Newer
Older
# written by Fabian Stenzel, based on work by Sebastian Ostberg
# 2022-2023 - stenzel@pik-potsdam.de
################# EcoRisk calc functions ###################
#' Wrapper for calculating the ecosystem change metric EcoRisk
#'
#' Function to read in data for ecorisk, and call the calculation function once,
#' if overtime is FALSE, or for each timeslice of length window years, if
#' overtime is TRUE
#'
#' @param path_ref folder of reference run
#' @param path_scen folder of scenario run
#' @param read_saved_data whether to read in previously saved data
#' (default: FALSE)
#' @param save_data file to save read in data to (default NULL)
#' @param save_ecorisk file to save EcoRisk data to (default NULL)
#' @param nitrogen include nitrogen outputs for pools and fluxes into EcoRisk
#' calculation (default FALSE)
#' @param weighting apply "old" (Ostberg-like), "new", or "equal" weighting of
#' vegetation_structure_change weights (default "equal")
#' @param time_span_reference vector of years to use as scenario period
#' @param time_span_scenario vector of years to use as scenario period
#' @param dimensions_only_local flag whether to use only local change component
#' for water/carbon/nitrogen fluxes and pools, or use an average of
#' local change, global change and ecosystem balance (default FALSE)
#' @param overtime logical: calculate ecorisk as time-series? (default: FALSE)
#' @param window integer, number of years for window length (default: 30)
#' @param debug write out all nitrogen state variables (default FALSE)
#' @param suppressWarnings suppress warnings - default: TRUE
#' @param external_variability use externally supplied variability for the
#' reference period? experimental! (default: FALSE)
#' @param c2vr external variability array
#'
#' @return list data object containing arrays of ecorisk_total,
#' vegetation_structure_change, local_change, global_importance,
#' ecosystem_balance, carbon_stocks, carbon_fluxes, water_fluxes
#' @examples
#' \dontrun{
#' ecorisk_wrapper(
#' path_ref = pnv_folder,
#' path_scen = run_folder,
#' read_saved_data = FALSE,
#' nitrogen = TRUE,
#' save_data = NULL,
#' save_ecorisk = NULL,
#' time_span_reference = c(1550:1579),
#' time_span_scenario = c(1987:2016)
#' )
#' }
#'
#' @md
#' @export
ecorisk_wrapper <- function(path_ref,
path_scen,
read_saved_data = FALSE,
save_data = NULL,
save_ecorisk = NULL,
nitrogen = TRUE,
weighting = "equal",
time_span_reference,
time_span_scenario,
dimensions_only_local = FALSE,
overtime = FALSE,
window = 30,
debug = FALSE,
external_variability = FALSE,
c2vr = NULL,
suppressWarnings = TRUE) {

Fabian Stenzel
committed
# check timespan consistency
nyears <- length(time_span_reference)
nyears_scen <- length(time_span_scenario)
if ((!nyears == window) || nyears_scen < window) {
stop(
"Timespan in reference is not equal to window size (",
window,
"), or scenario timespan is smaller than window size."
)

Fabian Stenzel
committed
# translate output names (from metric_files.yml) and folders to files_scenarios/reference lists
metric_files <- system.file(
"extdata",
"metric_files.yml",
package = "biospheremetrics"
) %>%
yaml::read_yaml()

Fabian Stenzel
committed
file_extension <- get_major_file_ext(paste0(path_scen))

Fabian Stenzel
committed
files_names <- metric_files$file_name
files_scenario <- list()
files_reference <- list()
for (output in names(metric_files$metric$ecorisk_nitrogen$output)) {
# Iterate over all outputs
files_scenario[[output]] <- paste0(path_scen, metric_files$file_name[[output]][1], ".", file_extension)
files_reference[[output]] <- paste0(path_ref, metric_files$file_name[[output]][1], ".", file_extension)
}
if (overtime && (window != nyears)) stop("Overtime is enabled, but window \
length (", window, ") does not match the reference nyears.")
if (read_saved_data) {
if (!is.null(save_data)) {
message("Loading saved data from:", save_data)
stop(
"save_data is not specified as parameter, ",
"nothing to load ... exiting"
)
# first read in all lpjml output files required for computing EcoRisks
returned_vars <- read_ecorisk_data(
files_reference = files_reference,
files_scenario = files_scenario,
save_file = save_data,
nitrogen = nitrogen,
time_span_reference = time_span_reference,
time_span_scenario = time_span_scenario,
debug = debug,
suppressWarnings = suppressWarnings
)
# extract variables from return list object and give them proper names
state_ref <- returned_vars$state_ref
state_scen <- returned_vars$state_scen
fpc_ref <- returned_vars$fpc_ref
fpc_scen <- returned_vars$fpc_scen
bft_ref <- returned_vars$bft_ref
bft_scen <- returned_vars$bft_scen
cft_ref <- returned_vars$cft_ref
cft_scen <- returned_vars$cft_scen
lat <- returned_vars$lat
lon <- returned_vars$lon
cell_area <- returned_vars$cell_area
rm(returned_vars)
}
ncells <- length(cell_area)
slices <- (nyears_scen - window + 1)
ecorisk <- list(
ecorisk_total = array(0, dim = c(ncells, slices)),
vegetation_structure_change = array(0, dim = c(ncells, slices)),
local_change = array(0, dim = c(ncells, slices)),
global_importance = array(0, dim = c(ncells, slices)),
ecosystem_balance = array(0, dim = c(ncells, slices)),
c2vr = array(0, dim = c(4, ncells, slices)),
carbon_stocks = array(0, dim = c(ncells, slices)),
carbon_fluxes = array(0, dim = c(ncells, slices)),
carbon_total = array(0, dim = c(ncells, slices)),
water_total = array(0, dim = c(ncells, slices)),
water_fluxes = array(0, dim = c(ncells, slices)),
nitrogen_stocks = array(0, dim = c(ncells, slices)),
nitrogen_fluxes = array(0, dim = c(ncells, slices)),

Fabian Stenzel
committed
nitrogen_total = array(0, dim = c(ncells, slices)),
lat = lat,
lon = lon
message("Calculating time slice ", y, " of ", slices)
returned <- calc_ecorisk(
fpc_ref = fpc_ref,
fpc_scen = fpc_scen[, , y:(y + window - 1)],
bft_ref = bft_ref,
bft_scen = bft_scen[, , y:(y + window - 1)],
cft_ref = cft_ref,
cft_scen = cft_scen[, , y:(y + window - 1)],
state_ref = state_ref,
state_scen = state_scen[, y:(y + window - 1), ],
weighting = weighting,
lat = lat,
lon = lon,
cell_area = cell_area,
dimensions_only_local = dimensions_only_local,
nitrogen = nitrogen,
external_variability = external_variability,
c2vr = c2vr
)
ecorisk$ecorisk_total[, y] <- returned$ecorisk_total
ecorisk$vegetation_structure_change[, y] <- (
returned$vegetation_structure_change
)
ecorisk$local_change[, y] <- returned$local_change
ecorisk$global_importance[, y] <- returned$global_importance
ecorisk$ecosystem_balance[, y] <- returned$ecosystem_balance
ecorisk$c2vr[, , y] <- returned$c2vr
ecorisk$carbon_stocks[, y] <- returned$carbon_stocks
ecorisk$carbon_fluxes[, y] <- returned$carbon_fluxes
ecorisk$carbon_total[, y] <- returned$carbon_total
ecorisk$water_total[, y] <- returned$water_total
ecorisk$water_fluxes[, y] <- returned$water_fluxes
if (nitrogen) {
ecorisk$nitrogen_stocks[, y] <- returned$nitrogen_stocks
ecorisk$nitrogen_fluxes[, y] <- returned$nitrogen_fluxes
ecorisk$nitrogen_total[, y] <- returned$nitrogen_total
}
############## export and save data if requested #############
if (!(is.null(save_ecorisk))) {
message("Saving EcoRisk data to: ", save_ecorisk)
save(ecorisk, file = save_ecorisk)
}
#
###
return(ecorisk)
}
#' Calculate the ecosystem change metric EcoRisk between 2 sets of states
#' This function is called by the wrapper function (ecorisk_wrapper),
#' unless you know what you are doing, don't use this function directly.
#'
#' Function to calculate the ecosystem change metric EcoRisk, based on
#' gamma/vegetation_structure_change
#' work from Sykes (1999), Heyder (2011), and Ostberg (2015,2018).
#' This is a reformulated version in R, not producing 100% similar values
#' than the C/bash version from Ostberg et al. 2018, but similar the methodology
#'
#' @param fpc_ref reference run data for fpc
#' @param fpc_scen scenario run data for fpc
#' @param bft_ref reference run data for fpc_bft
#' @param bft_scen scenario run data for fpc_bft
#' @param cft_ref reference run data for cftfrac
#' @param cft_scen scenario run data for cftfrac
#' @param state_ref reference run data for state variables
#' @param state_scen scenario run data for state variables
#' @param weighting apply "old" (Ostberg-like), "new", or "equal" weighting of
#' vegetation_structure_change weights (default "equal")
#' @param lat latitude array
#' @param lon longitude array
#' @param cell_area cellarea array
#' @param dimensions_only_local flag whether to use only local change component
#' for water/carbon/nitrogen fluxes and pools, or use an average of
#' local change, global change and ecosystem balance (default FALSE)
#' @param nitrogen include nitrogen outputs (default: TRUE)
#' @param external_variability include external change_to_variability_ratio?
#' (default: FALSE)
#' @param c2vr list with external change_to_variability_ratios for each
#' component (default: NULL)
#'
#' @return list data object containing arrays of ecorisk_total,
#' vegetation_structure_change, local_change, global_importance,
#' ecosystem_balance, carbon_stocks, carbon_fluxes, water_fluxes
#' (+ nitrogen_stocks and nitrogen_fluxes)
#'
#' @export
calc_ecorisk <- function(fpc_ref,
fpc_scen,
bft_ref,
bft_scen,
cft_ref,
cft_scen,
state_ref,
state_scen,
weighting = "equal",
lat,
lon,
cell_area,
dimensions_only_local = FALSE,
nitrogen = TRUE,
external_variability = FALSE,
c2vr = NULL) {
if (external_variability && is.null(c2vr)) {
stop("external_variability enabled, but not supplied (c2vr). Aborting.")
di_ref <- dim(fpc_ref)
di_scen <- dim(fpc_scen)
ncells <- di_ref[1]
nyears <- di_ref[3]
if (di_ref[3] != di_scen[3]) {
stop("Dimension year does not match between fpc_scen and fpc_ref.")
}
# calc vegetation_structure_change and variability of
# vegetation_structure_change within
# reference period S(vegetation_structure_change,
# sigma_vegetation_structure_change)
fpc_ref_mean <- apply(fpc_ref, c(1, 2), mean)
bft_ref_mean <- apply(bft_ref, c(1, 2), mean)
cft_ref_mean <- apply(cft_ref, c(1, 2), mean)
sigma_vegetation_structure_change_ref_list <- array(
)
# calculate for every year of the reference period,
# vegetation_structure_change between that year and the average reference
# period year
# this gives the variability of vegetation_structure_change within the
# reference period
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
sigma_vegetation_structure_change_ref_list[, y] <- calc_delta_v( # nolint
fpc_ref = fpc_ref_mean,
fpc_scen = fpc_ref[, , y],
bft_ref = bft_ref_mean,
bft_scen = bft_ref[, , y],
cft_ref = cft_ref_mean,
cft_scen = cft_ref[, , y],
weighting = weighting
)
}
# calculate the std deviation over the reference period for each gridcell
vegetation_structure_changesd <- apply(
sigma_vegetation_structure_change_ref_list,
c(1),
stats::sd
)
# calculate vegetation_structure_change between average reference and average
# scenario period
vegetation_structure_change <- calc_delta_v(
fpc_ref = fpc_ref_mean,
fpc_scen = apply(fpc_scen, c(1, 2), mean),
bft_ref = bft_ref_mean,
bft_scen = apply(bft_scen, c(1, 2), mean),
cft_ref = cft_ref_mean,
cft_scen = apply(cft_scen, c(1, 2), mean),
weighting = weighting
)
#
####
############## calc EcoRisk components ################

Fabian Stenzel
committed
# dimensions in the state vector
# 1 "vegetation_carbon_pool"
# 2 "soil_carbon_pool"
# 3 "carbon_influx"
# 4 "carbon_outflux"
# 5 "soil_water_pool"
# 6 "water_influx"
# 7 "water_outflux"
# 8 "other"
# 9 "vegetation_nitrogen_pool"
# 10 "soil_mineral_nitrogen_pool"
# 11 "nitrogen_influx"
# 12 "nitrogen_outflux"
delta_var <- s_change_to_var_ratio(
vegetation_structure_change,
vegetation_structure_changesd
nitrogen_dimensions <- c("vegetation_nitrogen_pool", "soil_mineral_nitrogen_pool", "nitrogen_influx", "nitrogen_outflux")
all_dimensions <- dimnames(state_scen)$class
non_nitrogen_dimensions <- setdiff(all_dimensions, nitrogen_dimensions)
ref = state_ref,
scen = state_scen,

Fabian Stenzel
committed
ref = state_ref,
scen = state_scen,
local = FALSE,
cell_area = cell_area
) # global importance
ref = state_ref,
scen = state_scen
) # ecosystem balance
ref = state_ref[, , non_nitrogen_dimensions],
scen = state_scen[, , non_nitrogen_dimensions],
ref = state_ref[, , non_nitrogen_dimensions],
scen = state_scen[, , non_nitrogen_dimensions],
ref = state_ref[, , non_nitrogen_dimensions],
scen = state_scen[, , non_nitrogen_dimensions]
) # ecosystem balance
}
if (dimensions_only_local == TRUE) {
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
# carbon stocks (local change)
cs <- calc_component(
ref = state_ref[, , c("vegetation_carbon_pool", "soil_carbon_pool")],
scen = state_scen[, , c("vegetation_carbon_pool", "soil_carbon_pool")],
local = TRUE,
cell_area = cell_area
)$full
# carbon fluxes (local change)
cf <- calc_component(
ref = state_ref[, , c("carbon_influx", "carbon_outflux")],
scen = state_scen[, , c("carbon_influx", "carbon_outflux")],
local = TRUE,
cell_area = cell_area
)$full
# total carbon (local change)
ct <- calc_component(
ref = state_ref[, , c("vegetation_carbon_pool", "soil_carbon_pool", "carbon_influx", "carbon_outflux")],
scen = state_scen[, , c("vegetation_carbon_pool", "soil_carbon_pool", "carbon_influx", "carbon_outflux")],
local = TRUE,
cell_area = cell_area
)$full
# water fluxes (local change)
wf <- calc_component(
ref = state_ref[, , c("water_influx", "water_outflux")],
scen = state_scen[, , c("water_influx", "water_outflux")],
local = TRUE,
cell_area = cell_area
)$full
# total water (local change)
wt <- calc_component(
ref = state_ref[, , c("water_influx", "water_outflux", "soil_water_pool")],
scen = state_scen[, , c("water_influx", "water_outflux", "soil_water_pool")],
local = TRUE,
cell_area = cell_area
)$full
# nitrogen stocks (local change)
if (nitrogen) {
ns <- calc_component(
ref = state_ref[, , c("vegetation_nitrogen_pool", "soil_mineral_nitrogen_pool")],
scen = state_scen[, , c("vegetation_nitrogen_pool", "soil_mineral_nitrogen_pool")],
# nitrogen fluxes (local change)
nf <- calc_component(
ref = state_ref[, , c("nitrogen_influx", "nitrogen_outflux")],
scen = state_scen[, , c("nitrogen_influx", "nitrogen_outflux")],
local = TRUE,
# total nitrogen (local change)
nt <- calc_component(
ref = state_ref[, , c("vegetation_nitrogen_pool", "soil_mineral_nitrogen_pool", "nitrogen_influx", "nitrogen_outflux")],
scen = state_scen[, , c("vegetation_nitrogen_pool", "soil_mineral_nitrogen_pool", "nitrogen_influx", "nitrogen_outflux")],
}
} else { # local == FALSE
cf <- (
calc_component(
ref = state_ref[, , c("carbon_influx", "carbon_outflux")],
scen = state_scen[, , c("carbon_influx", "carbon_outflux")],
ref = state_ref[, , c("carbon_influx", "carbon_outflux")],
scen = state_scen[, , c("carbon_influx", "carbon_outflux")],
local = FALSE,
cell_area = cell_area
ref = state_ref[, , c("carbon_influx", "carbon_outflux")],
scen = state_scen[, , c("carbon_influx", "carbon_outflux")]
# carbon stocks
cs <- (
calc_component(
ref = state_ref[, , c("vegetation_carbon_pool", "soil_carbon_pool")],
scen = state_scen[, , c("vegetation_carbon_pool", "soil_carbon_pool")],
local = TRUE,
cell_area = cell_area
)$full +
ref = state_ref[, , c("vegetation_carbon_pool", "soil_carbon_pool")],
scen = state_scen[, , c("vegetation_carbon_pool", "soil_carbon_pool")],
ref = state_ref[, , c("vegetation_carbon_pool", "soil_carbon_pool")],
scen = state_scen[, , c("vegetation_carbon_pool", "soil_carbon_pool")]
# carbon total
ct <- (
calc_component(
ref = state_ref[, , c("vegetation_carbon_pool", "soil_carbon_pool", "carbon_influx", "carbon_outflux")],
scen = state_scen[, , c("vegetation_carbon_pool", "soil_carbon_pool", "carbon_influx", "carbon_outflux")],
local = TRUE,
cell_area = cell_area
)$full +
calc_component(
ref = state_ref[, , c("vegetation_carbon_pool", "soil_carbon_pool", "carbon_influx", "carbon_outflux")],
scen = state_scen[, , c("vegetation_carbon_pool", "soil_carbon_pool", "carbon_influx", "carbon_outflux")],
local = FALSE,
cell_area = cell_area
calc_ecosystem_balance(
ref = state_ref[, , c("vegetation_carbon_pool", "soil_carbon_pool", "carbon_influx", "carbon_outflux")],
scen = state_scen[, , c("vegetation_carbon_pool", "soil_carbon_pool", "carbon_influx", "carbon_outflux")]
# water fluxes
wf <- (
calc_component(
ref = state_ref[, , c("water_influx", "water_outflux")],
scen = state_scen[, , c("water_influx", "water_outflux")],
local = TRUE,
cell_area = cell_area
)$full +
ref = state_ref[, , c("water_influx", "water_outflux")],
scen = state_scen[, , c("water_influx", "water_outflux")],
local = FALSE,
cell_area = cell_area
ref = state_ref[, , c("water_influx", "water_outflux")],
scen = state_scen[, , c("water_influx", "water_outflux")]
# water total
wt <- (
calc_component(
ref = state_ref[, , c("water_influx", "water_outflux", "soil_water_pool")],
scen = state_scen[, , c("water_influx", "water_outflux", "soil_water_pool")],
local = TRUE,
cell_area = cell_area
)$full +
ref = state_ref[, , c("water_influx", "water_outflux", "soil_water_pool")],
scen = state_scen[, , c("water_influx", "water_outflux", "soil_water_pool")],
local = FALSE,
cell_area = cell_area
ref = state_ref[, , c("water_influx", "water_outflux", "soil_water_pool")],
scen = state_scen[, , c("water_influx", "water_outflux", "soil_water_pool")]
if (nitrogen) {
# nitrogen stocks (local change)
ns <- (
calc_component(
ref = state_ref[, , c("vegetation_nitrogen_pool", "soil_mineral_nitrogen_pool")],
scen = state_scen[, , c("vegetation_nitrogen_pool", "soil_mineral_nitrogen_pool")],
local = TRUE,
cell_area = cell_area
)$full +
ref = state_ref[, , c("vegetation_nitrogen_pool", "soil_mineral_nitrogen_pool")],
scen = state_scen[, , c("vegetation_nitrogen_pool", "soil_mineral_nitrogen_pool")],
ref = state_ref[, , c("vegetation_nitrogen_pool", "soil_mineral_nitrogen_pool")],
scen = state_scen[, , c("vegetation_nitrogen_pool", "soil_mineral_nitrogen_pool")]
# nitrogen fluxes (local change)
nf <- (
calc_component(
ref = state_ref[, , c("nitrogen_influx", "nitrogen_outflux")],
scen = state_scen[, , c("nitrogen_influx", "nitrogen_outflux")],
local = TRUE,
cell_area = cell_area
)$full +
ref = state_ref[, , c("nitrogen_influx", "nitrogen_outflux")],
scen = state_scen[, , c("nitrogen_influx", "nitrogen_outflux")],
local = FALSE,
cell_area = cell_area
ref = state_ref[, , c("nitrogen_influx", "nitrogen_outflux")],
scen = state_scen[, , c("nitrogen_influx", "nitrogen_outflux")]
nt <- (
calc_component(
ref = state_ref[, , c("vegetation_nitrogen_pool", "soil_mineral_nitrogen_pool", "nitrogen_influx", "nitrogen_outflux")],
scen = state_scen[, , c("vegetation_nitrogen_pool", "soil_mineral_nitrogen_pool", "nitrogen_influx", "nitrogen_outflux")],
local = TRUE,
cell_area = cell_area
)$full +
calc_component(
ref = state_ref[, , c("vegetation_nitrogen_pool", "soil_mineral_nitrogen_pool", "nitrogen_influx", "nitrogen_outflux")],
scen = state_scen[, , c("vegetation_nitrogen_pool", "soil_mineral_nitrogen_pool", "nitrogen_influx", "nitrogen_outflux")],
local = FALSE,
cell_area = cell_area
calc_ecosystem_balance(
ref = state_ref[, , c("vegetation_nitrogen_pool", "soil_mineral_nitrogen_pool", "nitrogen_influx", "nitrogen_outflux")],
scen = state_scen[, , c("vegetation_nitrogen_pool", "soil_mineral_nitrogen_pool", "nitrogen_influx", "nitrogen_outflux")]
delta <- vegetation_structure_change * c2vr["vs", ] # vegetation_structure_change
lc <- lc_raw$value * c2vr["lc", ]
gi <- gi_raw$value * c2vr["gi", ]
eb <- eb_raw$value * c2vr["eb", ]
delta <- vegetation_structure_change * delta_var # vegetation_structure_change
lc <- lc_raw$value * lc_raw$var
gi <- gi_raw$value * gi_raw$var
eb <- eb_raw$value * eb_raw$var
c2vr <- rbind(delta_var, lc_raw$var, gi_raw$var, eb_raw$var) # dim=(4,ncells)
dimnames(c2vr) <- list(component = c("vs", "lc", "gi", "eb"), cell = 0:(ncells - 1))
# calc total EcoRisk as the average of the 4 components
ecorisk_full <- (delta + lc + gi + eb) / 4 # check for NAs
if (nitrogen) {
ecorisk <- list(
ecorisk_total = ecorisk_full,
vegetation_structure_change = delta,
local_change = lc,
global_importance = gi,
ecosystem_balance = eb,
carbon_total = ct,
water_stocks = NA,
water_total = wt,
nitrogen_fluxes = nf,
nitrogen_total = nt
)
} else {
ecorisk <- list(
ecorisk_total = ecorisk_full,
vegetation_structure_change = delta,
local_change = lc,
global_importance = gi,
ecosystem_balance = eb,
carbon_total = ct,
water_stocks = NA,
water_total = wt,
nitrogen_stocks = NA,
nitrogen_fluxes = NA,
nitrogen_total = NA
)
}
###
return(ecorisk)
}
#' Read in output data from LPJmL to calculate the ecosystem change metric
#' EcoRisk. This function is called by the wrapper function (ecorisk_wrapper),
#' unless you know what you are doing, don't use this function directly.
#'
#' Utility function to read in output data from LPJmL for calculation of EcoRisk
#'
#' @param files_reference folder of reference run
#' @param files_scenario folder of scenario run
#' @param save_file file to save read in data to (default NULL)
#' @param time_span_reference vector of years to use as scenario period
#' @param time_span_scenario vector of years to use as scenario period
#' @param nitrogen include nitrogen outputs for pools and fluxes into EcoRisk
#' calculation (default FALSE)
#' @param debug write out all nitrogen state variables (default FALSE)
#' @param suppressWarnings suppress writing of Warnings, default: TRUE
#'
#' @return list data object containing arrays of state_ref, mean_state_ref,
#' state_scen, mean_state_scen, fpc_ref, fpc_scen, bft_ref, bft_scen,
#' cft_ref, cft_scen, lat, lon, cell_area
#'
#' @export
read_ecorisk_data <- function(
files_reference, # nolint
files_scenario,
save_file = NULL,
time_span_reference,
time_span_scenario,
nitrogen,
file_type <- tools::file_ext(files_reference$grid)
if (file_type %in% c("json", "clm")) {
# read grid
grid <- lpjmlkit::read_io(

Fabian Stenzel
committed
files_reference$grid

Fabian Stenzel
committed
cell_area <- drop(lpjmlkit::read_io(
filename = files_reference$terr_area

Fabian Stenzel
committed
ncells <- length(lat)
nyears <- length(time_span_scenario)
### read in lpjml output
# for vegetation_structure_change (fpc,fpc_bft,cftfrac)
message("Reading in fpc, fpc_bft, cftfrac")
cft_scen <- aperm(lpjmlkit::read_io(
files_scenario$cftfrac,
subset = list(year = as.character(time_span_scenario))
) %>%
lpjmlkit::transform(to = c("year_month_day")) %>%
lpjmlkit::as_array(aggregate = list(month = sum)), c(1, 3, 2)) %>%
suppressWarnings()
bft_scen <- aperm(lpjmlkit::read_io(
files_scenario$fpc_bft,
subset = list(year = as.character(time_span_scenario))
) %>%
lpjmlkit::transform(to = c("year_month_day")) %>%
lpjmlkit::as_array(aggregate = list(month = sum)), c(1, 3, 2)) %>%
suppressWarnings()
fpc_scen <- aperm(lpjmlkit::read_io(
files_scenario$fpc,
subset = list(year = as.character(time_span_scenario))
) %>%
lpjmlkit::transform(to = c("year_month_day")) %>%
lpjmlkit::as_array(aggregate = list(month = sum)), c(1, 3, 2)) %>%
suppressWarnings()
if (file.exists(files_reference$cftfrac)) {
cft_ref <- aperm(lpjmlkit::read_io(
files_reference$cftfrac,
subset = list(year = as.character(time_span_reference))
) %>%
lpjmlkit::transform(to = c("year_month_day")) %>%
lpjmlkit::as_array(aggregate = list(month = sum)), c(1, 3, 2)) %>%
suppressWarnings()
} else {
cft_ref <- cft_scen * 0
}
if (file.exists(files_reference$fpc_bft)) {
bft_ref <- aperm(lpjmlkit::read_io(
files_reference$fpc_bft,
subset = list(year = as.character(time_span_reference))
) %>%
lpjmlkit::transform(to = c("year_month_day")) %>%
lpjmlkit::as_array(aggregate = list(month = sum)), c(1, 3, 2)) %>%
suppressWarnings()
} else {
bft_ref <- bft_scen * 0
}
fpc_ref <- aperm(lpjmlkit::read_io(
files_reference$fpc,
subset = list(year = as.character(time_span_reference))
) %>%
lpjmlkit::transform(to = c("year_month_day")) %>%
lpjmlkit::as_array(aggregate = list(month = sum)), c(1, 3, 2)) %>%
suppressWarnings()

Fabian Stenzel
committed
#### new input reading ###
metric_files <- system.file(
"extdata",
"metric_files.yml",
package = "biospheremetrics"
) %>%
yaml::read_yaml()

Fabian Stenzel
committed
nclasses <- length(metric_files$metric$ecorisk_nitrogen$metric_class)
nstate_dimensions <- 0
for (i in seq_len(nclasses)) {
nstate_dimensions <- nstate_dimensions +
length(metric_files$metric$ecorisk_nitrogen$metric_class[[i]])
}
state_ref <- array(0, dim = c(ncells, nyears, nstate_dimensions))
state_scen <- array(0, dim = c(ncells, nyears, nstate_dimensions))
class_names <- seq_len(nstate_dimensions)

Fabian Stenzel
committed
index <- 1
# iterate over main classes (carbon pools, water fluxes ...)

Fabian Stenzel
committed
classe <- metric_files$metric$ecorisk_nitrogen$metric_class[[c]]
nsubclasses <- length(classe)
# iterate over subclasses (vegetation carbon, soil water ...)

Fabian Stenzel
committed
subclass <- classe[s]
class_names[index] <- names(subclass)
vars <- split_sign(unlist(subclass))

Fabian Stenzel
committed
path_scen_file <- files_scenario[[vars[v, "variable"]]]
if (file.exists(path_scen_file)) {
header_scen <- lpjmlkit::read_meta(filename = path_scen_file)

Fabian Stenzel
committed
"Reading in ", path_scen_file, " with unit ", header_scen$unit,
" -> as part of ", class_names[index]

Fabian Stenzel
committed
var_scen <- lpjmlkit::read_io(
path_scen_file,
subset = list(year = as.character(time_span_scenario))
) %>%
lpjmlkit::transform(to = c("year_month_day")) %>%
lpjmlkit::as_array(aggregate = list(month = sum, band = sum), ) %>%
drop() %>%
suppressWarnings()

Fabian Stenzel
committed
} else {
stop(paste("Couldn't read in:", path_scen_file, " - stopping!"))

Fabian Stenzel
committed
}
path_ref_file <- files_reference[[vars[v, "variable"]]]
if (file.exists(path_ref_file)) {
header_ref <- lpjmlkit::read_meta(path_ref_file)

Fabian Stenzel
committed
"Reading in ", path_ref_file, " with unit ", header_ref$unit,
" -> as part of ", class_names[index]

Fabian Stenzel
committed
var_ref <- lpjmlkit::read_io(
path_ref_file,
subset = list(year = as.character(time_span_reference))
) %>%
lpjmlkit::transform(to = c("year_month_day")) %>%
lpjmlkit::as_array(aggregate = list(month = sum, band = sum)) %>%
drop() %>%
suppressWarnings()

Fabian Stenzel
committed
} else {
stop(paste("Couldn't read in:", path_ref_file, " - stopping!"))

Fabian Stenzel
committed
}
# if (vars[v,"sign"] == "+"){
# state_scen[,,index,] <- state_scen[,,index,] + var_scen
# state_ref[,,index,] <- state_ref[,,index,] + var_ref
# } else { # vars[v,"sign"] == "-"
# state_scen[,,index,] <- state_scen[,,index,] - var_scen
# state_ref[,,index,] <- state_ref[,,index,] - var_ref
# }
# }else{
if (vars[v, "sign"] == "+") {
state_scen[, , index] <- state_scen[, , index] + var_scen
state_ref[, , index] <- state_ref[, , index] + var_ref
} else { # vars[v,"sign"] == "-"
state_scen[, , index] <- state_scen[, , index] - var_scen
state_ref[, , index] <- state_ref[, , index] - var_ref

Fabian Stenzel
committed
}

Fabian Stenzel
committed
}
index <- index + 1

Fabian Stenzel
committed
}
dimnames(state_scen) <- list(cell = 0:(ncells - 1), year = as.character(time_span_scenario), class = class_names)
dimnames(state_ref) <- list(cell = 0:(ncells - 1), year = as.character(time_span_reference), class = class_names)
} else if (file_type == "nc") { # to be added
stop(
"nc reading has not been updated to latest functionality. ",
"Please contact Fabian Stenzel"
)
} else {
stop("Unrecognized file type (", file_type, ")")
}
if (!(is.null(save_file))) {
message("Saving data to: ", save_file)
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
save(state_ref, state_scen, fpc_ref, fpc_scen,
bft_ref, bft_scen, cft_ref, cft_scen, lat, lon, cell_area,
file = save_file
)
}
return(
list(
state_ref = state_ref,
state_scen = state_scen,
fpc_ref = fpc_ref,
fpc_scen = fpc_scen,
bft_ref = bft_ref,
bft_scen = bft_scen,
cft_ref = cft_ref,
cft_scen = cft_scen,
lat = lat,
lon = lon,
cell_area = cell_area
)
)
}
#' Calculates changes in vegetation structure (vegetation_structure_change)
#'
#' Utility function to calculate changes in vegetation structure
#' (vegetation_structure_change) for calculation of EcoRisk
#'
#' @param fpc_ref reference fpc array (dim: [ncells,npfts+1])
#' @param fpc_scen scenario fpc array (dim: [ncells,npfts+1])
#' @param bft_ref reference bft array (dim: [ncells,nbfts])
#' @param bft_scen scenario bft array (dim: [ncells,nbfts])
#' @param cft_ref reference cft array (dim: [ncells,ncfts])
#' @param cft_scen scenario cft array (dim: [ncells,ncfts])
#' @param weighting apply "old" (Ostberg-like), "new", or "equal" weighting of
#' vegetation_structure_change weights (default "equal")
#'
#' @return vegetation_structure_change array of size ncells with the
#' vegetation_structure_change value [0,1] for each cell
#'
#' @examples
#' \dontrun{
#' vegetation_structure_change <- calc_delta_v(
#' fpc_ref = fpc_ref_mean,
#' fpc_scen = apply(fpc_scen, c(1, 2), mean),
#' bft_ref = bft_ref_mean,
#' bft_scen = apply(bft_scen, c(1, 2), mean),
#' cft_ref = cft_ref_mean,
#' cft_scen = apply(cft_scen, c(1, 2), mean),
#' weighting = "equal"
#' )
#' }
#' @export
calc_delta_v <- function(fpc_ref, # nolint
fpc_scen,
bft_ref,
bft_scen,
cft_ref,
cft_scen,
weighting = "equal") {
di <- dim(fpc_ref)
ncells <- di[1]
npfts <- di[2] - 1
fpc_ref[fpc_ref < 0] <- 0
fpc_scen[fpc_scen < 0] <- 0
bft_ref[bft_ref < 0] <- 0
bft_scen[bft_scen < 0] <- 0
cft_ref[cft_ref < 0] <- 0
cft_scen[cft_scen < 0] <- 0
if (npfts == 9) {
# barren = 1 - crop area - natural vegetation area +
# barren under bioenergy trees
barren_area_ref <- (
1 - rowSums(cft_ref) -
rowSums(fpc_ref[, 2:10]) * fpc_ref[, 1] +
rowSums(cft_ref[, c(16, 32)]) * (1 - rowSums(bft_ref[, c(1:4, 7:10)]))
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
)
barren_area_ref[barren_area_ref < 0] <- 0
tree_area_ref <- array(0, dim = c(ncells, 11))
# natural tree area fractions scaled by total natural frac
tree_area_ref[, 1:7] <- (
fpc_ref[, 2:8] * fpc_ref[, 1]
)
# fraction of rainfed tropical and temperate BE trees scaled by total
# rainfed bioenergy tree area and relative fpc of bioenergy trees and
# grass under bioenergy trees
tree_area_ref[, 8:9] <- (
cft_ref[, 16] * bft_ref[, 1:2] / rowSums(bft_ref[, c(1, 2, 4)])
)
# fraction of irrigated tropical and temperate BE trees scaled by total
# irrigated bioenergy tree area and relative fpc of bioenergy trees and
# grass under bioenergy trees
tree_area_ref[, 10:11] <- (
cft_ref[, 32] * bft_ref[, 7:8] / rowSums(bft_ref[, c(7, 8, 10)])
)
grass_area_ref <- array(0, dim = c(ncells, 20))
# natural grass
grass_area_ref[, 1:2] <- fpc_ref[, 9:10] * fpc_ref[, 1]
# crops
grass_area_ref[, 3:15] <- cft_ref[, 1:13] + cft_ref[, 17:29]
# managed grass rf
grass_area_ref[, 16] <- cft_ref[, 14]
# managed grass irr
grass_area_ref[, 17] <- cft_ref[, 30]
# bioenergy grass
grass_area_ref[, 18] <- cft_ref[, 15] + cft_ref[, 31]
# fraction of rainfed grass under bioenergy trees
grass_area_ref[, 19] <- (
cft_ref[, 16] * bft_ref[, 4] / rowSums(bft_ref[, c(1, 2, 4)])
)
# fraction of irrigated grass under bioenergy trees
grass_area_ref[, 20] <- (
cft_ref[, 32] * bft_ref[, 10] / rowSums(bft_ref[, c(7, 8, 10)])
)