Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
#' Classify biomes
#'
#' Classify biomes based on foliage protected cover (FPC) and temperature
#' LPJmL output plus either vegetation carbon or pft_lai depending on
#' the savanna_proxy option and elevation if montane_arctic_proxy requires this
#'
#' @param path_reference path to the reference LPJmL run. If not provided,
#' the path is extracted from the file paths provided in files_reference.
#' @param files_reference list with variable names and corresponding file paths
#' (character string) of the reference LPJmL run. All needed files are
#' provided as key value pairs, e.g.:
#' list(leaching = "/temp/leaching.bin.json"). If not needed for the
#' applied method, set to NULL.
#' @param time_span_reference time span to be used for the scenario run, defined
#' as an character string, e.g. `as.character(1901:1930)`.
#' @param savanna_proxy `list` with either pft_lai or vegc as
#' key and value in m2/m2 for pft_lai (default = 6) and gC/m2 for
#' vegc (default would be 7500), Set to `NULL` if no proxy should be
#' used.
#' @param montane_arctic_proxy `list` with either "elevation" or "latitude" as
#' name/key and value in m for elevation (default 1000) and degree for
#' latitude (default would be 55), Set to `NULL` if no proxy is used.
#' @param tree_cover_thresholds list with minimum tree cover thresholds for
#' definition of forest, woodland, savanna and grassland. Only changes to
#' the default have to be included in the list, for the rest the default
#' is used.
#' Default values, based on the IGBP land cover classification system:
#' "boreal forest" = 0.6
#' "temperate forest" = 0.6
#' "temperate woodland" = 0.3
#' "temperate savanna" = 0.1
#' "tropical forest" = 0.6
#' "tropical woodland" = 0.3
#' "tropical savanna" = 0.1
#' In the boreal zone, there is no woodland, everything below the
#' boreal forest threshold will be classified as boreal tundra.
#' @param avg_nyear_args list of arguments to be passed to
#' \link[biospheremetrics]{average_nyear_window} (see for more info).
#' To be used for time series analysis
#' @param input_files `list` with input file paths to be used instead of outputs
#' default: empty list
#' @param diff_output_files `list` with output files, to be used from another
#' location than the output folders - default: empty list
#' @return list object containing biome_id (main biome per grid cell
#' [dim=c(ncells)]), and list of respective biome_names[dim=c(nbiomes)]
#' path_data = "/path/to/lpjml_run/to/classify",
#' }
#'
#' @export
classify_biomes <- function(path_reference = NULL,
files_reference = NULL,
time_span_reference,
savanna_proxy = list(pft_lai = 6),
montane_arctic_proxy = list(elevation = 1000),
tree_cover_thresholds = list(),
avg_nyear_args = list(), # currently a place holder
input_files = list(),
diff_output_files = list()) {
if (is.null(files_reference) && is.null(path_reference)) {
stop("files_reference or path_reference must be provided")
} else if (!is.null(path_reference) && is.null(files_reference)) {
# Get main file type (meta, clm)
file_ext <- get_major_file_ext(path_reference)
# List required output files for each boundary
output_files <- list_outputs("biome",
files_reference <- get_filenames(
path = path_reference,
output_files = output_files,
diff_output_files = diff_output_files,
input_files = input_files,
file_ext = file_ext
)
}
# test if provided proxies are valid
savanna_proxy_name <- match.arg(
names(savanna_proxy),
c(NA, "vegc", "pft_lai")
)
montane_arctic_proxy_name <- match.arg(
names(montane_arctic_proxy),
c(NA, "elevation", "latitude")
)
# define default minimum tree cover for forest / woodland / savanna
min_tree_cover <- list(
"boreal forest" = 0.6,
"temperate forest" = 0.6,
"temperate woodland" = 0.3,
"temperate savanna" = 0.1,
"tropical forest" = 0.6,
"tropical woodland" = 0.3,
"tropical savanna" = 0.1
)
# replace default values by values defined in tree_cover_thresholds
# parameter -> won't be applied if not specified
replace_idx <- match(names(tree_cover_thresholds), names(min_tree_cover))
if (any(is.na(replace_idx))) {
stop(paste0(
names(tree_cover_thresholds)[which(is.na(replace_idx))],
" is not valid. Please use a name of: ",
paste0(names(min_tree_cover), collapse = ", ")
))
}
min_tree_cover[replace_idx] <- tree_cover_thresholds
# test if forest threshold is always > woodland threshold > savanna threshold
if (min_tree_cover[["temperate forest"]] <=
min_tree_cover[["temperate woodland"]] ||
min_tree_cover[["temperate savanna"]] ||
min_tree_cover[["tropical savanna"]] ||
min_tree_cover[["tropical forest"]] <=
min_tree_cover[["tropical woodland"]]) {
stop(paste0(
"Tree cover threshold for forest are not always higher than",
"tree cover thresholds for woodland and savanna. Aborting."
))
}
# -------------------------------------------------------------------------- #
# read in relevant data
grid <- lpjmlkit::read_io(
files_reference$grid,
silent = TRUE
)
lat <- lpjmlkit::as_array(grid, subset = list(band = 2)) %>%
drop()
fpc <- lpjmlkit::read_io(
files_reference$fpc,
subset = list(year = time_span_reference),
silent = TRUE
) %>%
lpjmlkit::transform(to = c("year_month_day")) %>%
lpjmlkit::as_array()
files_reference$temp,
subset = list(year = time_span_reference),
silent = TRUE
) %>%
lpjmlkit::transform(to = c("year_month_day")) %>%
lpjmlkit::as_array(
aggregate =
list(month = sum, day = sum, band = sum)
) %>%
suppressWarnings()
if (!is.na(savanna_proxy_name)) {
savanna_proxy_data <- lpjmlkit::read_io(
files_reference[[savanna_proxy_name]],
subset = list(year = time_span_reference),
silent = TRUE
lpjmlkit::transform(to = c("year_month_day")) %>%
lpjmlkit::as_array(aggregate = list(month = sum)) %>%
suppressWarnings()
}
if (!is.na(montane_arctic_proxy_name)) {
if (montane_arctic_proxy_name == "elevation") {
elevation <- lpjmlkit::read_io(
files_reference$elevation,
silent = TRUE
)$data %>%
}
}
fpc_nbands <- dim(fpc)[["band"]]
npft <- fpc_nbands - 1
# average fpc
avg_fpc <- do.call(
average_nyear_window,
)
# average vegc or pft_lai
if (!is.na(savanna_proxy_name)) {
avg_savanna_proxy_data <- drop(
do.call(
average_nyear_window,
append(
list(x = savanna_proxy_data),
avg_nyear_args
)
)
)
}
# average temp
# TODO understand why additional dimension is added here but not for fpc
# (67420, 1)
avg_temp <- do.call(
average_nyear_window,
append(
list(x = temp), # fix_dimnames(temp, "temp", timespan, ncell, npft)),
avg_nyear_args
)
)
# biome_names after biome classification in Ostberg et al. 2013
# (https://doi.org/10.5194/esd-4-347-2013), Ostberg et al 2015
# (https://doi.org/10.1088/1748-9326/10/4/044011) and Gerten et al. 2020
# (https://doi.org/10.1038/s41893-019-0465-1)
# biome names
biome_mapping <- system.file("extdata",
"biomes.csv",
package = "biospheremetrics"
) %>%
readr::read_delim(col_types = readr::cols(), delim = ";")
biome_names <- biome_mapping$id
names(biome_names) <- biome_mapping$name
pft_categories <- system.file("extdata",
"pft_categories.csv",
package = "biospheremetrics"
) %>%
read_pft_categories() %>%
dplyr::filter(., npft_proxy == npft)
fpc_names <- dplyr::filter(pft_categories, category == "natural")$pft
# TODO this is only required if header files without band names are read in
# but maybe ok to use external data here?
dimnames(avg_fpc)$band <- c("natural stand fraction", fpc_names)
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
fpc_temperate_trees <- dplyr::filter(
pft_categories,
type == "tree" & zone == "temperate" & category == "natural"
)$pft
fpc_tropical_trees <- dplyr::filter(
pft_categories,
type == "tree" & zone == "tropical" & category == "natural"
)$pft
fpc_boreal_trees <- dplyr::filter(
pft_categories,
type == "tree" & zone == "boreal" & category == "natural"
)$pft
fpc_needle_trees <- dplyr::filter(
pft_categories,
type == "tree" & category == "needle"
)$pft
fpc_evergreen_trees <- dplyr::filter(
pft_categories,
type == "tree" & category == "evergreen"
)$pft
fpc_grass <- dplyr::filter(
pft_categories,
type == "grass" & category == "natural"
)$pft
fpc_trees <- dplyr::filter(
pft_categories,
type == "tree" & category == "natural"
)$pft
third_dim <- names(dim(avg_fpc))[
!names(dim(avg_fpc)) %in% c("cell", "band")
fpc_tree_total <- apply(
lpjmlkit::asub(avg_fpc, band = fpc_trees),
c("cell", third_dim),
sum,
na.rm = TRUE
)
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
fpc_tree_tropical <- apply(
lpjmlkit::asub(avg_fpc, band = fpc_tropical_trees),
c("cell", third_dim),
sum,
na.rm = TRUE
)
fpc_tree_temperate <- apply(
lpjmlkit::asub(avg_fpc, band = fpc_temperate_trees),
c("cell", third_dim),
sum,
na.rm = TRUE
)
fpc_tree_boreal <- apply(
lpjmlkit::asub(avg_fpc, band = fpc_boreal_trees),
c("cell", third_dim),
sum,
na.rm = TRUE
)
fpc_tree_needle <- apply(
lpjmlkit::asub(avg_fpc, band = fpc_needle_trees),
c("cell", third_dim),
sum,
na.rm = TRUE
)
fpc_tree_evergreen <- apply(
lpjmlkit::asub(avg_fpc, band = fpc_evergreen_trees),
c("cell", third_dim),
sum,
na.rm = TRUE
)
fpc_grass_total <- apply(
lpjmlkit::asub(avg_fpc, band = fpc_grass),
c("cell", third_dim),
sum,
na.rm = TRUE
)
fpc_total <- apply(
lpjmlkit::asub(avg_fpc, band = -1),
c("cell", third_dim),
sum,
na.rm = TRUE
)
max_share_trees <- apply(
lpjmlkit::asub(avg_fpc, band = fpc_trees),
c("cell", third_dim),
max,
na.rm = TRUE
)
# use vegc 7500 gC/m2 or natLAI 6 as proxy threshold for forest/savanna
# "boundary
if (!is.null(savanna_proxy)) {
if (savanna_proxy_name == "pft_lai") {
avg_savanna_proxy_data <- apply(
lpjmlkit::asub(avg_savanna_proxy_data, band = seq_len(npft)) *
lpjmlkit::asub(avg_fpc, band = 1),
c("cell", third_dim),
sum
)
} else {
avg_savanna_proxy_data <- drop(avg_savanna_proxy_data)
}
is_tropical_proxy <- avg_savanna_proxy_data >=
savanna_proxy[[savanna_proxy_name]]
is_savanna_proxy <- avg_savanna_proxy_data <
savanna_proxy[[savanna_proxy_name]]
dim = dim(avg_temp),
dimnames = dimnames(avg_temp)
)
dim = dim(avg_temp),
dimnames = dimnames(avg_temp)
)
}
# Desert
is_desert <- {
fpc_total <= 0.05 &
avg_temp >= 0 #-2
}
# montane (for classification of montane grassland)
if (!is.na(montane_arctic_proxy_name)) {
if (montane_arctic_proxy_name == "elevation") {
is_montane_artic <- elevation > montane_arctic_proxy[[
montane_arctic_proxy_name
]]
} else if (montane_arctic_proxy_name == "latitude") {
is_montane_artic <- !(abs(lat) > montane_arctic_proxy[[
montane_arctic_proxy_name
]])
}
}
# FORESTS ------------------------------------------------------------------ #
is_boreal_forest <- {
fpc_tree_total >= min_tree_cover[["boreal forest"]]
}
is_temperate_forest <- {
fpc_tree_total >= min_tree_cover[["temperate forest"]]
}
is_tropical_forest <- {
fpc_tree_total >= min_tree_cover[["tropical forest"]]
}
# Boreal Evergreen
is_boreal_evergreen <- {
is_boreal_forest &
lpjmlkit::asub(
avg_fpc,
band = "boreal needleleaved evergreen tree"
) == max_share_trees
}
if (npft == 9) {
# Boreal Broadleaved Deciduous
# no simulation of boreal needleleaved summergreen trees
is_boreal_broad_deciduous <- {
is_boreal_forest &
(
lpjmlkit::asub(
avg_fpc,
band = "boreal broadleaved summergreen tree"
) == max_share_trees
)
lpjmlkit::asub(
avg_fpc,
band = "boreal broadleaved summergreen tree"
) == max_share_trees
}
is_boreal_needle_deciduous <- {
is_boreal_forest &
lpjmlkit::asub(
avg_fpc,
band = "boreal needleleaved summergreen tree"
) == max_share_trees
}
}
# Temperate Coniferous Forest
is_temperate_coniferous <- {
is_temperate_forest &
lpjmlkit::asub(
avg_fpc,
band = "temperate needleleaved evergreen tree"
) == max_share_trees
}
# Temperate Broadleaved Evergreen Forest
is_temperate_broadleaved_evergreen <- { # nolint
is_temperate_forest &
lpjmlkit::asub(
avg_fpc,
band = "temperate broadleaved evergreen tree"
) == max_share_trees
}
# Temperate Broadleaved Deciduous Forest
is_temperate_broadleaved_deciduous <- { # nolint
is_temperate_forest &
lpjmlkit::asub(
avg_fpc,
band = "temperate broadleaved summergreen tree"
) == max_share_trees
}
# Tropical Rainforest
is_tropical_evergreen <- {
is_tropical_forest &
lpjmlkit::asub(
avg_fpc,
band = "tropical broadleaved evergreen tree"
) == max_share_trees &
is_tropical_proxy
}
# Tropical Seasonal & Deciduous Forest
is_tropical_raingreen <- {
is_tropical_forest &
(lpjmlkit::asub(
avg_fpc,
band = "tropical broadleaved raingreen tree"
) == max_share_trees) &
is_tropical_proxy
}
# Warm Woody Savanna, Woodland & Shrubland
is_tropical_forest_savanna <- {
is_tropical_forest &
(
lpjmlkit::asub(
avg_fpc,
band = "tropical broadleaved evergreen tree"
) == max_share_trees |
lpjmlkit::asub(
avg_fpc,
band = "tropical broadleaved raingreen tree"
) == max_share_trees
) &
is_savanna_proxy
}
# WOODY savanna ----------------------------------------------------------- #
# Temperate Woody Savanna, Woodland & Shrubland
is_temperate_woody_savanna <- {
fpc_tree_total <= min_tree_cover[["temperate forest"]] &
fpc_tree_total >= min_tree_cover[["temperate woodland"]] &
lpjmlkit::asub(avg_fpc, band = "temperate c3 grass") >
lpjmlkit::asub(avg_fpc, band = "tropical c4 grass") &
avg_temp >= 0 #-2 &
}
# Warm Woody Savanna, Woodland & Shrubland
is_tropical_woody_savanna <- {
fpc_tree_total <= min_tree_cover[["tropical forest"]] &
fpc_tree_total >= min_tree_cover[["tropical woodland"]] &
lpjmlkit::asub(avg_fpc, band = "temperate c3 grass") <
lpjmlkit::asub(avg_fpc, band = "tropical c4 grass")
}
# OPEN SHRUBLAND / SAVANNAS ----------------------------------------------- #
# Temperate Savanna & Open Shrubland
is_temperate_shrubland <- {
fpc_tree_total <= min_tree_cover[["temperate woodland"]] &
fpc_tree_total >= min_tree_cover[["temperate savanna"]] &
lpjmlkit::asub(avg_fpc, band = "temperate c3 grass") >
lpjmlkit::asub(avg_fpc, band = "tropical c4 grass") &
avg_temp >= 0 #-2 &
}
# Warm Savanna & Open Shrubland
is_tropical_shrubland <- {
fpc_tree_total <= min_tree_cover[["tropical woodland"]] &
fpc_tree_total >= min_tree_cover[["tropical savanna"]] &
lpjmlkit::asub(avg_fpc, band = "temperate c3 grass") <
lpjmlkit::asub(avg_fpc, band = "tropical c4 grass") &
avg_temp >= 0 #-2
}
# GRASSLAND ---------------------------------------------------------------- #
# Temperate grassland
is_temperate_grassland <- {
fpc_total > 0.05 &
fpc_tree_total <= min_tree_cover[["temperate savanna"]] &
lpjmlkit::asub(avg_fpc, band = "temperate c3 grass") >
lpjmlkit::asub(avg_fpc, band = "tropical c4 grass") &
avg_temp >= 0 #-2 &
}
# Warm grassland
is_tropical_grassland <- {
fpc_total > 0.05 &
fpc_tree_total <= min_tree_cover[["tropical savanna"]] &
lpjmlkit::asub(avg_fpc, band = "temperate c3 grass") <
lpjmlkit::asub(avg_fpc, band = "tropical c4 grass") &
avg_temp >= 0 #-2
}
# Arctic Tundra ------------------------------------------------------------ #
is_arctic_tundra <- {
(!is_boreal_forest &
!is_temperate_forest &
(
avg_temp < 0 |
lpjmlkit::asub(avg_fpc, band = "temperate c3 grass") ==
lpjmlkit::asub(avg_fpc, band = "tropical c4 grass")) &
}
# Rocks and Ice
is_rocks_and_ice <- {
fpc_total == 0 &
avg_temp < 0 #-2
}
# Water body
is_water <- {
lpjmlkit::asub(avg_fpc, band = 1) == 0
}
# CLASSIFY BIOMES ---------------------------------------------------------- #
# initiate biome_class array
biome_class <- array(NA,
dim = c(grid$meta$ncell),
dimnames = dimnames(fpc_total)
)
biome_class[is_desert] <- biome_names["Desert"]
# forests
biome_class[is_boreal_evergreen] <- biome_names[
biome_class[is_boreal_broad_deciduous] <- biome_names[
biome_class[is_boreal_needle_deciduous] <- biome_names[
biome_class[is_temperate_coniferous] <- biome_names[
"Temperate Needleleaved Evergreen Forest"
]
biome_class[is_temperate_broadleaved_evergreen] <- biome_names[
"Temperate Broadleaved Evergreen Forest"
]
biome_class[is_temperate_broadleaved_deciduous] <- biome_names[
"Temperate Broadleaved Deciduous Forest"
]
biome_class[is_tropical_evergreen] <- biome_names["Tropical Rainforest"]
biome_class[is_tropical_raingreen] <- biome_names[
biome_class[is_tropical_forest_savanna] <- biome_names[
"Warm Woody Savanna, Woodland & Shrubland"
]
biome_class[is_temperate_woody_savanna] <- biome_names[
"Temperate Woody Savanna, Woodland & Shrubland"
]
biome_class[is_tropical_woody_savanna] <- biome_names[
"Warm Woody Savanna, Woodland & Shrubland"
]
biome_class[is_temperate_shrubland] <- biome_names[
biome_class[is_tropical_shrubland] <- biome_names[
biome_class[is_temperate_grassland] <- biome_names["Temperate Grassland"]
biome_class[is_tropical_grassland] <- biome_names["Warm Grassland"]
biome_class[is_arctic_tundra] <- biome_names["Arctic Tundra"]
if (!is.na(montane_arctic_proxy_name)) {
biome_class[
biome_class == biome_names["Arctic Tundra"] & is_montane_artic
] <- biome_names["Montane Grassland"]
}
# other
biome_class[is_rocks_and_ice] <- biome_names["Rocks and Ice"]
biome_class[is_water] <- biome_names["Water"]
return(list(biome_id = biome_class, biome_names = names(biome_names)))
}
read_pft_categories <- function(file_path) {
# read_delim, col_types = readr::cols(), delim = ";")to suppress messages
readr::read_delim(file_path, col_types = readr::cols(), delim = ";") %>%
# change 1, 0.5, 0 values to TRUE and NAs (NA's can be dropped)
dplyr::mutate_at(
dplyr::vars(dplyr::starts_with(c("category_", "zone_"))),
function(x) ifelse(as.logical(x), TRUE, NA)
) %>%
# filter natural pfts
dplyr::filter(category_natural) %>%
# all binary zone columns (tropical, temperate, boreal) in one categorical
# zone column
tidyr::pivot_longer(
cols = starts_with("zone_"),
names_to = "zone",
names_prefix = "zone_",
values_to = "zone_value",
values_drop_na = TRUE
) %>%
# all binary category columns (natural, needle, evergreen) in one
# category column
tidyr::pivot_longer(
cols = starts_with("category_"),
names_to = "category",
names_prefix = "category_",
values_to = "category_value",
values_drop_na = TRUE
) %>%
# delete side product - logical columns
dplyr::select(-c("category_value", "zone_value")) %>%
# values to lpjml_index, names to length of npft (convert to numeric)
tidyr::pivot_longer(
cols = starts_with("lpjml_index_npft_"),
values_to = "lpjml_index",
names_to = "npft_proxy",
names_transform = list(
npft_proxy =
function(x) suppressWarnings(as.numeric(x))
),
names_prefix = "lpjml_index_npft_"
) %>%