Skip to content
Snippets Groups Projects
Commit a95ed37f authored by Peter-Paul Pichler's avatar Peter-Paul Pichler
Browse files

revision 0.1

parent 037f0fb8
No related branches found
No related tags found
No related merge requests found
analysis/figures/fig4a-alt-1.png

65.7 KiB

No preview for this file type
No preview for this file type
No preview for this file type
No preview for this file type
No preview for this file type
......@@ -314,7 +314,8 @@ pdat = get_sector_summary_by_eu_ntile_direct(eu_q_count) %>%
"tCO2eq per adult eq",
"Energy GJ per adult eq")) %>%
filter(indicator != "pae_co2eq_t",
indicator != "pae_energy_use_gj")
indicator != "pae_energy_use_gj") %>%
filter(!str_detect(indicator, "losses"))
pal <- wes_palette("Zissou1", 4, type = "discrete")
......@@ -382,7 +383,8 @@ knitr::include_graphics(here::here("analysis", "figures", "figure3.pdf"))
# Fig.4
```{r}
```{r, eval=FALSE}
# old figure 4a, delete
pal <- wes_palette("Zissou1", 4, type = "discrete")
pal = pal[c(2,1,3,4)]
......@@ -427,6 +429,66 @@ p1 = ggplot(pdat_final_demand, aes(x=eu_q_rank, y=value, fill=indicator, alpha=i
```
```{r fig4a-alt}
pal <- wes_palette("Zissou1", 4, type = "discrete")
pal = pal[c(2,1,3,4)]
pdat_int_energy_best = get_sector_summary_by_eu_ntile_direct(eu_q_count) %>%
ungroup() %>%
filter(year==2015) %>%
left_join(read_csv(here("analysis/data/derived/sectors_agg_method1_ixi.csv")),
by="sector_agg_id") %>%
mutate(int_energy_final = (total_energy_use_tj-total_energy_use_losses_tj)/(total_fd_me),
int_energy_losses = (total_energy_use_losses_tj)/(total_fd_me),
int_energy_net = (total_energy_use_tj)/(total_fd_me)) %>%
select(five_sectors, eu_q_rank,
int_energy_final, int_energy_losses, int_energy_net) %>%
filter(eu_q_rank == 10) %>%
select(-eu_q_rank)
pdat_final_demand = get_sector_summary_by_eu_ntile_direct(eu_q_count) %>%
ungroup() %>%
filter(year==2015) %>%
left_join(read_csv(here("analysis/data/derived/sectors_agg_method1_ixi.csv")),
by="sector_agg_id") %>%
left_join(pdat_int_energy_best, by="five_sectors") %>%
mutate(total_energy_use_new_final_tj = (total_fd_me)*int_energy_final,
total_energy_use_new_losses_tj = (total_fd_me)*int_energy_losses) %>%
mutate(total_energy_use_final_tj = total_energy_use_tj-total_energy_use_losses_tj,
total_energy_use_final_tj_diff = total_energy_use_final_tj-total_energy_use_new_final_tj,
total_energy_use_losses_tj_diff = total_energy_use_losses_tj-total_energy_use_new_losses_tj) %>%
select(five_sectors, eu_q_rank,
total_energy_use_new_final_tj, total_energy_use_final_tj_diff,
total_energy_use_new_losses_tj, total_energy_use_losses_tj_diff) %>%
group_by(eu_q_rank) %>%
summarise(total_energy_use_new_final_tj = sum(total_energy_use_new_final_tj)*0.000001,
total_energy_use_final_tj_diff = sum(total_energy_use_final_tj_diff)*0.000001,
total_energy_use_new_losses_tj = sum(total_energy_use_new_losses_tj)*0.000001,
total_energy_use_losses_tj_diff = sum(total_energy_use_losses_tj_diff)*0.000001) %>%
pivot_longer(-c(eu_q_rank), names_to = "indicator", values_to = "value") %>%
mutate(technology = if_else(str_detect(indicator, "new"), "new", "diff"),
energy = if_else(str_detect(indicator, "final"), "Final energy", "Losses"))
p1 = ggplot(pdat_final_demand, aes(x=eu_q_rank, y=value, fill=technology, alpha=technology)) +
geom_col(position = position_stack()) +
scale_fill_manual(values=c(pal[1], pal[2]),
labels=c("2015", "Best technology"), name="Energy\nfootprint") +
scale_alpha_manual(values=c(0.3,1),labels=c("2015", "Best technology"), name="Energy\nfootprint")+
scale_x_continuous(breaks = c(1,2,3,4,5,6,7,8,9,10),
labels = c("D01","D02","D03","D04","D05","D06","D07","D08","D09","D10")) +
labs(y="Energy footprint (EJ)", x="") +
theme_minimal() +
coord_flip() +
theme(legend.position="bottom") +
facet_wrap(~energy, ncol = 2)
```
```{r}
pdat_energy_country = get_sector_summary_by_country_quintile_direct() %>%
......@@ -434,8 +496,8 @@ pdat_energy_country = get_sector_summary_by_country_quintile_direct() %>%
filter(year==2015) %>%
left_join(read_csv(here("analysis/data/derived/sectors_agg_method1_ixi.csv")),
by="sector_agg_id") %>%
left_join(pdat_int_energy, by="five_sectors") %>%
mutate(total_energy_use_tj_new = (total_fd_me)*intensity_energy) %>%
left_join(pdat_int_energy_best, by="five_sectors") %>%
mutate(total_energy_use_tj_new = (total_fd_me)*int_energy_net) %>%
#mutate(total_energy_use_tj_save = total_energy_use_tj_new/total_energy_use_tj*100) %>%
select(iso2,
total_energy_use_tj_new, total_energy_use_tj) %>%
......
No preview for this file type
This diff is collapsed.
No preview for this file type
This diff is collapsed.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment