Skip to content
Snippets Groups Projects
Commit 5c0f3f21 authored by Ingram Jaccard's avatar Ingram Jaccard
Browse files

edit full code

parent 66d70b36
No related branches found
No related tags found
No related merge requests found
...@@ -1117,6 +1117,7 @@ Would be in an 'income-stratified-footprints' preprocessing folder ...@@ -1117,6 +1117,7 @@ Would be in an 'income-stratified-footprints' preprocessing folder
# income-stratified-footprints directory # income-stratified-footprints directory
#data_dir_income_stratified_footprints = paste("/",file.path("data","metab","income-stratified-footprints", fsep=.Platform$file.sep),sep="") #data_dir_income_stratified_footprints = paste("/",file.path("data","metab","income-stratified-footprints", fsep=.Platform$file.sep),sep="")
data_dir_income_stratified_footprints = here("analysis", "preprocessing", "income-stratified-footprints") data_dir_income_stratified_footprints = here("analysis", "preprocessing", "income-stratified-footprints")
data_dir_exiobase = here("analysis", "preprocessing", "EXIOBASE")
################################################### !!!! method 1 - PPS HH - RENT NOT MAPPED TO EXIOBASE !!!! ########################################### ################################################### !!!! method 1 - PPS HH - RENT NOT MAPPED TO EXIOBASE !!!! ###########################################
########################################################################################################################################################## ##########################################################################################################################################################
...@@ -2562,7 +2563,7 @@ fd_exiobase = disaggregated_final_demand %>% ...@@ -2562,7 +2563,7 @@ fd_exiobase = disaggregated_final_demand %>%
# direct from FD - to go back to results without direct FD fp, do not run this next chunk and do not bind_rows with 'results' # direct from FD - to go back to results without direct FD fp, do not run this next chunk and do not bind_rows with 'results'
env_ac_pefasu_no_TR = read_csv(paste0(data_dir_income_stratified_footprints, "/data/env_ac_pefasu_1_Data.csv")) %>% env_ac_pefasu_no_TR = read_csv(paste0(data_dir_income_stratified_footprints, "/env_ac_pefasu_1_Data.csv")) %>%
filter(TIME == 2015) %>% filter(TIME == 2015) %>%
mutate(geo = dplyr::recode(GEO,"Austria" = "AT", mutate(geo = dplyr::recode(GEO,"Austria" = "AT",
"Belgium" = "BE", "Belgium" = "BE",
...@@ -2612,7 +2613,7 @@ env_ac_pefasu_TR = env_ac_pefasu_no_TR %>% ...@@ -2612,7 +2613,7 @@ env_ac_pefasu_TR = env_ac_pefasu_no_TR %>%
env_ac_pefasu = rbind(env_ac_pefasu_no_TR,env_ac_pefasu_TR) %>% env_ac_pefasu = rbind(env_ac_pefasu_no_TR,env_ac_pefasu_TR) %>%
gather(sector,share_of_total_energy,-geo) gather(sector,share_of_total_energy,-geo)
env_ac_ainah_r2 = read_csv(paste0(data_dir_income_stratified_footprints, "/data/env_ac_ainah_r2_1_Data.csv")) %>% env_ac_ainah_r2 = read_csv(paste0(data_dir_income_stratified_footprints, "/env_ac_ainah_r2_1_Data.csv")) %>%
filter(TIME == 2015) %>% filter(TIME == 2015) %>%
mutate(geo = dplyr::recode(GEO,"Austria" = "AT", mutate(geo = dplyr::recode(GEO,"Austria" = "AT",
"Belgium" = "BE", "Belgium" = "BE",
...@@ -3013,19 +3014,8 @@ results = fd_exiobase %>% ...@@ -3013,19 +3014,8 @@ results = fd_exiobase %>%
results_with_direct_FD_fp = bind_rows(results,direct_FD_fp_wide) results_with_direct_FD_fp = bind_rows(results,direct_FD_fp_wide)
#write.csv(results, paste0(data_dir_income_stratified_footprints, "/results_no_rent_ixi.csv"))
### create compressed results_ixi rds file ### create compressed results_ixi rds file
#if (!require("pacman")) install.packages("pacman")
#pacman::p_load(tidyverse,
# janitor,
# here)
#dat_all = read_csv(here("data/results_ixi.csv")) %>%
# clean_names()
dat_all = results_with_direct_FD_fp %>% dat_all = results_with_direct_FD_fp %>%
clean_names() clean_names()
...@@ -3035,7 +3025,7 @@ sectors = dat_all %>% ...@@ -3035,7 +3025,7 @@ sectors = dat_all %>%
mutate(sector_id = row_number()) mutate(sector_id = row_number())
#write_csv(sectors, here("data/sector_labels.csv")) #write_csv(sectors, here("data/sector_labels.csv"))
write_csv(sectors, paste0(data_dir_income_stratified_footprints, "/sectors_method1_ixi_pps_hh.csv")) write_csv(sectors, paste0(here("/analysis/data/derived/sectors_method1_ixi.csv")))
# convert aggregated sector labels to IDs # convert aggregated sector labels to IDs
sectors_agg = dat_all %>% sectors_agg = dat_all %>%
...@@ -3043,7 +3033,7 @@ sectors_agg = dat_all %>% ...@@ -3043,7 +3033,7 @@ sectors_agg = dat_all %>%
mutate(sector_agg_id = row_number()) mutate(sector_agg_id = row_number())
#write_csv(sectors_agg, here("data/sector_agg_labels.csv")) #write_csv(sectors_agg, here("data/sector_agg_labels.csv"))
write_csv(sectors_agg, paste0(data_dir_income_stratified_footprints, "/sectors_agg_method1_ixi_pps_hh.csv")) write_csv(sectors_agg, paste0(here("/analysis/data/derived/sectors_agg_method1_ixi.csv")))
# convert COICOP labels to IDs # convert COICOP labels to IDs
coicop = dat_all %>% coicop = dat_all %>%
...@@ -3051,7 +3041,7 @@ coicop = dat_all %>% ...@@ -3051,7 +3041,7 @@ coicop = dat_all %>%
mutate(coicop_id = row_number()) mutate(coicop_id = row_number())
#write_csv(sectors_agg, here("data/sector_agg_labels.csv")) #write_csv(sectors_agg, here("data/sector_agg_labels.csv"))
write_csv(coicop, paste0(data_dir_income_stratified_footprints, "/coicop_method1_ixi_pps_hh.csv")) write_csv(coicop, paste0(here("/analysis/data/derived/coicop_method1_ixi.csv")))
# replace sector text labels with numerical IDs (save space) # replace sector text labels with numerical IDs (save space)
dat_compressed = dat_all %>% dat_compressed = dat_all %>%
...@@ -3186,25 +3176,15 @@ results_recombined = tmp_fd %>% ...@@ -3186,25 +3176,15 @@ results_recombined = tmp_fd %>%
left_join(tmp_energy_domestic, by=c("year", "geo", "sector_id", "quint")) %>% left_join(tmp_energy_domestic, by=c("year", "geo", "sector_id", "quint")) %>%
left_join(tmp_energy_europe, by = c("year", "geo", "sector_id", "quint")) left_join(tmp_energy_europe, by = c("year", "geo", "sector_id", "quint"))
# finally re-join aggregated sector IDs # finally re-join aggregated sector IDs
results_formatted = results_recombined %>% results_formatted = results_recombined %>%
left_join(sector_mapping, by="sector_id") %>% left_join(sector_mapping, by="sector_id") %>%
ungroup() %>% ungroup() %>%
select(-coicop_id) select(-coicop_id)
#write_rds(results_formated, here("/results_formated.rds"))
write.csv(results_formatted, paste0(data_dir_income_stratified_footprints, "/results_formatted_method1_ixi.csv")) write.csv(results_formatted, paste0(data_dir_income_stratified_footprints, "/results_formatted_method1_ixi.csv"))
write_rds(results_formatted, paste0(data_dir_income_stratified_footprints, "/results_formatted_method1_ixi.rds")) write_rds(results_formatted, paste0(data_dir_income_stratified_footprints, "/results_formatted_method1_ixi.rds"))
#write.csv(results_formatted, paste0(data_dir_income_stratified_footprints, "/results_formatted_method1_ixi_pps_ae.csv"))
#write_rds(results_formatted, paste0(data_dir_income_stratified_footprints, "/results_formatted_method1_ixi_pps_ae.rds"))
################################################### !!!! method 1 - PXP version - PPS HH NO RENT !!!! #################################################### ################################################### !!!! method 1 - PXP version - PPS HH NO RENT !!!! ####################################################
########################################################################################################################################################## ##########################################################################################################################################################
########################################################################################################################################################## ##########################################################################################################################################################
...@@ -4544,7 +4524,7 @@ fd_exiobase = disaggregated_final_demand %>% ...@@ -4544,7 +4524,7 @@ fd_exiobase = disaggregated_final_demand %>%
# direct from FD - to go back to results without direct FD fp, do not run this next chunk and do not bind_rows with 'results' # direct from FD - to go back to results without direct FD fp, do not run this next chunk and do not bind_rows with 'results'
env_ac_pefasu_no_TR = read_csv(paste0(data_dir_income_stratified_footprints, "/data/env_ac_pefasu_1_Data.csv")) %>% env_ac_pefasu_no_TR = read_csv(paste0(data_dir_income_stratified_footprints, "/env_ac_pefasu_1_Data.csv")) %>%
filter(TIME == 2015) %>% filter(TIME == 2015) %>%
mutate(geo = dplyr::recode(GEO,"Austria" = "AT", mutate(geo = dplyr::recode(GEO,"Austria" = "AT",
"Belgium" = "BE", "Belgium" = "BE",
...@@ -4594,7 +4574,7 @@ env_ac_pefasu_TR = env_ac_pefasu_no_TR %>% ...@@ -4594,7 +4574,7 @@ env_ac_pefasu_TR = env_ac_pefasu_no_TR %>%
env_ac_pefasu = rbind(env_ac_pefasu_no_TR,env_ac_pefasu_TR) %>% env_ac_pefasu = rbind(env_ac_pefasu_no_TR,env_ac_pefasu_TR) %>%
gather(sector,share_of_total_energy,-geo) gather(sector,share_of_total_energy,-geo)
env_ac_ainah_r2 = read_csv(paste0(data_dir_income_stratified_footprints, "/data/env_ac_ainah_r2_1_Data.csv")) %>% env_ac_ainah_r2 = read_csv(paste0(data_dir_income_stratified_footprints, "/env_ac_ainah_r2_1_Data.csv")) %>%
filter(TIME == 2015) %>% filter(TIME == 2015) %>%
mutate(geo = dplyr::recode(GEO,"Austria" = "AT", mutate(geo = dplyr::recode(GEO,"Austria" = "AT",
"Belgium" = "BE", "Belgium" = "BE",
...@@ -4994,18 +4974,8 @@ results = fd_exiobase %>% ...@@ -4994,18 +4974,8 @@ results = fd_exiobase %>%
energy_total_europe = q1_energy_europe+q2_energy_europe+q3_energy_europe+q4_energy_europe+q5_energy_europe) energy_total_europe = q1_energy_europe+q2_energy_europe+q3_energy_europe+q4_energy_europe+q5_energy_europe)
results_with_direct_FD_fp = bind_rows(results,direct_FD_fp_wide) results_with_direct_FD_fp = bind_rows(results,direct_FD_fp_wide)
#write.csv(results, paste0(data_dir_income_stratified_footprints, "/results_no_rent_ixi.csv"))
### create compressed results_ixi rds file
#if (!require("pacman")) install.packages("pacman")
#pacman::p_load(tidyverse,
# janitor,
# here)
#dat_all = read_csv(here("data/results_ixi.csv")) %>% ### create compressed results_pxp rds file
# clean_names()
dat_all = results_with_direct_FD_fp %>% dat_all = results_with_direct_FD_fp %>%
clean_names() clean_names()
...@@ -5015,24 +4985,22 @@ sectors = dat_all %>% ...@@ -5015,24 +4985,22 @@ sectors = dat_all %>%
distinct(sector) %>% distinct(sector) %>%
mutate(sector_id = row_number()) mutate(sector_id = row_number())
#write_csv(sectors, here("data/sector_labels.csv")) # if interested in looking at a sectoral breakdown of the product-by-product version results, un-comment line below
write_csv(sectors, paste0(data_dir_income_stratified_footprints, "/sectors_method1_pxp_pps_hh.csv")) #write_csv(sectors, paste0(here("/analysis/data/derived/si/sectors_method1_pxp.csv")))
# convert aggregated sector labels to IDs # convert aggregated sector labels to IDs
sectors_agg = dat_all %>% sectors_agg = dat_all %>%
distinct(five_sectors) %>% distinct(five_sectors) %>%
mutate(sector_agg_id = row_number()) mutate(sector_agg_id = row_number())
#write_csv(sectors_agg, here("data/sector_agg_labels.csv")) #write_csv(sectors_agg, paste0(here("analysis/data/derived/si/sectors_agg_method1_pxp.csv")))
write_csv(sectors_agg, paste0(data_dir_income_stratified_footprints, "/sectors_agg_method1_pxp_pps_hh.csv"))
# convert COICOP labels to IDs # convert COICOP labels to IDs
coicop = dat_all %>% coicop = dat_all %>%
distinct(coicop) %>% distinct(coicop) %>%
mutate(coicop_id = row_number()) mutate(coicop_id = row_number())
#write_csv(sectors_agg, here("data/sector_agg_labels.csv")) #write_csv(coicop, paste0(here("analysis/data/derived/si/coicop_method1_pxp.csv")))
write_csv(coicop, paste0(data_dir_income_stratified_footprints, "/coicop_method1_pxp_pps_hh.csv"))
# replace sector text labels with numerical IDs (save space) # replace sector text labels with numerical IDs (save space)
dat_compressed = dat_all %>% dat_compressed = dat_all %>%
...@@ -5175,23 +5143,11 @@ results_formatted = results_recombined %>% ...@@ -5175,23 +5143,11 @@ results_formatted = results_recombined %>%
ungroup() %>% ungroup() %>%
select(-coicop_id) select(-coicop_id)
#write_rds(results_formated, here("/results_formated.rds")) write.csv(results_formatted, paste0(data_dir_income_stratified_footprints, "/results_formatted_method1_pxp.csv"))
write_rds(results_formatted, paste0(data_dir_income_stratified_footprints, "/results_formatted_method1_pxp.rds"))
write.csv(results_formatted, paste0(data_dir_income_stratified_footprints, "/results_formatted_method1_pxp_pps_hh_no_rent.csv"))
#write_rds(results_formatted, paste0(data_dir_income_stratified_footprints, "/results_formatted_method1_pxp_pps_hh_no_rent.rds"))
#write.csv(results_formatted, paste0(data_dir_income_stratified_footprints, "/results_formatted_method1_pxp_pps_ae.csv")) ################################################### !!!! method 2 !!!! - IXI version #############################
#write_rds(results_formatted, paste0(data_dir_income_stratified_footprints, "/results_formatted_method1_pxp_pps_ae.rds"))
################################################### !!!! method 2 !!!! - IXI version - PPS HH - RENT NOT MAPPED TO EXIOBASE !!!!! #############################
############################################################################################################################################################### ###############################################################################################################################################################
############################################################################################################################################################### ###############################################################################################################################################################
...@@ -5201,14 +5157,14 @@ write.csv(results_formatted, paste0(data_dir_income_stratified_footprints, "/res ...@@ -5201,14 +5157,14 @@ write.csv(results_formatted, paste0(data_dir_income_stratified_footprints, "/res
# aggregate - playing around trying to go the other way # aggregate - playing around trying to go the other way
# load 'mean expenditure by quintile' data # load 'mean expenditure by quintile' data
hbs_exp_t133 = read_csv(paste0(data_dir_income_stratified_footprints, "/data/hbs_exp_t133.csv")) hbs_exp_t133 = read_csv(paste0(data_dir_income_stratified_footprints, "/hbs_exp_t133.csv"))
# rename and arrange by country # rename and arrange by country
mean_expenditure_by_quintile = hbs_exp_t133 %>% mean_expenditure_by_quintile = hbs_exp_t133 %>%
rename(geo = 3, quintile = "quantile") %>% rename(geo = 3, quintile = "quantile") %>%
arrange(geo) arrange(geo)
# load 'mean expenditure by quintile and coicop' data # load 'mean expenditure by quintile and coicop' data
hbs_str_t223 = read_csv(paste0(data_dir_income_stratified_footprints, "/data/hbs_str_t223.csv")) hbs_str_t223 = read_csv(paste0(data_dir_income_stratified_footprints, "/hbs_str_t223.csv"))
# rename and arrange by country # rename and arrange by country
mean_expenditure_by_coicop_sector = hbs_str_t223 %>% mean_expenditure_by_coicop_sector = hbs_str_t223 %>%
rename(geo = 4, quintile = "quantile") %>% rename(geo = 4, quintile = "quantile") %>%
...@@ -5273,7 +5229,7 @@ join_expenditures = mean_expenditure_by_coicop_sector_long %>% ...@@ -5273,7 +5229,7 @@ join_expenditures = mean_expenditure_by_coicop_sector_long %>%
# load margin tables # load margin tables
trade_and_transport = read.csv(paste0(data_dir_income_stratified_footprints, "/data/SNA_TABLE45_20042020103737298.csv")) %>% trade_and_transport = read.csv(paste0(data_dir_income_stratified_footprints, "/SNA_TABLE45_20042020103737298.csv")) %>%
select(LOCATION, PRODUCT, Product, Year, Value) %>% select(LOCATION, PRODUCT, Product, Year, Value) %>%
mutate(geo = dplyr::recode(LOCATION,"AUT" = "AT", mutate(geo = dplyr::recode(LOCATION,"AUT" = "AT",
"BEL" = "BE", "BEL" = "BE",
...@@ -5317,7 +5273,7 @@ trade_and_transport = read.csv(paste0(data_dir_income_stratified_footprints, "/d ...@@ -5317,7 +5273,7 @@ trade_and_transport = read.csv(paste0(data_dir_income_stratified_footprints, "/d
taxes_less_subsidies = read.csv(paste0(data_dir_income_stratified_footprints, "/data/SNA_TABLE45_20042020104120395.csv")) %>% taxes_less_subsidies = read.csv(paste0(data_dir_income_stratified_footprints, "/SNA_TABLE45_20042020104120395.csv")) %>%
select(LOCATION, PRODUCT, Product, Year, Value) %>% select(LOCATION, PRODUCT, Product, Year, Value) %>%
mutate(geo = dplyr::recode(LOCATION,"AUT" = "AT", mutate(geo = dplyr::recode(LOCATION,"AUT" = "AT",
"BEL" = "BE", "BEL" = "BE",
...@@ -5515,10 +5471,6 @@ shares = join_expenditures %>% ...@@ -5515,10 +5471,6 @@ shares = join_expenditures %>%
########################################################################################################################################################## ##########################################################################################################################################################
########################################################################################################################################################## ##########################################################################################################################################################
