Skip to content
Snippets Groups Projects
Commit de8feda1 authored by Peter-Paul Pichler's avatar Peter-Paul Pichler
Browse files

new figure 5

parent 7ba036b3
No related branches found
No related tags found
No related merge requests found
No preview for this file type
No preview for this file type
No preview for this file type
No preview for this file type
No preview for this file type
......@@ -570,14 +570,14 @@ knitr::include_graphics(here::here("analysis", "figures", "figure4.pdf"))
```{r }
pdat_int_energy = get_sector_summary_by_eu_ntile_direct(eu_q_count) %>%
pdat_intensity = get_sector_summary_by_eu_ntile_direct(eu_q_count) %>%
ungroup() %>%
filter(year==2015) %>%
left_join(read_csv(here("analysis/data/derived/sectors_agg_method1_ixi.csv")),
by="sector_agg_id") %>%
mutate(intensity_energy = (total_energy_use_tj-total_energy_use_losses_tj)/(total_fd_me)) %>% ## changed to subtract losses to get 'final' energy
mutate(final_energy_intensity = (total_energy_use_tj-total_energy_use_losses_tj)/(total_fd_me)) %>% ## changed to subtract losses to get 'final' energy
select(five_sectors, eu_q_rank,
intensity_energy) %>%
final_energy_intensity) %>%
filter(eu_q_rank == 10) %>%
select(-eu_q_rank)
......@@ -586,19 +586,19 @@ pdat_final_demand = get_sector_summary_by_eu_ntile_direct(eu_q_count) %>%
filter(year==2015) %>%
left_join(read_csv(here("analysis/data/derived/sectors_agg_method1_ixi.csv")),
by="sector_agg_id") %>%
left_join(pdat_int_energy, by="five_sectors") %>%
mutate(total_energy_use_tj_new = (total_fd_me)*intensity_energy) %>%
mutate(total_energy_use_tj_diff = (total_energy_use_tj-total_energy_use_losses_tj)-total_energy_use_tj_new) %>% ## changed here too
select(eu_q_rank,total_energy_use_tj_new) %>%
left_join(pdat_intensity, by="five_sectors") %>%
mutate(total_final_energy_use_tj_new = (total_fd_me)*final_energy_intensity) %>%
#mutate(total_energy_use_tj_diff = (total_energy_use_tj-total_energy_use_losses_tj)-total_energy_use_tj_new) %>% ## changed here too
select(eu_q_rank,total_final_energy_use_tj_new) %>%
group_by(eu_q_rank) %>%
summarise(total_energy_use_tj_new = sum(total_energy_use_tj_new)) %>%
mutate(pae_energy_use_tj = total_energy_use_tj_new/33417583,
pae_energy_use_gj = pae_energy_use_tj*1000)
summarise(total_final_energy_use_tj_new = sum(total_final_energy_use_tj_new)) %>%
mutate(pae_final_energy_use_tj = total_final_energy_use_tj_new/33417583,
pae_final_energy_use_gj = pae_final_energy_use_tj*1000)
df_energy_deciles = pdat_final_demand %>%
select(eu_q_rank, pae_energy_use_gj)
select(eu_q_rank, pae_final_energy_use_gj)
ineq_curr = df_energy_deciles$pae_energy_use_gj[10]/df_energy_deciles$pae_energy_use_gj[1]
ineq_curr = df_energy_deciles$pae_final_energy_use_gj[10]/df_energy_deciles$pae_final_energy_use_gj[1]
df_scenario_info = read_excel(here("analysis/data/raw/scenarios.xlsx"), sheet="overview") %>%
select(scenario, fe_gj_aeu = final_energy_gj_per_aeu_2050,
......@@ -662,7 +662,7 @@ for (min_energy in seq(from=mer[1], to=mer[2], by=0.1)) {
if (min_energy <= mean_energy) {
df_all = df_all %>%
bind_rows(df_energy_deciles %>%
scaled_quantiles(eu_q_rank, pae_energy_use_gj, min_energy, mean_energy))
scaled_quantiles(eu_q_rank, pae_final_energy_use_gj, min_energy, mean_energy))
}
}
}
......@@ -695,14 +695,27 @@ df_all = readRDS(here("analysis/data/derived/scenarios_extrafine.rds")) %>%
df_grid = df_all %>%
filter(!(v_mean %in% df_scenario_info$fe_gj_aeu))
df_scenario = df_all %>%
filter((v_mean %in% df_scenario_info$fe_gj_aeu))
df_dle = tibble(bin_ratio = 1, v_first = 16, v_mean = 16)
df_scenario_info = df_scenario_info %>%
mutate(labl = paste0(scenario, " (", fe_gj_aeu, ")"))
scenario_label = df_scenario_info %>%
mutate(labl = paste0(scenario, " (", fe_gj_aeu, ")")) %>%
pull(labl)
df_scenario = df_all %>%
filter((v_mean %in% df_scenario_info$fe_gj_aeu)) %>%
left_join(df_scenario_info %>% select(labl, v_mean = fe_gj_aeu))
df_scenario$labl = factor(df_scenario$labl, levels = c("DLE (16)",
"LED global (28)",
"LED North (55)",
"GEA-efficiency (66)",
"IEA ETP B2DS (87)",
"SSP1-1.9 (90)",
"SSP2-1.9 (98)",
"SSP2-2.6 (119)"))
df_hm = df_scenario %>%
group_by(v_mean) %>%
slice_min(v_first) %>%
mutate(dle = if_else(v_mean == 16, "yes", "no"))
library(ggsci)
......@@ -710,17 +723,18 @@ a = df_grid %>%
ggplot(aes(x=v_first, y=bin_ratio, group=v_mean)) +
geom_smooth(aes(linetype="Maximum energy\nsupply (GJ/ae)"), se=FALSE, color="grey", size=0.5) +
scale_linetype_manual(name="", values = c(2)) +
geom_smooth(data=df_scenario, aes(color=factor(v_mean)), se=FALSE) +
geom_point(data=df_dle, aes(color=factor(v_mean))) +
scale_size_manual(values = c("yes"=1, "no"=-1))+
geom_point(data=df_hm, aes(color=labl, size=dle)) +
geom_smooth(data=df_scenario, aes(color=labl), se=FALSE) +
#geom_point(data=df_scenario %>% filter(v_mean==16), aes(color=labl)) +
geom_hline(yintercept = ineq_curr, color="grey") +
annotate(geom="text",x=56,y=12,label="300", angle=-35, size=3, color="grey32") +
annotate(geom="text",x=46,y=9.5,label="200", angle=-35, size=3, color="grey32") +
annotate(geom="text",x=33.5,y=6,label="100", angle=-35, size=3, color="grey32") +
annotate(geom="text",x=60,y=ineq_curr-0.28,
label="energy use inequality 2015", size=3.75, hjust=1, color="grey40") +
scale_color_npg(
name = "Scenario",
labels = scenario_label) +
guides(size=FALSE) +
scale_color_npg(name = "Scenario") +
lims(x=c(15.5,60), y=c(1,13)) +
labs(x= "Minimum energy use (GJ/ae)", y="Energy use inequality (90:10 ratio)") +
theme_minimal() +
......
No preview for this file type
No preview for this file type
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment