Newer
Older
#' @return list data object containing arrays of state_ref, mean_state_ref,
#' state_scen, mean_state_scen, fpc_ref, fpc_scen, bft_ref, bft_scen,
#' cft_ref, cft_scen, lat, lon, cell_area
#'
#' @export
read_ecorisk_data <- function(
files_reference, # nolint
files_scenario,
save_file = NULL,
time_span_reference,
time_span_scenario,
nitrogen,
debug_mode = FALSE,
suppress_warnings = TRUE) {
file_type <- tools::file_ext(files_reference$grid)
if (file_type %in% c("json", "clm")) {
# read grid
grid <- lpjmlkit::read_io(

Fabian Stenzel
committed
files_reference$grid

Fabian Stenzel
committed
cell_area <- drop(lpjmlkit::read_io(
filename = files_reference$terr_area

Fabian Stenzel
committed
ncells <- length(lat)
nyears <- length(time_span_scenario)
nyears_ref <- length(time_span_reference)
### read in lpjml output
# for vegetation_structure_change (fpc,fpc_bft,cftfrac)
message("Reading in fpc, fpc_bft, cftfrac")
cft_scen <- aperm(lpjmlkit::read_io(
files_scenario$cftfrac,
subset = list(year = as.character(time_span_scenario))
) %>%
lpjmlkit::transform(to = c("year_month_day")) %>%
lpjmlkit::as_array(aggregate = list(month = sum)), c(1, 3, 2)) %>%
suppressWarnings()
bft_scen <- aperm(lpjmlkit::read_io(
files_scenario$fpc_bft,
subset = list(year = as.character(time_span_scenario))
) %>%
lpjmlkit::transform(to = c("year_month_day")) %>%
lpjmlkit::as_array(aggregate = list(month = sum)), c(1, 3, 2)) %>%
suppressWarnings()
fpc_scen <- aperm(lpjmlkit::read_io(
files_scenario$fpc,
subset = list(year = as.character(time_span_scenario))
) %>%
lpjmlkit::transform(to = c("year_month_day")) %>%
lpjmlkit::as_array(aggregate = list(month = sum)), c(1, 3, 2)) %>%
suppressWarnings()
if (file.exists(files_reference$cftfrac)) {
cft_ref <- aperm(lpjmlkit::read_io(
files_reference$cftfrac,
subset = list(year = as.character(time_span_reference))
) %>%
lpjmlkit::transform(to = c("year_month_day")) %>%
lpjmlkit::as_array(aggregate = list(month = sum)), c(1, 3, 2)) %>%
suppressWarnings()
} else {
cft_ref <- cft_scen * 0
}
if (file.exists(files_reference$fpc_bft)) {
bft_ref <- aperm(lpjmlkit::read_io(
files_reference$fpc_bft,
subset = list(year = as.character(time_span_reference))
) %>%
lpjmlkit::transform(to = c("year_month_day")) %>%
lpjmlkit::as_array(aggregate = list(month = sum)), c(1, 3, 2)) %>%
suppressWarnings()
} else {
bft_ref <- bft_scen * 0
}
fpc_ref <- aperm(lpjmlkit::read_io(
files_reference$fpc,
subset = list(year = as.character(time_span_reference))
) %>%
lpjmlkit::transform(to = c("year_month_day")) %>%
lpjmlkit::as_array(aggregate = list(month = sum)), c(1, 3, 2)) %>%
suppressWarnings()

Fabian Stenzel
committed
#### new input reading ###
metric_files <- system.file(
"extdata",
"metric_files.yml",
package = "biospheremetrics"
) %>%
yaml::read_yaml()

Fabian Stenzel
committed
nclasses <- length(metric_files$metric$ecorisk_nitrogen$metric_class)
nstate_dimensions <- 0
for (i in seq_len(nclasses)) {
nstate_dimensions <- nstate_dimensions +
length(metric_files$metric$ecorisk_nitrogen$metric_class[[i]])
}
state_ref <- array(0, dim = c(ncells, nyears_ref, nstate_dimensions))
state_scen <- array(0, dim = c(ncells, nyears, nstate_dimensions))
class_names <- seq_len(nstate_dimensions)

Fabian Stenzel
committed
index <- 1
# iterate over main classes (carbon pools, water fluxes ...)

Fabian Stenzel
committed
classe <- metric_files$metric$ecorisk_nitrogen$metric_class[[c]]
nsubclasses <- length(classe)
# iterate over subclasses (vegetation carbon, soil water ...)

Fabian Stenzel
committed
subclass <- classe[s]
class_names[index] <- names(subclass)
vars <- split_sign(unlist(subclass))

Fabian Stenzel
committed
path_scen_file <- files_scenario[[vars[v, "variable"]]]
if (file.exists(path_scen_file)) {
header_scen <- lpjmlkit::read_meta(filename = path_scen_file)

Fabian Stenzel
committed
"Reading in ", path_scen_file, " with unit ", header_scen$unit,
" -> as part of ", class_names[index]

Fabian Stenzel
committed
var_scen <- lpjmlkit::read_io(
path_scen_file,
subset = list(year = as.character(time_span_scenario))
) %>%
lpjmlkit::transform(to = c("year_month_day")) %>%
lpjmlkit::as_array(aggregate = list(month = sum, band = sum), ) %>%
drop() %>%
suppressWarnings()

Fabian Stenzel
committed
} else {
stop(paste("Couldn't read in:", path_scen_file, " - stopping!"))

Fabian Stenzel
committed
}
path_ref_file <- files_reference[[vars[v, "variable"]]]
if (file.exists(path_ref_file)) {
header_ref <- lpjmlkit::read_meta(path_ref_file)

Fabian Stenzel
committed
"Reading in ", path_ref_file, " with unit ", header_ref$unit,
" -> as part of ", class_names[index]

Fabian Stenzel
committed
var_ref <- lpjmlkit::read_io(
path_ref_file,
subset = list(year = as.character(time_span_reference))
) %>%
lpjmlkit::transform(to = c("year_month_day")) %>%
lpjmlkit::as_array(aggregate = list(month = sum, band = sum)) %>%
drop() %>%
suppressWarnings()

Fabian Stenzel
committed
} else {
stop(paste("Couldn't read in:", path_ref_file, " - stopping!"))

Fabian Stenzel
committed
}
# if (vars[v,"sign"] == "+"){
# state_scen[,,index,] <- state_scen[,,index,] + var_scen
# state_ref[,,index,] <- state_ref[,,index,] + var_ref
# } else { # vars[v,"sign"] == "-"
# state_scen[,,index,] <- state_scen[,,index,] - var_scen
# state_ref[,,index,] <- state_ref[,,index,] - var_ref
# }
# }else{
if (vars[v, "sign"] == "+") {
state_scen[, , index] <- state_scen[, , index] + var_scen
state_ref[, , index] <- state_ref[, , index] + var_ref
} else { # vars[v,"sign"] == "-"
state_scen[, , index] <- state_scen[, , index] - var_scen
state_ref[, , index] <- state_ref[, , index] - var_ref

Fabian Stenzel
committed
}

Fabian Stenzel
committed
}
index <- index + 1

Fabian Stenzel
committed
}
dimnames(state_scen) <- list(
cell = 0:(ncells - 1),
year = as.character(time_span_scenario), class = class_names
)
dimnames(state_ref) <- list(
cell = 0:(ncells - 1),
year = as.character(time_span_reference), class = class_names
)
} else if (file_type == "nc") { # to be added
stop(
"nc reading has not been updated to latest functionality. ",
"Please contact Fabian Stenzel"
)
} else {
stop("Unrecognized file type (", file_type, ")")
}
if (!(is.null(save_file))) {
message("Saving data to: ", save_file)
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
save(state_ref, state_scen, fpc_ref, fpc_scen,
bft_ref, bft_scen, cft_ref, cft_scen, lat, lon, cell_area,
file = save_file
)
}
return(
list(
state_ref = state_ref,
state_scen = state_scen,
fpc_ref = fpc_ref,
fpc_scen = fpc_scen,
bft_ref = bft_ref,
bft_scen = bft_scen,
cft_ref = cft_ref,
cft_scen = cft_scen,
lat = lat,
lon = lon,
cell_area = cell_area
)
)
}
#' Calculates changes in vegetation structure (vegetation_structure_change)
#'
#' Utility function to calculate changes in vegetation structure
#' (vegetation_structure_change) for calculation of EcoRisk
#'
#' @param fpc_ref reference fpc array (dim: [ncells,npfts+1])
#' @param fpc_scen scenario fpc array (dim: [ncells,npfts+1])
#' @param bft_ref reference bft array (dim: [ncells,nbfts])
#' @param bft_scen scenario bft array (dim: [ncells,nbfts])
#' @param cft_ref reference cft array (dim: [ncells,ncfts])
#' @param cft_scen scenario cft array (dim: [ncells,ncfts])
#' @param weighting apply "old" (Ostberg-like), "new", or "equal" weighting of
#' vegetation_structure_change weights (default "equal")
#'
#' @return vegetation_structure_change array of size ncells with the
#' vegetation_structure_change value [0,1] for each cell
#'
#' @examples
#' \dontrun{
#' vegetation_structure_change <- calc_delta_v(
#' fpc_ref = fpc_ref_mean,
#' fpc_scen = apply(fpc_scen, c(1, 2), mean),
#' bft_ref = bft_ref_mean,
#' bft_scen = apply(bft_scen, c(1, 2), mean),
#' cft_ref = cft_ref_mean,
#' cft_scen = apply(cft_scen, c(1, 2), mean),
#' weighting = "equal"
#' )
#' }
#' @export
calc_delta_v <- function(fpc_ref, # nolint
fpc_scen,
bft_ref,
bft_scen,
cft_ref,
cft_scen,
weighting = "equal") {
di <- dim(fpc_ref)
ncells <- di[1]
npfts <- di[2] - 1
fpc_ref[fpc_ref < 0] <- 0
fpc_scen[fpc_scen < 0] <- 0
bft_ref[bft_ref < 0] <- 0
bft_scen[bft_scen < 0] <- 0
cft_ref[cft_ref < 0] <- 0
cft_scen[cft_scen < 0] <- 0
if (npfts == 9) {
# barren = 1 - crop area - natural vegetation area +
# barren under bioenergy trees
barren_area_ref <- (
1 - rowSums(cft_ref) -
rowSums(fpc_ref[, 2:10]) * fpc_ref[, 1] +
rowSums(cft_ref[, c(16, 32)]) * (1 - rowSums(bft_ref[, c(1:4, 7:10)]))
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
)
barren_area_ref[barren_area_ref < 0] <- 0
tree_area_ref <- array(0, dim = c(ncells, 11))
# natural tree area fractions scaled by total natural frac
tree_area_ref[, 1:7] <- (
fpc_ref[, 2:8] * fpc_ref[, 1]
)
# fraction of rainfed tropical and temperate BE trees scaled by total
# rainfed bioenergy tree area and relative fpc of bioenergy trees and
# grass under bioenergy trees
tree_area_ref[, 8:9] <- (
cft_ref[, 16] * bft_ref[, 1:2] / rowSums(bft_ref[, c(1, 2, 4)])
)
# fraction of irrigated tropical and temperate BE trees scaled by total
# irrigated bioenergy tree area and relative fpc of bioenergy trees and
# grass under bioenergy trees
tree_area_ref[, 10:11] <- (
cft_ref[, 32] * bft_ref[, 7:8] / rowSums(bft_ref[, c(7, 8, 10)])
)
grass_area_ref <- array(0, dim = c(ncells, 20))
# natural grass
grass_area_ref[, 1:2] <- fpc_ref[, 9:10] * fpc_ref[, 1]
# crops
grass_area_ref[, 3:15] <- cft_ref[, 1:13] + cft_ref[, 17:29]
# managed grass rf
grass_area_ref[, 16] <- cft_ref[, 14]
# managed grass irr
grass_area_ref[, 17] <- cft_ref[, 30]
# bioenergy grass
grass_area_ref[, 18] <- cft_ref[, 15] + cft_ref[, 31]
# fraction of rainfed grass under bioenergy trees
grass_area_ref[, 19] <- (
cft_ref[, 16] * bft_ref[, 4] / rowSums(bft_ref[, c(1, 2, 4)])
)
# fraction of irrigated grass under bioenergy trees
grass_area_ref[, 20] <- (
cft_ref[, 32] * bft_ref[, 10] / rowSums(bft_ref[, c(7, 8, 10)])
)
rowSums(fpc_scen[, 2:10]) * fpc_scen[, 1] +
rowSums(cft_scen[, c(16, 32)]) * (1 - rowSums(bft_scen[, c(1:4, 7:10)]))
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
)
barren_area_scen[barren_area_scen < 0] <- 0
tree_area_scen <- array(0, dim = c(ncells, 11))
# natural tree area fractions scaled by total natural frac
tree_area_scen[, 1:7] <- (
fpc_scen[, 2:8] * fpc_scen[, 1]
)
# fraction of rainfed tropical and temperate BE trees scaled by total
# rainfed bioenergy tree area and relative fpc of bioenergy trees and
# grass under bioenergy trees
tree_area_scen[, 8:9] <- (
cft_scen[, 16] * bft_scen[, 1:2] / rowSums(bft_scen[, c(1, 2, 4)])
)
# fraction of irrigated tropical and temperate BE trees scaled by total
# irrigated bioenergy tree area and relative fpc of bioenergy trees and
# grass under bioenergy trees
tree_area_scen[, 10:11] <- (
cft_scen[, 32] * bft_scen[, 7:8] / rowSums(bft_scen[, c(7, 8, 10)])
)
grass_area_scen <- array(0, dim = c(ncells, 20))
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
grass_area_scen[, 1:2] <- fpc_scen[, 9:10] * fpc_scen[, 1]
# crops
grass_area_scen[, 3:15] <- cft_scen[, 1:13] + cft_scen[, 17:29]
# managed grass rf
grass_area_scen[, 16] <- cft_scen[, 14]
# managed grass irr
grass_area_scen[, 17] <- cft_scen[, 30]
# bioenergy grass
grass_area_scen[, 18] <- cft_scen[, 15] + cft_scen[, 31]
# fraction of rainfed grass under bioenergy trees
grass_area_scen[, 19] <- (
cft_scen[, 16] * bft_scen[, 4] / rowSums(bft_scen[, c(1, 2, 4)])
)
# fraction of irrigated grass under bioenergy trees
grass_area_scen[, 20] <- (
cft_scen[, 32] * bft_scen[, 10] / rowSums(bft_scen[, c(7, 8, 10)])
)
# evergreenness, needleleavedness, tropicalness, borealness, naturalness
tree_attributes <- matrix(
c(
c(1, 0, 1, 0, 1), # 1 TrBE
c(0, 0, 1, 0, 1), # 2 TrBR
c(1, 1, 0, 0, 1), # 3 TeNE
c(1, 0, 0, 0, 1), # 4 TeBE
c(0, 0, 0, 0, 1), # 5 TeBS
c(1, 1, 0, 1, 1), # 6 BoNE
c(0, 0.25, 0, 1, 1), # 7 BoS (including larchs)
c(1, 0, 1, 0, 0), # 8 TrBi tropical bioenergy rainfed
c(0, 0, 0, 0, 0), # 9 TeBi temperate bioenergy rainfed
c(1, 0, 1, 0, 0), # 10 TrBi tropical bioenergy irrigated
c(0, 0, 0, 0, 0) # 11 TeBi temperate bioenergy irrigated
),
nrow = 11,
byrow = TRUE
)
if (weighting == "equal") {
tree_weights <- c(0.2, 0.2, 0.2, 0.2, 0.2)
} else if (weighting == "new") {
tree_weights <- c(0.2, 0.2, 0.3, 0.3, 0.3) / 1.3
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
} else if (weighting == "old") {
tree_weights <- c(0.2, 0.2, 0.3, 0.3, 0.3)
} else {
stop("Unknown method of weighting.")
}
grass_attributes <- array(0, dim = c(ncells, 20, 2))
# 1 C3grass
# 2 C4grass
# 3 TemperateCereals
# 4 Rice
# 5 Maize
# 6 TropicalCereals
# 7 Pulses
# 8 TemperateRoots
# 9 TropicalRoots
# 10 Sunflower
# 11 Soybean
# 12 Groundnut
# 13 Rapeseed
# 14 Sugarcane
# 15 Others
# 16 Managed grass rainfed
# 17 Managed grass irrigated
# 18 Bioenergy grass
# 19 Grass under rainfed Bioenergy trees
# 20 Grass under irrigated Bioenergy trees
# tropicalness
grass_attributes[, , 1] <- rep(
c(0, 1, 0, 1, 1, 1, 0.5, 0, 1, 0.5, 1, 1, 0.5, 1, 0.5, NA, NA, 1, NA, NA),
each = ncells
)
# naturalness
grass_attributes[, , 2] <- rep(
c(1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
each = ncells
)
# dynamic share of tropicalness for rf/irr grasslands taken from ratio of
# bioenergy grasses
dyn_grass_attributes <- cbind(
bft_scen[, 6] / rowSums(bft_scen[, 5:6]),
bft_scen[, 12] / rowSums(bft_scen[, 11:12])
)
dyn_grass_attributes[!is.finite(dyn_grass_attributes)] <- 0
# managed grass rf/irr
grass_attributes[, 16:17, 1] <- dyn_grass_attributes
# grass under biotrees rf/irr (taken from managed grass)
grass_attributes[, 19:20, 1] <- dyn_grass_attributes
if (weighting == "equal") {
grass_weights <- c(0.2, 0.2)
} else if (weighting == "new") {
grass_weights <- c(0.5, 0.5)
# Sebastian Ostbergs's method (no downscaling to weightsum 1)
} else if (weighting == "old") {
grass_weights <- c(0.3, 0.3)
} else {
stop("Unknown method of weighting.")
}
} else if (npfts == 11) {
# barren = 1 - crop area - natural vegetation area +
# barren under bioenergy trees
barren_area_ref <- (
1 - rowSums(cft_ref) -
rowSums(fpc_ref[, 2:12]) * fpc_ref[, 1] +
rowSums(cft_ref[, c(16, 32)]) * (1 - rowSums(bft_ref[, c(4:9, 13:18)]))
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
)
barren_area_ref[barren_area_ref < 0] <- 0
tree_area_ref <- array(0, dim = c(ncells, 12))
# natural tree area fractions scaled by total natural frac
tree_area_ref[, 1:8] <- fpc_ref[, 2:9] * fpc_ref[, 1]
# fraction of rainfed tropical and temperate BE trees scaled by total
# rainfed bioenergy tree area and relative fpc of bioenergy trees and
# grass under bioenergy trees
tree_area_ref[, 9:10] <- (
cft_ref[, 16] * bft_ref[, 7:8] / rowSums(bft_ref[, 4:8])
)
# fraction of irrigated tropical and temperate BE trees scaled by total
# irrigated bioenergy tree area and relative fpc of bioenergy trees and
# grass under bioenergy trees
tree_area_ref[, 11:12] <- (
cft_ref[, 32] * bft_ref[, 16:17] / rowSums(bft_ref[, 13:17])
)
grass_area_ref <- array(0, dim = c(ncells, 21))
# natural grass
grass_area_ref[, 1:3] <- fpc_ref[, 10:12] * fpc_ref[, 1]
# crops
grass_area_ref[, 4:16] <- cft_ref[, 1:13] + cft_ref[, 17:29]
# managed grass rf
grass_area_ref[, 17] <- cft_ref[, 14]
# managed grass irr
grass_area_ref[, 18] <- cft_ref[, 30]
# bioenergy grass
grass_area_ref[, 19] <- cft_ref[, 15] + cft_ref[, 31]
# fraction of rainfed grass under bioenergy trees
grass_area_ref[, 20] <- (
cft_ref[, 16] * rowSums(bft_ref[, 4:6]) / rowSums(bft_ref[, 4:8])
)
# fraction of irrigated grass under bioenergy trees
grass_area_ref[, 21] <- (
cft_ref[, 32] * rowSums(bft_ref[, 13:15]) / rowSums(bft_ref[, 13:17])
)
# barren = 1 - crop area - natural vegetation area +
# barren under bioenergy trees
barren_area_scen <- (
1 - rowSums(cft_scen) -
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
)
barren_area_scen[barren_area_scen < 0] <- 0
tree_area_scen <- array(0, dim = c(ncells, 12))
# natural tree area fractions scaled by total natural frac
tree_area_scen[, 1:8] <- fpc_scen[, 2:9] * fpc_scen[, 1]
# fraction of rainfed tropical and temperate BE trees scaled by total
# rainfed bioenergy tree area and relative fpc of bioenergy trees and
# grass under bioenergy trees
tree_area_scen[, 9:10] <- (
cft_scen[, 16] * bft_scen[, 7:8] / rowSums(bft_scen[, 4:8])
)
# fraction of irrigated tropical and temperate BE trees scaled by total
# irrigated bioenergy tree area and relative fpc of bioenergy trees and
# grass under bioenergy trees
tree_area_scen[, 11:12] <- (
cft_scen[, 32] * bft_scen[, 16:17] / rowSums(bft_scen[, 13:17])
)
grass_area_scen <- array(0, dim = c(ncells, 21))
# natural grass
grass_area_scen[, 1:3] <- fpc_scen[, 10:12] * fpc_scen[, 1]
# crops
grass_area_scen[, 4:16] <- cft_scen[, 1:13] + cft_scen[, 17:29]
# managed grass rf
grass_area_scen[, 17] <- cft_scen[, 14]
# managed grass irr
grass_area_scen[, 18] <- cft_scen[, 30]
# bioenergy grass
grass_area_scen[, 19] <- cft_scen[, 15] + cft_scen[, 31]
# fraction of rainfed grass under bioenergy trees
grass_area_scen[, 20] <- (
cft_scen[, 16] * rowSums(bft_scen[, 4:6]) / rowSums(bft_scen[, 4:8])
)
# fraction of irrigated grass under bioenergy trees
grass_area_scen[, 21] <- (
cft_scen[, 32] * rowSums(bft_scen[, 13:15]) / rowSums(bft_scen[, 13:17])
)
# evergreenness, needleleavedness, tropicalness, borealness, naturalness
tree_attributes <- matrix(
c(
c(1, 0, 1, 0, 1), # 1 TrBE
c(0, 0, 1, 0, 1), # 2 TrBR
c(1, 1, 0, 0, 1), # 3 TeNE
c(1, 0, 0, 0, 1), # 4 TeBE
c(0, 0, 0, 0, 1), # 5 TeBS
c(1, 1, 0, 1, 1), # 6 BoNE
c(0, 0, 0, 1, 1), # 7 BoBS
c(0, 1, 0, 1, 1), # 8 BoNS
c(1, 0, 1, 0, 0), # 9 TrBi tropical bioenergy rainfed
c(0, 0, 0, 0, 0), # 10 TeBi temperate bioenergy rainfed
c(1, 0, 1, 0, 0), # 11 TrBi tropical bioenergy irrigated
c(0, 0, 0, 0, 0) # 12 TeBi temperate bioenergy irrigated
),
nrow = 12,
byrow = TRUE
)
if (weighting == "equal") {
tree_weights <- c(0.2, 0.2, 0.2, 0.2, 0.2)
} else if (weighting == "new") {
tree_weights <- c(0.2, 0.2, 0.3, 0.3, 0.3) / 1.3
# Sebastian Ostberg's method (no downscaling to weightsum 1)
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
} else if (weighting == "old") {
tree_weights <- c(0.2, 0.2, 0.3, 0.3, 0.3)
} else {
stop("Unknown method of weighting.")
}
grass_attributes <- array(0, dim = c(ncells, 21, 3))
# 1 C4grass tropic
# 2 C3grass temperate
# 3 C3grass polar
# 4 TemperateCereals
# 5 Rice
# 6 Maize
# 7 TropicalCereals
# 8 Pulses
# 9 TemperateRoots
# 10 TropicalRoots
# 11 Sunflower
# 12 Soybean
# 13 Groundnut
# 14 Rapeseed
# 15 Sugarcane
# 16 Others
# 17 Managed grass rainfed
# 18 Managed grass irrigated
# 19 Bioenergy grass
# 20 Grass under rainfed Bioenergy trees
# 21 Grass under irrigated Bioenergy trees
# tropicalness
grass_attributes[, , 1] <- rep(
c(
1, 0, 0, 0, 1, 1, 1, 0.5, 0, 1, 0.5,
1, 1, 0.5, 1, 0.5, NA, NA, 1, NA, NA
),
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
each = ncells
)
# borealness
grass_attributes[, , 2] <- rep(
c(0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, NA, NA, 0, NA, NA),
each = ncells
)
# naturalness
grass_attributes[, , 3] <- rep(
c(1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
each = ncells
)
# dynamic share of tropicalness for grass under irr biotrees
dyn_trop_grass_attributes <- cbind(
# dynamic share of tropicalness for rf grasslands
bft_scen[, 1] / rowSums(bft_scen[, 1:3]),
# dynamic share of tropicalness for irr grasslands
bft_scen[, 10] / rowSums(bft_scen[, 10:12]),
# dynamic share of tropicalness for grass under rf biotrees
bft_scen[, 4] / rowSums(bft_scen[, 4:6]),
bft_scen[, 13] / rowSums(bft_scen[, 13:15])
)
dyn_trop_grass_attributes[!is.finite(dyn_trop_grass_attributes)] <- 0
# managed grass rf/irr, grass under biotrees rf/irr
grass_attributes[, c(17, 18, 20, 21), 1] <- dyn_trop_grass_attributes
# dynamic share of borealness for grass under irr biotrees
dyn_boreal_grass_attributes <- cbind(
# dynamic share of borealness for rf grasslands
bft_scen[, 3] / rowSums(bft_scen[, 1:3]),
# dynamic share of borealness for irr grasslands
bft_scen[, 12] / rowSums(bft_scen[, 10:12]),
# dynamic share of borealness for grass under rf biotrees
bft_scen[, 6] / rowSums(bft_scen[, 4:6]),
bft_scen[, 15] / rowSums(bft_scen[, 13:15])
)
dyn_boreal_grass_attributes[!is.finite(dyn_boreal_grass_attributes)] <- 0
# managed grass rf/irr, grass under biotrees rf/irr
grass_attributes[, c(17, 18, 20, 21), 2] <- dyn_boreal_grass_attributes
if (weighting == "equal") {
grass_weights <- c(0.2, 0.2, 0.2)
} else if (weighting == "old" || weighting == "new") {
grass_weights <- c(0.3333333, 0.3333333, 0.3333333)
} else {
stop("Unknown method of weighting.")
}
} else {
stop("Unknown number of pfts.")
}
# compute vegetation_structure_change
barren_v <- fBasics::rowMins(cbind(barren_area_ref, barren_area_scen))
trees_v <- fBasics::rowMins(
cbind(
rowSums(tree_area_ref, na.rm = TRUE),
rowSums(tree_area_scen, na.rm = TRUE)
)
cbind(
rowSums(grass_area_ref, na.rm = TRUE),
rowSums(grass_area_scen, na.rm = TRUE)
)
)
inner_sum_trees <- (
# evergreenness
abs(
rep(tree_attributes[, 1], each = ncells), na.rm = TRUE) -
rep(tree_attributes[, 1], each = ncells), na.rm = TRUE)
rep(tree_attributes[, 2], each = ncells), na.rm = TRUE) -
rep(tree_attributes[, 2], each = ncells), na.rm = TRUE)
rep(tree_attributes[, 3], each = ncells), na.rm = TRUE) -
rep(tree_attributes[, 3], each = ncells), na.rm = TRUE)
rep(tree_attributes[, 4], each = ncells), na.rm = TRUE) -
rep(tree_attributes[, 4], each = ncells), na.rm = TRUE)
rep(tree_attributes[, 5], each = ncells), na.rm = TRUE) -
rep(tree_attributes[, 5], each = ncells), na.rm = TRUE)
abs(
rowSums(grass_area_ref[, ] * grass_attributes[, , 1], na.rm = TRUE) -
rowSums(grass_area_scen[, ] * grass_attributes[, , 1], na.rm = TRUE)
# naturalness
abs(
rowSums(grass_area_ref[, ] * grass_attributes[, , 2], na.rm = TRUE) -
rowSums(grass_area_scen[, ] * grass_attributes[, , 2], na.rm = TRUE)
) * grass_weights[2]
)
} else if (npfts == 11) {
inner_sum_grasses <- (
# tropicalness
abs(
rowSums(grass_area_ref[, ] * grass_attributes[, , 1], na.rm = TRUE) -
rowSums(grass_area_scen[, ] * grass_attributes[, , 1], na.rm = TRUE)
# borealness
abs(
rowSums(grass_area_ref[, ] * grass_attributes[, , 2], na.rm = TRUE) -
rowSums(grass_area_scen[, ] * grass_attributes[, , 2], na.rm = TRUE)
) * grass_weights[2] +
# naturalness
abs(
rowSums(grass_area_ref[, ] * grass_attributes[, , 3], na.rm = TRUE) -
rowSums(grass_area_scen[, ] * grass_attributes[, , 3], na.rm = TRUE)
) * grass_weights[3]
)
} else {
stop("Unknown number of pfts.")
}
vegetation_structure_change <- (
1 - barren_v -
trees_v * (1 - inner_sum_trees) -
grass_v * (1 - inner_sum_grasses)
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
)
vegetation_structure_change[vegetation_structure_change < 0] <- 0
vegetation_structure_change[!is.finite(vegetation_structure_change)] <- 0
return(vegetation_structure_change)
}
################# further EcoRisk utility functions ##################
t_sigmoid_trafo <- function(x) {
return(-1 / exp(3) + (1 + 1 / exp(3)) / (1 + exp(-6 * (x - 0.5))))
}
balance <- function(v1, v2) {
return(1 - sum(v1 * v2) / (sqrt(sum(v1 * v1)) * sqrt(sum(v2 * v2))))
}
std_cellwise <- function(a) {
return(apply(a, 1, stats::sd))
}
global_yearly_weighted_mean <- function(a, cell_area) {
# a is matrix with dim=c(cells,years)
# cell_area the corresponding cell_area array with dim=c(cells)
return(
sum(a * cell_area, na.rm = TRUE) /
)
}
globally_weighted_mean_foreach_var <- function(x, cell_area) { # nolint
# x is matrix with dim=c(ncells,vars)
# if vars==1 inflate x
le <- length(x)
if (le == length(cell_area)) dim(x) <- c(le, 1)
# cell_area the corresponding cell_area array to x with dim=c(ncells)
return(colSums(x * cell_area, na.rm = TRUE) / sum(cell_area, na.rm = TRUE))
}
s_change_to_var_ratio <- function(x, s) {
return(1 / (1 + exp(-4 * (x / s - 2))))
}
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
aggregate_ecorisk_data_to_lower_resolution <- function(ecorisk_data_file,
new_resolution) {
ecorisk_data_file <- "/p/projects/open/Fabian/Metrics/data/ecorisk_202311_data.RData"
aggregation_factor <- 2 # 2 means from 0.5x0.5 to 1x1
load(ecorisk_data_file) # load ecorisk data objects:
# scenario data: state_scen,cft_scen,bft_scen,fpc_scen
# reference data: state_ref,cft_ref,bft_ref,fpc_ref,
# grid data: cell_area,lat,lon
str(state_ref)
state_scen <-
state_ref <-
fpc_scen <- fpc_ref
bft_scen <- bft_ref
cft_scen <- cft_ref
di_state <- dim(state_scen)
di_fpc <- dim(fpc_scen)
di_bft <- dim(bft_scen)
di_cft <- dim(cft_scen)
}
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
#' based on Heyder 2011 eq. 6-9; epsilon case handling from code
#' by Sebastian Ostberg (not documented in papers)
#' @param ref mean reference state vector of dimension c(ncells,variables)
#' @param scen mean scenario state vector of dimension c(ncells,variables)
#' @param epsilon threshold for variables to be treated as 0
#'
#' @returns the length of the difference vector for each cell
state_diff_local <- function(ref, scen, epsilon = 10^-4) {
# Ostberg code: case change_metric_lu_comparison_jun2013.c
di <- dim(ref)
# generally normalize the scenario state vector by the reference state
s_scen <- scen / ref
s_ref <- array(1, dim = di) # initialize
# for variables in places, where ref is small (<epsilon),
# but scen larger (Ostberg code, line 798)
# Sebastian set back scenario and reference vector, to keep the unscaled
# values (Ostberg code, line 804)
cells_ref0 <- abs(ref) < epsilon & abs(scen) > epsilon
s_scen[cells_ref0] <- scen[cells_ref0]
s_ref[cells_ref0] <- ref[cells_ref0]
# for variables in places, where ref and scen are small (<epsilon),
# return 0 (both are 1, difference is 0) (Ostberg code, line 809)
s_scen[abs(ref) < epsilon & abs(scen) < epsilon] <- 1 # no change
# normalize both state vectors by the sqrt(amount of state variables) to
# ensure length(s_ref)==1 (this is part of the weighting in the Ostberg
# code)
s_ref <- s_ref / sqrt(di[2])
s_scen <- s_scen / sqrt(di[2])
# length of the local difference vector s_scen (sl2) - s_ref (sl1)
return(sqrt(rowSums((s_scen - s_ref) * (s_scen - s_ref))))
}
#' c based on Heyder 2011 eq. 10-13
#'
#' @param ref mean reference state vector of dimension c(ncells,variables)
#' @param scen mean scenario state vector of dimension c(ncells,variables)
#' @param cell_area area of each cell as a vector of dim=c(ncells)
#' @param epsilon threshold for variables to be treated as 0
#'
#' @returns the length of the difference vector for each cell
state_diff_global <- function(ref, scen, cell_area, epsilon = 10^-4) {
di <- dim(ref)
ncells <- di[1]
global_mean_ref <- globally_weighted_mean_foreach_var(ref, cell_area)
global_mean_scen <- globally_weighted_mean_foreach_var(scen, cell_area)
# if global mean state in ref period is 0 (e.g. for landuse vars in pnv run?)
# take the mean scen state instead
cells_ref0 <- abs(global_mean_ref) < epsilon & abs(global_mean_scen) > epsilon
global_mean_ref[cells_ref0] <- global_mean_scen[cells_ref0]
# if both are 0 take 1, then the division is defined but 0 - 0 leads
# to no change, which is what EcoRisk should show
cells_both0 <- (
abs(global_mean_ref) < epsilon & abs(global_mean_scen) < epsilon
)
global_mean_ref[cells_both0] <- 1
norm <- rep(global_mean_ref, each = ncells)
dim(norm) <- dim(ref)
s_scen <- scen / norm
s_ref <- ref / norm
# normalize both state vectors by the sqrt(amount of state variables) to
# ensure length(s_ref)==1
# (this is part of the weighting in the Ostberg code)
s_ref <- s_ref / sqrt(di[2])
s_scen <- s_scen / sqrt(di[2])
# length of the difference vector s_scen (sl2) - s_ref (sl1) for each cell
return(sqrt(rowSums((s_scen - s_ref) * (s_scen - s_ref))))
}
calc_component <- function(ref, scen, local, cell_area) {
di <- dim(ref)
ncells <- di[1]
nyears <- di[2]
if (length(di) == 2) {
ref_mean <- apply(ref, c(1, 3), mean)
scen_mean <- apply(scen, c(1, 3), mean)
if (local) {
x <- t_sigmoid_trafo(state_diff_local(ref = ref_mean, scen = scen_mean))
} else {
x <- t_sigmoid_trafo(
state_diff_global(ref = ref_mean, scen = scen_mean, cell_area = cell_area)
)
}
# calculation of the change-to-variability ratio in my view is mathematically
# not correctly described in Heyder and Ostberg
# - the way I understand it: recalculate the c/g/b value for each year of the
# ref period compared to the mean of the ref period as "scenario" and then
# calc the variability (sd) of that
sigma_x_ref_list <- array(0, dim = c(ncells, nyears))
if (local) {
sigma_x_ref_list[, i] <- t_sigmoid_trafo(
state_diff_local(ref = ref_mean, scen = ref[, i, ])
)
} else {
sigma_x_ref_list[, i] <- t_sigmoid_trafo(
state_diff_global(
ref = ref_mean,
scen = ref[, i, ],
cell_area = cell_area
)
)
}
}