Skip to content
Snippets Groups Projects
Commit d542ea01 authored by Ingram Jaccard's avatar Ingram Jaccard
Browse files

edit ms

parent e986d98d
No related branches found
No related tags found
No related merge requests found
......@@ -638,7 +638,7 @@ flextable(df_scenario_info) %>%
width(width = 3)
```
The various global supply side scenarios (SSP1-1.9, SSP2-1.9, GEA efficiency, IEA ETP B2DS)[@riahi_shared_2017 @gea_gea_nodate @grubler_low_2018] envisage total European energy use falling from the 2015 level of 92 EJ to around 21-31 EJ by 2050, equivalent to a per household reduction from a current average of 250 GJ to 64-94 GJ per adult equivalent. The differences in energy use in 2050 in the scenarios reflect different model assumptions about the rate of expansion of renewable energy and CCS capacity. These scenarios rely on substantial amounts of CCS starting in 2020, which is still a fairly speculative technology, and we therefore interpret them as ranges for the upper limits of 1.5°C-compatible energy supply [@riahi_shared_2017 @gea_gea_nodate].
The various global supply side scenarios (SSP1-1.9, SSP2-1.9, GEA efficiency, IEA ETP B2DS)[@riahi_shared_2017 @gea_gea_nodate @grubler_low_2018] envisage household European energy use falling from the 2015 level of 92 EJ to around 21-31 EJ by 2050, equivalent to a per household reduction from a current average of 250 GJ to 64-94 GJ per adult equivalent. The differences in energy use in 2050 in the scenarios reflect different model assumptions about the rate of expansion of renewable energy and CCS capacity. These scenarios rely on substantial amounts of CCS starting in 2020, which is still a fairly speculative technology, and we therefore interpret them as ranges for the upper limits of 1.5°C-compatible energy supply [@riahi_shared_2017 @gea_gea_nodate].
It is even more difficult to determine a lower limit for the minimum amount of energy needed for a decent life. This depends strongly on the one hand on the prevalent socio-cultural idea of what constitutes a decent life, and on the other hand, perhaps even more strongly, on the physical infrastructure available to deliver this life. The two global demand side scenarios (LED, DLE)[@grubler_low_2018 @millward-hopkins_providing_2020] that attempt to define such a limit conclude that, in principle, a very low energy footprint (between 16-53 GJ per household adult equivalent) could be sufficient. However, these scenarios rely on socio-technological transformations on a scale that, especially at the lower end, far exceeds the current political discourse on the subject. These scenarios are 1.5°C compatible without resorting to any CCS but they all implicitly (LED)[@grubler_low_2018] or explicitly (DLE)[@millward-hopkins_providing_2020] assume near complete equality of consumption across the population. To put these low energy demand numbers in perspective, the average energy footprint in our sample (250 GJ/ae) is about a factor 5 above the high estimate. Households in the first European expenditure decile had an energy footprint of 130 GJ per adult equivalent in 2015 even though they fell almost entirely within the Eurostat definition of severe material deprivation [@eurostat_living_nodate].
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment