_macPE(t,regi,enty)
=e=
sum(pe2se(enty,enty2,te), vm_demPe(t,regi,enty,enty2,te))
*** through p_datacs one could correct for non-energetic use, e.g. bitumen for roads; set to 0 in current version, as the total oil value already contains the non-energy use part
+ p_datacs(regi,enty) / 0.95
;
***---------------------------------------------------------------------------
*' The secondary energy balance comprises the following terms (except power, defined on module):
*' 1. Secondary energy can be produced from primary or (another type of) secondary energy.
*' 2. Own consumption of secondary energy occurs from the production of secondary and final energy, and from CCS technologies.
*'Own consumption is calculated as the product of the respective production and a negative coefficient.
*'The mapping defines possible combinations: the first two enty types of the mapping define the underlying
*'transformation process, the 3rd argument the technology, and the 4th argument specifies the consumed energy type.
*' 3. Couple production is modeled as own consumption, but with a positive coefficient.
*' 4. Secondary energy can be demanded to produce final or (another type of) secondary energy.
***---------------------------------------------------------------------------
q_balSe(t,regi,enty2)$( entySE(enty2) AND (NOT (sameas(enty2,"seel"))) )..
sum(pe2se(enty,enty2,te), vm_prodSe(t,regi,enty,enty2,te))
+ sum(se2se(enty,enty2,te), vm_prodSe(t,regi,enty,enty2,te))
+ sum(pc2te(enty,entySE(enty3),te,enty2),
pm_prodCouple(regi,enty,enty3,te,enty2)
* vm_prodSe(t,regi,enty,enty3,te)
)
+ sum(pc2te(enty4,entyFE(enty5),te,enty2),
pm_prodCouple(regi,enty4,enty5,te,enty2)
* vm_prodFe(t,regi,enty4,enty5,te)
)
+ sum(pc2te(enty,enty3,te,enty2),
sum(teCCS2rlf(te,rlf),
pm_prodCouple(regi,enty,enty3,te,enty2)
* vm_co2CCS(t,regi,enty,enty3,te,rlf)
)
)
*** add (reused gas from waste landfills) to segas to not account for CO2
*** emissions - it comes from biomass
+ ( 0.001638
* ( vm_macBase(t,regi,"ch4wstl")
- vm_emiMacSector(t,regi,"ch4wstl")
)
)$( sameas(enty2,"segabio") AND t.val gt 2005 )
+ sum(prodSeOth2te(enty2,te), vm_prodSeOth(t,regi,enty2,te) )
=e=
sum(se2fe(enty2,enty3,te), vm_demSe(t,regi,enty2,enty3,te))
+ sum(se2se(enty2,enty3,te), vm_demSe(t,regi,enty2,enty3,te))
+ sum(demSeOth2te(enty2,te), vm_demSeOth(t,regi,enty2,te) )
;
***---------------------------------------------------------------------------
*' Taking the technology-specific transformation eficiency into account,
*' the equations describe the transformation of an energy type to another type.
*' Depending on the detail of the technology representation, the transformation technology's eficiency
*' can depend either only on the current year or on the year when a specific technology was built.
*' Transformation from primary to secondary energy:
***---------------------------------------------------------------------------
*MLB 05/2008* correction factor included to avoid pre-triangular infeasibility
q_transPe2se(ttot,regi,pe2se(enty,enty2,te))$(ttot.val ge cm_startyear)..
vm_demPe(ttot,regi,enty,enty2,te)
=e=
(1 / pm_eta_conv(ttot,regi,te) * vm_prodSe(ttot,regi,enty,enty2,te))$teEtaConst(te)
+
***cb early retirement for some fossil technologies
(1 - vm_capEarlyReti(ttot,regi,te))
*
sum(teSe2rlf(teEtaIncr(te),rlf),
vm_capFac(ttot,regi,te)
* (
sum(opTimeYr2te(te,opTimeYr)$(tsu2opTimeYr(ttot,opTimeYr) AND (opTimeYr.val gt 1) ),
pm_ts(ttot-(pm_tsu2opTimeYr(ttot,opTimeYr)-1))
/ pm_dataeta(ttot-(pm_tsu2opTimeYr(ttot,opTimeYr)-1),regi,te)
* pm_omeg(regi,opTimeYr+1,te)
* vm_deltaCap(ttot-(pm_tsu2opTimeYr(ttot,opTimeYr)-1),regi,te,rlf)
)
*LB* add half of the last time step ttot
+ pm_dt(ttot)/2 / pm_dataeta(ttot,regi,te)
* pm_omeg(regi,"2",te)
* vm_deltaCap(ttot,regi,te,rlf)
$ifthen setglobal END2110
- (pm_ts(ttot) / pm_dataeta(ttot,regi,te) * pm_omeg(regi,"11",te)
* 0.5*vm_deltaCap(ttot,regi,te,rlf))$(ord(ttot) eq card(ttot))
$endif
)
);
***---------------------------------------------------------------------------
*' Transformation from secondary to final energy:
***---------------------------------------------------------------------------
q_transSe2fe(t,regi,se2fe(enty,enty2,te))..
pm_eta_conv(t,regi,te) * vm_demSe(t,regi,enty,enty2,te)
=e=
vm_prodFe(t,regi,enty,enty2,te)
;
***---------------------------------------------------------------------------
*' Transformation between secondary energy types:
***---------------------------------------------------------------------------
q_transSe2se(t,regi,se2se(enty,enty2,te))..
pm_eta_conv(t,regi,te) * vm_demSe(t,regi,enty,enty2,te)
=e=
vm_prodSe(t,regi,enty,enty2,te);
***---------------------------------------------------------------------------
*' Final energy pathway I: Direct hand-over of FEs to CES.
***---------------------------------------------------------------------------
*MLB 5/2008* add correction for initial imbalance of fehes
qm_balFeForCesAndEs(t,regi,entyFe)$(feForCes(entyFe) OR feForEs(entyFe)) ..
sum(se2fe(entySe,entyFe,te), vm_prodFE(t,regi,entySe,entyFe,te))
=e=
*** FE Pathway I: Direct hand-over of FEs to CES
sum(fe2ppfEn(entyFe,ppfEn),
vm_cesIO(t,regi,ppfEn)
+ pm_cesdata(t,regi,ppfEn,"offset_quantity")
)
*** FE Pathway III: Energy service layer (prodFe -> demFeForEs -> prodEs)
+ sum(fe2es(entyFe,esty,teEs), vm_demFeForEs(t,regi,entyFe,esty,teEs) )
*** Other demand which is not Pathway II
+ vm_otherFEdemand(t,regi,entyFe)
;
***---------------------------------------------------------------------------
*' Final energy pathway II: Useful energy layer (prodFe -> demFe -> prodUe), with capacaity tracking.
***---------------------------------------------------------------------------
*' Final energy balance
q_balFe(t,regi,entyFe)$feForUe(entyFe)..
sum(se2fe(enty,entyFe,te), vm_prodFe(t,regi,enty,entyFe,te) )
*** couple production from FE to ES for heavy duty vehicles
+ sum(pc2te(entyFE2,entyUe,te,entyFE),
pm_prodCouple(regi,entyFE2,entyUe,te,entyFE) * vm_prodUe(t,regi,entyFE2,entyUe,te) )
=e=
sum(fe2ue(entyFe,entyUe,te), v_demFe(t,regi,entyFe,entyUe,te) )
+ vm_otherFEdemand(t,regi,entyFe)
;
*' Transformation from final energy to useful energy:
q_transFe2Ue(t,regi,fe2ue(entyFe,entyUe,te))..
pm_eta_conv(t,regi,te) * v_demFe(t,regi,entyFe,entyUe,te)
=e=
vm_prodUe(t,regi,entyFe,entyUe,te);
*' Hand-over to CES:
q_esm2macro(t,regi,in)$ppfenFromUe(in)..
vm_cesIO(t,regi,in) + pm_cesdata(t,regi,in,"offset_quantity")
=e=
*** all entyFe that are first transformed into entyUe and then fed into the CES production function
sum(fe2ue(entyFe,entyUe,te)$ue2ppfen(entyUe,in), vm_prodUe(t,regi,entyFe,entyUe,te))
;
*' Definition of capacity constraints for FE to ES transformation:
q_limitCapUe(t,regi,fe2ue(entyFe,entyUe,te))..
vm_prodUe(t,regi,entyFe,entyUe,te)
=l=
sum(teue2rlf(te,rlf),
vm_capFac(t,regi,te) * vm_cap(t,regi,te,rlf)
)
;
***---------------------------------------------------------------------------
*' FE Pathway III: Energy service layer (prodFe -> demFeForEs -> prodEs), no capacity tracking.
***---------------------------------------------------------------------------
*' Transformation from final energy to useful energy:
q_transFe2Es(t,regi,fe2es(entyFe,esty,teEs))..
pm_fe2es(t,regi,teEs) * vm_demFeForEs(t,regi,entyFe,esty,teEs)
=e=
v_prodEs(t,regi,entyFe,esty,teEs);
*' Hand-over to CES:
q_es2ppfen(t,regi,in)$ppfenFromEs(in)..
vm_cesIO(t,regi,in) + pm_cesdata(t,regi,in,"offset_quantity")
=e=
sum(fe2es(entyFe,esty,teEs)$es2ppfen(esty,in), v_prodEs(t,regi,entyFe,esty,teEs))
;
*' Shares of FE carriers w.r.t. a CES node:
q_shFeCes(t,regi,entyFe,in,teEs)$feViaEs2ppfen(entyFe,in,teEs)..
sum(fe2es(entyFe2,esty,teEs2)$es2ppfen(esty,in), vm_demFeForEs(t,regi,entyFe2,esty,teEs2))
* pm_shFeCes(t,regi,entyFe,in,teEs)
=e=
sum(fe2es(entyFe,esty,teEs)$es2ppfen(esty,in), vm_demFeForEs(t,regi,entyFe,esty,teEs))
;
***---------------------------------------------------------------------------
*' Definition of capacity constraints for primary energy to secondary energy transformation:
***--------------------------------------------------------------------------
q_limitCapSe(t,regi,pe2se(enty,enty2,te))..
vm_prodSe(t,regi,enty,enty2,te)
=e=
sum(teSe2rlf(te,rlf),
vm_capFac(t,regi,te) * pm_dataren(regi,"nur",rlf,te)
* vm_cap(t,regi,te,rlf)
)$(NOT teReNoBio(te))
+
sum(teRe2rlfDetail(te,rlf),
( 1$teRLDCDisp(te) + pm_dataren(regi,"nur",rlf,te)$(NOT teRLDCDisp(te)) ) * vm_capFac(t,regi,te)
* vm_capDistr(t,regi,te,rlf)
)$(teReNoBio(te))
;
***----------------------------------------------------------------------------
*' Definition of capacity constraints for secondary energy to secondary energy transformation:
***---------------------------------------------------------------------------
q_limitCapSe2se(t,regi,se2se(enty,enty2,te))..
vm_prodSe(t,regi,enty,enty2,te)
=e=
sum(teSe2rlf(te,rlf),
vm_capFac(t,regi,te) * pm_dataren(regi,"nur",rlf,te)
* vm_cap(t,regi,te,rlf)
);
***---------------------------------------------------------------------------
*' Definition of capacity constraints for secondary energy to final energy transformation:
***---------------------------------------------------------------------------
q_limitCapFe(t,regi,te)..
sum((entySe,entyFe)$(se2fe(entySe,entyFe,te)), vm_prodFe(t,regi,entySe,entyFe,te))
=l=
sum(teFe2rlf(te,rlf), vm_capFac(t,regi,te) * vm_cap(t,regi,te,rlf));
***---------------------------------------------------------------------------
*' Definition of capacity constraints for CCS technologies:
***---------------------------------------------------------------------------
q_limitCapCCS(t,regi,ccs2te(enty,enty2,te),rlf)$teCCS2rlf(te,rlf)..
vm_co2CCS(t,regi,enty,enty2,te,rlf)
=e=
sum(teCCS2rlf(te,rlf), vm_capFac(t,regi,te) * vm_cap(t,regi,te,rlf));
***-----------------------------------------------------------------------------
*' The capacities of vintaged technologies depreciate according to a vintage depreciation scheme,
*' with generally low depreciation at the beginning of the lifetime, and fast depreciation around the average lifetime.
*' Depreciation can generally be tracked for each grade separately.
*' By implementation, however, only grades of level 1 are affected. The depreciation of any fossil
*' technology can be accelerated by early retirement, which is a crucial way to quickly phase out emissions
*' after the implementation of stringent climate policies.
*' Calculation of actual capacities (exponential and vintage growth TE):
***-----------------------------------------------------------------------------
q_cap(ttot,regi,te2rlf(te,rlf))$(ttot.val ge cm_startyear)..
vm_cap(ttot,regi,te,rlf)
=e=
***cb early retirement for some fossil technologies
(1 - vm_capEarlyReti(ttot,regi,te))
*
(sum(opTimeYr2te(te,opTimeYr)$(tsu2opTimeYr(ttot,opTimeYr) AND (opTimeYr.val gt 1) ),
pm_ts(ttot-(pm_tsu2opTimeYr(ttot,opTimeYr)-1))
* pm_omeg(regi,opTimeYr+1,te)
* vm_deltaCap(ttot-(pm_tsu2opTimeYr(ttot,opTimeYr)-1),regi,te,rlf)
)
*LB* half of the last time step ttot
+ pm_dt(ttot)/2
* pm_omeg(regi,"2",te)
* vm_deltaCap(ttot,regi,te,rlf)
$ifthen setGlobal END2110
- (pm_ts(ttot)* pm_omeg(regi,"11",te)
* 0.5 * vm_deltaCap(ttot,regi,te,rlf))$(ord(ttot) eq card(ttot))
$endif
);
q_capDistr(t,regi,teReNoBio(te))..
sum(teRe2rlfDetail(te,rlf), vm_capDistr(t,regi,te,rlf) )
=e=
vm_cap(t,regi,te,"1")
;
***---------------------------------------------------------------------------
*' Technological change is an important driver of the evolution of energy systems.
*' For mature technologies, such as coal-fired power plants, the evolution
*' of techno-economic parameters is prescribed exogenously. For less mature
*' technologies with substantial potential for cost decreases via learning-bydoing,
*' investment costs are determined via an endogenous one-factor learning
*' curve approach that assumes floor costs.
***---------------------------------------------------------------------------
***---------------------------------------------------------------------------
*' Calculation of cumulated capacities (learning technologies only):
***---------------------------------------------------------------------------
qm_deltaCapCumNet(ttot,regi,teLearn)$(ord(ttot) lt card(ttot) AND pm_ttot_val(ttot+1) ge max(2010, cm_startyear))..
vm_capCum(ttot+1,regi,teLearn)
=e=
sum(te2rlf(teLearn,rlf),
(pm_ts(ttot) / 2 * vm_deltaCap(ttot,regi,teLearn,rlf)) + (pm_ts(ttot+1) / 2 * vm_deltaCap(ttot+1,regi,teLearn,rlf))
)
+
vm_capCum(ttot,regi,teLearn);
***---------------------------------------------------------------------------
*' Initial values for cumulated capacities (learning technologies only):
***---------------------------------------------------------------------------
q_capCumNet(t0,regi,teLearn)..
vm_capCum(t0,regi,teLearn)
=e=
pm_data(regi,"ccap0",teLearn);
***---------------------------------------------------------------------------
*' Additional equation for fuel shadow price calulation:
***---------------------------------------------------------------------------
*ml* reasonable results only for members of peExGrade and peren2rlf30
*NB*110625 changes for transition towards grades
qm_fuel2pe(t,regi,peRicardian(enty))..
vm_prodPe(t,regi,enty)
=e=
sum(pe2rlf(enty,rlf2),vm_fuExtr(t,regi,enty,rlf2))-(vm_Xport(t,regi,enty)-(1-p_costsPEtradeMp(regi,enty))*vm_Mport(t,regi,enty))$(tradePe(enty)) -
sum(pe2rlf(enty2,rlf2), (pm_fuExtrOwnCons(regi, enty, enty2) * vm_fuExtr(t,regi,enty2,rlf2))$(pm_fuExtrOwnCons(regi, enty, enty2) gt 0));
***---------------------------------------------------------------------------
*' Definition of resource constraints for renewable energy types:
***---------------------------------------------------------------------------
*ml* assuming maxprod to be technical potential
q_limitProd(t,regi,teRe2rlfDetail(teReNoBio(te),rlf))..
pm_dataren(regi,"maxprod",rlf,te)
=g=
( 1$teRLDCDisp(te) + pm_dataren(regi,"nur",rlf,te)$(NOT teRLDCDisp(te)) ) * vm_capFac(t,regi,te) * vm_capDistr(t,regi,te,rlf);
***-----------------------------------------------------------------------------
*' Definition of competition for geographical potential for renewable energy types:
***-----------------------------------------------------------------------------
*RP* assuming q_limitGeopot to be geographical potential, whith luse equivalent to the land use parameter
q_limitGeopot(t,regi,peReComp(enty),rlf)..
p_datapot(regi,"limitGeopot",rlf,enty)
=g=
sum(te$teReComp2pe(enty,te,rlf), (vm_capDistr(t,regi,te,rlf) / (pm_data(regi,"luse",te)/1000)));
*** learning curve for investment costs
q_costTeCapital(t,regi,teLearn) ..
vm_costTeCapital(t,regi,teLearn)
=e=
*** special treatment for first time steps: using global estimates better
*** matches historic values
( fm_dataglob("learnMult_wFC",teLearn)
* ( ( sum(regi2, vm_capCum(t,regi2,teLearn))
+ pm_capCumForeign(t,regi,teLearn)
)
** fm_dataglob("learnExp_wFC",teLearn)
)
)$( t.val le 2005 )
*** special treatment for 2010: start divergence of regional values by using a
*** 50/50-split global 2005 to regional 2015 in order to phase-in the observed 2015 regional
*** variation from input-data
+ ( 0.5 * fm_dataglob("learnMult_wFC",teLearn)
* ( sum(regi2, vm_capCum("2005",regi2,teLearn))
+ pm_capCumForeign("2005",regi,teLearn)
)
** fm_dataglob("learnExp_wFC",teLearn)
+ 0.5 * pm_data(regi,"learnMult_wFC",teLearn)
* ( sum(regi2, vm_capCum("2015",regi2,teLearn))
+ pm_capCumForeign("2015",regi,teLearn)
)
** pm_data(regi,"learnExp_wFC",teLearn)
)$( t.val eq 2010 )
*** assuming linear convergence of regional learning curves to global values until 2050
+ ( (pm_ttot_val(t) - 2015) / 35 * fm_dataglob("learnMult_wFC",teLearn)
* ( sum(regi2, vm_capCum(t,regi2,teLearn))
+ pm_capCumForeign(t,regi,teLearn)
)
** fm_dataglob("learnExp_wFC",teLearn)
+ (2050 - pm_ttot_val(t)) / 35 * pm_data(regi,"learnMult_wFC",teLearn)
* ( sum(regi2, vm_capCum(t,regi2,teLearn))
+ pm_capCumForeign(t,regi,teLearn)
)
** pm_data(regi,"learnExp_wFC",teLearn)
)$( t.val ge 2015 AND t.val le 2050 )
*** globally harmonized costs after 2050
+ ( fm_dataglob("learnMult_wFC",teLearn)
* (sum(regi2, vm_capCum(t,regi2,teLearn)) + pm_capCumForeign(t,regi,teLearn) )
**(fm_dataglob("learnExp_wFC",teLearn))
)$(t.val gt 2050)
*** floor costs - calculated such that they coincide for all regions
+ pm_data(regi,"floorcost",teLearn)
;
***---------------------------------------------------------------------------
*' EMF27 limits on fluctuating renewables, only turned on for special EMF27 and AWP 2 scenarios, not for SSP
***---------------------------------------------------------------------------
*** this is to prevent that in the long term, all solids are supplied by biomass. Residential solids can be fully supplied by biomass (-> wood pellets), so the FE residential demand is subtracted
*** vm_cesIO(t,regi,"fesob") will be 0 in the stationary realization
q_limitBiotrmod(t,regi)$(t.val > 2050)..
vm_prodSe(t,regi,"pebiolc","sesobio","biotrmod")
- sum (in$sameAs("fesob",in), vm_cesIO(t,regi,in))
- sum (fe2es(entyFe,esty,teEs)$buildMoBio(esty), vm_demFeForEs(t,regi,entyFe,esty,teEs) )
=l=
3 * vm_prodSe(t,regi,"pecoal","sesofos","coaltr")
;
***-----------------------------------------------------------------------------
*' Emissions result from primary to secondary energy transformation,
*' from secondary to final energy transformation (some air pollutants), or
*' transformations within the chain of CCS steps (Leakage).
***-----------------------------------------------------------------------------
q_emiTeDetail(t,regi,enty,enty2,te,enty3)$( emi2te(enty,enty2,te,enty3)
OR ( pe2se(enty,enty2,te)
AND sameas(enty3,"cco2")) ) ..
vm_emiTeDetail(t,regi,enty,enty2,te,enty3)
=e=
sum(emi2te(enty,enty2,te,enty3),
sum(pe2se(enty,enty2,te),
pm_emifac(t,regi,enty,enty2,te,enty3)
* vm_demPE(t,regi,enty,enty2,te)
)
+ sum(se2fe(enty,enty2,te),
pm_emifac(t,regi,enty,enty2,te,enty3)
* vm_prodFE(t,regi,enty,enty2,te)
)
+ sum((ccs2Leak(enty,enty2,te,enty3),teCCS2rlf(te,rlf)),
pm_emifac(t,regi,enty,enty2,te,enty3)
* vm_co2CCS(t,regi,enty,enty2,te,rlf)
)
)
;
***--------------------------------------------------
*' Total energy-emissions:
***--------------------------------------------------
*mh calculate total energy system emissions for each region and timestep:
q_emiTe(t,regi,emiTe(enty))..
vm_emiTe(t,regi,enty)
=e=
*** emissions from fuel combustion
sum(emi2te(enty2,enty3,te,enty),
vm_emiTeDetail(t,regi,enty2,enty3,te,enty)
)
*** emissions from non-conventional fuel extraction
+ sum(emi2fuelMine(enty,enty2,rlf),
p_cint(regi,enty,enty2,rlf)
* vm_fuExtr(t,regi,enty2,rlf)
)$( c_cint_scen eq 1 )
*** emissions from conventional fuel extraction
+ sum(pe2rlf(enty3,rlf2),sum(enty2,
(p_cintraw(enty2)
* pm_fuExtrOwnCons(regi, enty2, enty3)
* vm_fuExtr(t,regi,enty3,rlf2)
)$(pm_fuExtrOwnCons(regi, enty, enty2) gt 0)
))
*** Industry CCS emissions
- sum(emiMac2mac(emiInd37_fuel,enty2),
vm_emiIndCCS(t,regi,emiInd37_fuel)
)$( sameas(enty,"co2") )
*** LP, Valve from cco2 capture step, to mangage if capture capacity and CCU/CCS capacity don't have the same lifetime
+ v_co2capturevalve(t,regi)$( sameas(enty,"co2") )
*** JS CO2 from short-term CCU
+ sum(teCCU2rlf(te2,rlf), vm_co2CCUshort(t,regi,"cco2","ccuco2short",te2,rlf) )
;
***------------------------------------------------------
*' Mitigation options that are independent of energy consumption are represented
*' using marginal abatement cost (MAC) curves, which describe the
*' percentage of abated emissions as a function of the costs.
*' Baseline emissions are obtained by three different methods: by source (via emission factors),
*' by econometric estimate, and exogenous. Emissions are calculated as
*' baseline emissions times (1 - relative emission reduction).
*' In case of CO2 from landuse (co2luc), emissions can be negative.
*' To treat these emissions in the same framework, we subtract the minimal emission level from
*' baseline emissions. This shift factor is then added again when calculating total emissions.
*' The ndogenous baselines of non-energy emissions are calculated in the following equation:
***------------------------------------------------------
q_macBase(t,regi,enty)$( emiFuEx(enty) OR sameas(enty,"n2ofertin") ) ..
vm_macBase(t,regi,enty)
=e=
sum(emi2fuel(enty2,enty),
p_efFossilFuelExtr(regi,enty2,enty)
* sum(pe2rlf(enty2,rlf), vm_fuExtr(t,regi,enty2,rlf))
)$( emiFuEx(enty) )
+ ( p_macBaseMagpie(t,regi,enty)
+ p_efFossilFuelExtr(regi,"pebiolc","n2obio")
* vm_fuExtr(t,regi,"pebiolc","1")
)$( sameas(enty,"n2ofertin") )
;
***------------------------------------------------------
*' Total non-energy emissions:
***------------------------------------------------------
q_emiMacSector(t,regi,emiMacSector(enty))..
vm_emiMacSector(t,regi,enty)
=e=
( vm_macBase(t,regi,enty)
* sum(emiMac2mac(enty,enty2),
1 - (pm_macSwitch(enty) * pm_macAbatLev(t,regi,enty2))
)
)$( NOT sameas(enty,"co2cement_process") )
*** cement process emissions are accounted for in the industry module
+ ( vm_macBaseInd(t,regi,enty,"cement")
- vm_emiIndCCS(t,regi,enty)
)$( sameas(enty,"co2cement_process") )
+ p_macPolCO2luc(t,regi)$( sameas(enty,"co2luc") )
;
q_emiMac(t,regi,emiMac) ..
vm_emiMac(t,regi,emiMac)
=e=
sum(emiMacSector2emiMac(emiMacSector,emiMac),
vm_emiMacSector(t,regi,emiMacSector)
)
;
***------------------------------------------------------
*' Total regional emissions are the sum of emissions from technologies, MAC-curves, CDR-technologies and emissions that are exogenously given for REMIND.
***------------------------------------------------------
*LB* calculate total emissions for each region at each time step
q_emiAll(t,regi,emi(enty))..
vm_emiAll(t,regi,enty)
=e=
vm_emiTe(t,regi,enty)
+ vm_emiMac(t,regi,enty)
+ vm_emiCdr(t,regi,enty)
+ pm_emiExog(t,regi,enty)
;
***------------------------------------------------------
*' Total global emissions are calculated for each GHG emission type and links the energy system to the climate module.
***------------------------------------------------------
*LB* calculate total global emissions for each timestep - link to the climate module
q_emiAllGlob(t,emi(enty))..
vm_emiAllGlob(t,enty)
=e=
sum(regi,
vm_emiAll(t,regi,enty)
+ pm_emissionsForeign(t,regi,enty)
)
;
***------------------------------------------------------
*' Total regional emissions in CO2 equivalents that are part of the climate policy are computed based on regional GHG
*' emissions from different sectors(energy system, non-energy system, exogenous, CDR technologies).
***------------------------------------------------------
*mlb 8/2010* extension for multigas accounting/trading
*cb only "static" equation to be active before cm_startyear, as multigasscen could be different from a scenario to another that is fixed on the first
q_co2eq(ttot,regi)$(ttot.val ge cm_startyear)..
vm_co2eq(ttot,regi)
=e=
vm_emiAll(ttot,regi,"co2")
+ (s_tgn_2_pgc * vm_emiAll(ttot,regi,"n2o") + s_tgch4_2_pgc * vm_emiAll(ttot,regi,"ch4")) $(cm_multigasscen eq 2 or cm_multigasscen eq 3)
- vm_emiMacSector(ttot,regi,"co2luc") $(cm_multigasscen eq 3);
***------------------------------------------------------
*' Total global emissions in CO2 equivalents that are part of the climate policy also take into account foreign emissions.
***------------------------------------------------------
*mlb 20140108* computation of global emissions (related to cap)
q_co2eqGlob(t) $(t.val > 2010)..
vm_co2eqGlob(t) =e= sum(regi, vm_co2eq(t,regi) + pm_co2eqForeign(t,regi));
***------------------------------------
*' Linking GHG emissions to tradable emission permits.
***------------------------------------
*mh for each region and time step: emissions + permit trade balance < emission cap
q_emiCap(t,regi) ..
vm_co2eq(t,regi) + vm_Xport(t,regi,"perm") - vm_Mport(t,regi,"perm")
+ vm_banking(t,regi)
=l= vm_perm(t,regi);
***-----------------------------------------------------------------
*** Budgets on GHG emissions (single or two subsequent time periods)
***-----------------------------------------------------------------
qm_co2eqCum(regi)..
v_co2eqCum(regi)
=e=
sum(ttot$(ttot.val lt sm_endBudgetCO2eq and ttot.val gt s_t_start),
pm_ts(ttot)
* vm_co2eq(ttot,regi)
)
+ sum(ttot$(ttot.val eq sm_endBudgetCO2eq or ttot.val eq s_t_start),
pm_ts(ttot)
/ 2
* vm_co2eq(ttot,regi)
)
;
q_budgetCO2eqGlob$(cm_emiscen=6)..
sum(regi, v_co2eqCum(regi))
=l=
sum(regi, pm_budgetCO2eq(regi));
***---------------------------------------------------------------------------
*' Definition of carbon capture :
***---------------------------------------------------------------------------
q_balcapture(t,regi,ccs2te(ccsCO2(enty),enty2,te)) ..
sum(teCCS2rlf(te,rlf),vm_co2capture(t,regi,enty,enty2,te,rlf))
=e=
sum(emi2te(enty3,enty4,te2,enty),
vm_emiTeDetail(t,regi,enty3,enty4,te2,enty)
)
+ sum(teCCS2rlf(te,rlf),
vm_ccs_cdr(t,regi,enty,enty2,te,rlf)
)
*** CCS from industry
+ sum(emiInd37,
vm_emiIndCCS(t,regi,emiInd37)
)
;
***---------------------------------------------------------------------------
*' Definition of splitting of captured CO2 to CCS, CCU and a valve (the valve
*' accounts for different lifetimes of capture, CCS and CCU technologies s.t.
*' extra capture capacities of CO2 capture can release CO2 directly to the
*' atmosphere)
***---------------------------------------------------------------------------
q_balCCUvsCCS(t,regi) ..
sum(teCCS2rlf(te,rlf), vm_co2capture(t,regi,"cco2","ico2",te,rlf))
=e=
sum(teCCS2rlf(te,rlf), vm_co2CCS(t,regi,"cco2","ico2",te,rlf))
+ sum(teCCU2rlf(te,rlf), vm_co2CCUshort(t,regi,"cco2","ccuco2short",te,rlf))
+ v_co2capturevalve(t,regi)
;
***---------------------------------------------------------------------------
*' Definition of the CCS transformation chain:
***---------------------------------------------------------------------------
*** no effect while CCS chain is limited to just one step (ccsinje)
q_transCCS(t,regi,ccs2te(enty,enty2,te),ccs2te2(enty2,enty3,te2),rlf)$teCCS2rlf(te2,rlf)..
(1-pm_emifac(t,regi,enty,enty2,te,"co2")) * vm_co2CCS(t,regi,enty,enty2,te,rlf)
=e=
vm_co2CCS(t,regi,enty2,enty3,te2,rlf);
q_limitCCS(regi,ccs2te2(enty,"ico2",te),rlf)$teCCS2rlf(te,rlf)..
sum(ttot $(ttot.val ge 2005), pm_ts(ttot) * vm_co2CCS(ttot,regi,enty,"ico2",te,rlf))
=l=
pm_dataccs(regi,"quan",rlf);
***---------------------------------------------------------------------------
*' Emission constraint on SO2 after 2050:
***---------------------------------------------------------------------------
q_limitSo2(ttot+1,regi) $((pm_ttot_val(ttot+1) ge max(cm_startyear,2055)) AND (cm_emiscen gt 1) AND (ord(ttot) lt card(ttot))) ..
vm_emiTe(ttot+1,regi,"so2")
=l=
vm_emiTe(ttot,regi,"so2");
q_limitCO2(ttot+1,regi) $((pm_ttot_val(ttot+1) ge max(cm_startyear,2055)) AND (ttot.val le 2100) AND (cm_emiscen eq 8)) ..
vm_emiTe(ttot+1,regi,"co2")
=l=
vm_emiTe(ttot,regi,"co2");
q_eqadj(regi,ttot,teAdj(te))$(ttot.val ge max(2010, cm_startyear)) ..
v_adjFactor(ttot,regi,te)
=e=
power(
(sum(te2rlf(te,rlf),vm_deltaCap(ttot,regi,te,rlf)) - sum(te2rlf(te,rlf),vm_deltaCap(ttot-1,regi,te,rlf)))/(pm_ttot_val(ttot)-pm_ttot_val(ttot-1))
,2)
/( sum(te2rlf(te,rlf),vm_deltaCap(ttot-1,regi,te,rlf)) + p_adj_seed_reg(ttot,regi) * p_adj_seed_te(ttot,regi,te)
+ p_adj_deltacapoffset("2010",regi,te)$(ttot.val eq 2010) + p_adj_deltacapoffset("2015",regi,te)$(ttot.val eq 2015)
);
***---------------------------------------------------------------------------
*' The use of early retirement is restricted by the following equations:
***---------------------------------------------------------------------------
q_limitCapEarlyReti(ttot,regi,te)$(ttot.val lt 2109 AND pm_ttot_val(ttot+1) ge max(2010, cm_startyear))..
vm_capEarlyReti(ttot+1,regi,te)
=g=
vm_capEarlyReti(ttot,regi,te);
q_smoothphaseoutCapEarlyReti(ttot,regi,te)$(ttot.val lt 2120 AND pm_ttot_val(ttot+1) ge max(2010, cm_startyear))..
vm_capEarlyReti(ttot+1,regi,te)
=l=
vm_capEarlyReti(ttot,regi,te) + (pm_ttot_val(ttot+1)-pm_ttot_val(ttot)) * (cm_earlyreti_rate
*** more retirement possible for coal power plants in early time steps for Europe and USA, to account for relatively old fleet
+ p_earlyreti_adjRate(regi,te)$(ttot.val lt 2035)
*** more retirement possible for first generation biofuels
+ 0.05$(sameas(te,"biodiesel") or sameas(te, "bioeths")));
***---------------------------------------------------------------------------
*' Usable macroeconomic output - net of climate change damages - is calculated from the macroeconomic output,
*' taking into account export and import of the final good, taking specific trade costs into account,
*' which are assigned to the importer. The resulting output is used for consumption,
*' for investments into the capital stock, and for the energy system cost components investments,
*' fuel costs and operation & maintenance.
*' Other additional costs like non-energy related greenhouse gas abatement costs and
*' agricultural costs, which are delivered by the land use model MAgPIE, are deduced from disposable output.
*' Net tax revenues and adjustment costs converge to zero in the optimal solution (equilibrium point).
***---------------------------------------------------------------------------
qm_budget(ttot,regi)$( ttot.val ge cm_startyear ) ..
vm_cesIO(ttot,regi,"inco") * vm_damageFactor(ttot,regi)
- vm_Xport(ttot,regi,"good")
+ vm_Mport(ttot,regi,"good") * (1 - p_tradecostgood(regi) - pm_risk_premium(regi))
=g=
vm_cons(ttot,regi)
+ sum(ppfKap(in), vm_invMacro(ttot,regi,in))
+ sum(in, vm_invInno(ttot,regi,in))
+ sum(in, vm_invImi(ttot,regi,in))
*** energy system costs
+ ( v_costFu(ttot,regi)
+ v_costOM(ttot,regi)
+ v_costInv(ttot,regi)
)
*** agricultural MACs are part of pm_totLUcosts (see module 26_agCosts)
+ sum(enty$(emiMacSector(enty) AND (NOT emiMacMagpie(enty))), pm_macCost(ttot,regi,enty))
+ sum(emiInd37, vm_IndCCSCost(ttot,regi,emiInd37))
+ pm_CementDemandReductionCost(ttot,regi)
+ sum(tradePe(enty),
pm_costsTradePeFinancial(regi,"Mport",enty)
* vm_Mport(ttot,regi,enty)
)
+ sum(tradePe(enty),
(pm_costsTradePeFinancial(regi,"Xport",enty) * vm_Xport(ttot,regi,enty))
* ( 1
+ (
( pm_costsTradePeFinancial(regi,"XportElasticity",enty)
/ sqr(pm_ttot_val(ttot)-pm_ttot_val(ttot-1))
* ( vm_Xport(ttot,regi,enty)
/ ( vm_Xport(ttot-1,regi,enty)
+ pm_costsTradePeFinancial(regi, "tradeFloor",enty)
)
- 1
)
)$( ttot.val ge max(2010, cm_startyear) )
)
)
)
+ vm_taxrev(ttot,regi)$(ttot.val ge 2010)
+ sum(ppfKap(in),v_invMacroAdj(ttot,regi,in))
+ sum(in_enerSerAdj(in), vm_enerSerAdj(ttot,regi,in))
*** ES layer costs
+ sum(teEs, v_esCapInv(ttot,regi,teEs))
+ vm_costAdjNash(ttot,regi)
+ vm_costpollution(ttot,regi)
+ pm_totLUcosts(ttot,regi)
;
***---------------------------------------------------------------------------
*' The labor available in every time step and every region comes from exogenous data.
*' It is the population corrected by the population age structure,
*' which results in the labour force of people agged 15 to 65.
*' The labor participation rate is not factored into the labour supply (as it would only imply a
*' rescaling of parameters without consequences for the model's dynamic).
*' The labour market balance equation reads as follows:
***---------------------------------------------------------------------------
q_balLab(t,regi)..
vm_cesIO(t,regi,"lab")
=e=
pm_lab(t,regi);
***---------------------------------------------------------------------------
*' The production function is a nested CES (constant elasticity of substitution) production function.
*' The macroeconomic output is generated by the inputs capital, labor, and total final energy (as a macro-ecoomic
*' aggregate in $US units). The generation of total final energy is described
*' by a CES production function as well, whose input factors are CES function outputs again.
*' Hence, the outputs of CES nests are intermediates measured in $US units.
*' According to the Euler-equation the value of the intermediate equals the sum of expenditures for the inputs.
*' Sector-specific final energy types represent the bottom end of the `CES-tree'. These 'CES leaves' are
*' measured in physical units and have a price in $US per physical unit.
*' The top of the tree is the total economic output measured in $US.
*' The following equation is the generic form of the production function.
*' It treats the various CES nests separately and the nests are inter-connetected via mappings.
*' This equation calculates the amount of intermediate output in a time-step and region
*' from the associated factor input amounts according to:
*** Keep in mind to adjust the calculation of derivatives and shares
*** in ./core/reswrite.inc if you change the structure of this function.
***---------------------------------------------------------------------------
q_cesIO(t,regi,ipf(out))$ ( NOT ipf_putty(out)) ..
vm_cesIO(t,regi,out)
=e=
sum(cesOut2cesIn(out,in),
pm_cesdata(t,regi,in,"xi")
* (
pm_cesdata(t,regi,in,"eff")
* vm_effGr(t,regi,in)
* vm_cesIO(t,regi,in)
)
** pm_cesdata(t,regi,out,"rho")
)
** (1 / pm_cesdata(t,regi,out,"rho"))
;
***---------------------------------------------------------------------------
*' Constraints for perfect complements in the CES tree
***---------------------------------------------------------------------------
q_prodCompl(t,regi,in,in2) $ (complements_ref(in,in2)
AND (( NOT in_putty(in2)) OR ppfIO_putty(in2))) ..
vm_cesIO(t,regi,in)
=e= pm_cesdata(t,regi,in2,"compl_coef")
* vm_cesIO(t,regi,in2);
***---------------------------------------------------------------------------
*** Start of Putty-Clay equations
*' Putty-Clay production function:
***---------------------------------------------------------------------------
q_cesIO_puttyclay(t,regi,ipf_putty(out)) ..
vm_cesIOdelta(t,regi,out)
=e=
sum(cesOut2cesIn(out,in),
pm_cesdata(t,regi,in,"xi")
* (
pm_cesdata(t,regi,in,"eff")
* vm_effGr(t,regi,in)
* vm_cesIOdelta(t,regi,in)
)
** pm_cesdata(t,regi,out,"rho")
)
** (1 / pm_cesdata(t,regi,out,"rho"))
;
*' Putty-Clay constraints for perfect complements in the CES tree:
q_prodCompl_putty(t,regi,in,in2) $ (complements_ref(in,in2)
AND ( in_putty(in2) AND ( NOT ppfIO_putty(in2)))) ..
vm_cesIOdelta(t,regi,in) =e=
pm_cesdata(t,regi,in2,"compl_coef")
* vm_cesIOdelta(t,regi,in2);
*' Correspondance between vm_cesIO and vm_cesIOdelta:
q_puttyclay(ttot,regi,in_putty(in))$(ord(ttot) lt card(ttot) AND (pm_ttot_val(ttot+1) ge max(2010, cm_startyear)))..
vm_cesIO(ttot+1,regi,in)
=e=
vm_cesIO(ttot,regi,in)*(1- pm_delta_kap(regi,in))**(pm_ttot_val(ttot+1)-pm_ttot_val(ttot))
+ pm_cumDeprecFactor_old(ttot+1,regi,in)* vm_cesIOdelta(ttot,regi,in)
+ pm_cumDeprecFactor_new(ttot+1,regi,in)* vm_cesIOdelta(ttot+1,regi,in)
;
*' Capital motion equation for putty clay capital:
q_kapMo_putty(ttot,regi,in_putty(in))$(ppfKap(in) AND (ord(ttot) le card(ttot)) AND (pm_ttot_val(ttot) ge max(2005, cm_startyear)) AND (pm_cesdata("2005",regi,in,"quantity") gt 0))..
vm_cesIOdelta(ttot,regi,in)
=e=
0
$ifthen setGlobal END2110
*gl* short time horizon requires investments to materialize in the same time step
+ pm_ts(ttot)*vm_invMacro(ttot,regi,in)*0.94**5 - (0.5*pm_ts(ttot)*vm_invMacro(ttot,regi,in)*0.94**5)$(ord(ttot) eq card(ttot));
$else
+ vm_invMacro(ttot,regi,in)
;
$endif
;
***---------------------------------------------------------------------------
*** End of Putty-Clay equations
***---------------------------------------------------------------------------
***---------------------------------------------------------------------------
*' Investment equation for end-use capital investments (energy service layer):
***---------------------------------------------------------------------------
q_esCapInv(ttot,regi,teEs)$pm_esCapCost(ttot,regi,teEs) ..
v_esCapInv(ttot,regi,teEs)
=e=
sum (fe2es(entyFe,esty,teEs),
pm_esCapCost(ttot,regi,teEs) * v_prodEs(ttot,regi,entyFe,esty,teEs)
);
;
***---------------------------------------------------------------------------
*' The capital stock is claculated recursively. Its amount in the previous time
*' step is devaluated by an annual depreciation factor and enlarged by investments.
*' Both depreciation and investments are expressed as annual values,
*' so the time step length is taken into account.
***---------------------------------------------------------------------------
q_kapMo(ttot,regi,ppfKap(in))$( ( NOT in_putty(in)) AND (ord(ttot) lt card(ttot)) AND (pm_ttot_val(ttot+1) ge max(2010, cm_startyear)) AND (pm_cesdata("2005",regi,in,"quantity") gt 0))..
vm_cesIO(ttot+1,regi,in)
=e=
(1- pm_delta_kap(regi,in))**(pm_ttot_val(ttot+1)-pm_ttot_val(ttot)) * vm_cesIO(ttot,regi,in)
$ifthen setGlobal END2110
*gl* short time horizon requires investments to materialize in the same time step
+ pm_ts(ttot)*vm_invMacro(ttot,regi,in)*0.94**5 - (0.5*pm_ts(ttot)*vm_invMacro(ttot,regi,in)*0.94**5)$(ord(ttot) eq card(ttot));
$else
+ pm_cumDeprecFactor_old(ttot+1,regi,in) * vm_invMacro(ttot,regi,in)
+ pm_cumDeprecFactor_new(ttot+1,regi,in) * vm_invMacro(ttot+1,regi,in) ;
$endif
;
***---------------------------------------------------------------------------
*' Adjustment costs of macro economic investments:
***---------------------------------------------------------------------------
v_invMacroAdj.fx("2005",regi,ppfKap(in)) = 0;
q_invMacroAdj(ttot,regi,ppfKap(in))$( ttot.val ge max(2010, cm_startyear))..
v_invMacroAdj(ttot,regi,in)
=e=
sqr( (vm_invMacro(ttot,regi,in)-vm_invMacro(ttot-1,regi,in)) / (pm_ttot_val(ttot)-pm_ttot_val(ttot-1))
/ (vm_invMacro(ttot,regi,in)+0.0001)
)
* vm_cesIO(ttot,regi,in) / 11
*ML/RP* use "kap/11" instead of "vm_invMacro" for the scaling to remove the "invest=0"-trap that sometimes appeared in delay scenarios; kap/11 corresponds to the global average ratio of investments to capital in 2005.
*** In some regions the ratio kap:invest is higher, in some it is lower.
;
***---------------------------------------------------------------------------
*' Initial conditions for capital:
***---------------------------------------------------------------------------
q_kapMo0(t0(t),regi,ppfKap(in))$(pm_cesdata(t,regi,in,"quantity") gt 0)..
vm_cesIO(t,regi,in) =e= pm_cesdata(t,regi,in,"quantity");
*' Limit the share of one ppfEn in total CES nest inputs:
q_limitShPpfen(t,regi,out,in)$( pm_ppfen_shares(out,in) ) ..
vm_cesIO(t,regi,in)
=l=
pm_ppfen_shares(out,in)
* sum(cesOut2cesIn(out,in2), vm_cesIO(t,regi,in2))
;
*' Limit the ratio of two ppfEn:
q_limtRatioPpfen(t,regi,in,in2)$( pm_ppfen_ratios(in,in2) ) ..
vm_cesIO(t,regi,in)
=l=
pm_ppfen_ratios(in,in2)
* vm_cesIO(t,regi,in2)
;
*' Limit electricity use for fehes to 1/4th of total electricity use:
q_limitSeel2fehes(t,regi)..
1/4 * vm_usableSe(t,regi,"seel")
=g=
- vm_prodSe(t,regi,"pegeo","sehe","geohe") * pm_prodCouple(regi,"pegeo","sehe","geohe","seel")
;
*' Requires minimum share of liquids from oil in total liquids of 5%:
q_limitShOil(t,regi)..
sum(pe2se("peoil",enty2,te)$(sameas(te,"refliq") ),
vm_prodSe(t,regi,"peoil",enty2,te)
)
=g=
0.05 *