# pre-processing
data_dir_exiobase = paste("/",file.path("data","metab","Exiobase", fsep=.Platform$file.sep),sep="")
# Exiobase - ixi version # Exiobase - ixi version
years_exb_ixi = c(2005,2010,2015) years_exb_ixi = c(2005,2010,2015)
...@@ -5601,7 +5553,7 @@ for (i in years_exb_ixi){ ...@@ -5601,7 +5553,7 @@ for (i in years_exb_ixi){
# labels # labels
Exiobase_T_labels = read.csv(paste0(data_dir_income_stratified_footprints, "/data/Exiobase_T_labels_ixi_w_coicop_mapping_no_rent.csv")) %>% Exiobase_T_labels = read.csv(paste0(data_dir_income_stratified_footprints, "/Exiobase_T_labels_ixi_w_coicop_mapping.csv")) %>%
mutate(V1 = dplyr::recode(V1,"GR" = "EL","GB" = "UK")) mutate(V1 = dplyr::recode(V1,"GR" = "EL","GB" = "UK"))
# TIVs # TIVs
...@@ -6721,22 +6673,6 @@ join_ala = mean_expenditure_by_coicop_sector_long_bp %>% ...@@ -6721,22 +6673,6 @@ join_ala = mean_expenditure_by_coicop_sector_long_bp %>%
pm_bp = as.numeric(pm_bp), pm_bp = as.numeric(pm_bp),
fd_me = pm_bp*((eurostat_countries_colsums*mean_exp_shares)/1000)) fd_me = pm_bp*((eurostat_countries_colsums*mean_exp_shares)/1000))
###################################################
#%>%
# rename(coicop_level1 = coicop)
# TIV only taking the mean
# mean_TIV_with_labels = TIV_with_labels %>% group_by(geo,year,coicop,coicop_level1) %>%
# summarise(TIV_CO2 = mean(TIV_CO2))
#ok = join_ala %>% left_join(mean_TIV_with_labels, by = c("geo","year","coicop")) %>%
# mutate(CO2_normal = exp_normal*TIV_CO2,
# CO2_pe = exp_pe*TIV_CO2,
# CO2_pi = exp_pi*TIV_CO2)
##################################################
Eurostat_countries_hh_fd_mean_TIV = as.data.frame(Eurostat_countries_hh_fd) %>% select(-year) Eurostat_countries_hh_fd_mean_TIV = as.data.frame(Eurostat_countries_hh_fd) %>% select(-year)
weighted_mean_TIV_with_labels = cbind(TIVs,Eurostat_countries_hh_fd_mean_TIV) %>% weighted_mean_TIV_with_labels = cbind(TIVs,Eurostat_countries_hh_fd_mean_TIV) %>%
...@@ -7098,7 +7034,7 @@ ok = join_ala %>% ...@@ -7098,7 +7034,7 @@ ok = join_ala %>%
# direct from FD - to go back to results without direct FD fp, do not run this next chunk and do not bind_rows with 'results' # direct from FD - to go back to results without direct FD fp, do not run this next chunk and do not bind_rows with 'results'
env_ac_pefasu_no_TR = read_csv(paste0(data_dir_income_stratified_footprints, "/data/env_ac_pefasu_1_Data.csv")) %>% env_ac_pefasu_no_TR = read_csv(paste0(data_dir_income_stratified_footprints, "/env_ac_pefasu_1_Data.csv")) %>%
filter(TIME == 2015) %>% filter(TIME == 2015) %>%
mutate(geo = dplyr::recode(GEO,"Austria" = "AT", mutate(geo = dplyr::recode(GEO,"Austria" = "AT",
"Belgium" = "BE", "Belgium" = "BE",
...@@ -7148,7 +7084,7 @@ env_ac_pefasu_TR = env_ac_pefasu_no_TR %>% ...@@ -7148,7 +7084,7 @@ env_ac_pefasu_TR = env_ac_pefasu_no_TR %>%
env_ac_pefasu = rbind(env_ac_pefasu_no_TR,env_ac_pefasu_TR) %>% env_ac_pefasu = rbind(env_ac_pefasu_no_TR,env_ac_pefasu_TR) %>%
gather(sector,share_of_total_energy,-geo) gather(sector,share_of_total_energy,-geo)
env_ac_ainah_r2 = read_csv(paste0(data_dir_income_stratified_footprints, "/data/env_ac_ainah_r2_1_Data.csv")) %>% env_ac_ainah_r2 = read_csv(paste0(data_dir_income_stratified_footprints, "/env_ac_ainah_r2_1_Data.csv")) %>%
filter(TIME == 2015) %>% filter(TIME == 2015) %>%
mutate(geo = dplyr::recode(GEO,"Austria" = "AT", mutate(geo = dplyr::recode(GEO,"Austria" = "AT",
"Belgium" = "BE", "Belgium" = "BE",
...@@ -7491,15 +7427,6 @@ direct_FD_fp_wide_recombined = tmp_co2 %>% ...@@ -7491,15 +7427,6 @@ direct_FD_fp_wide_recombined = tmp_co2 %>%
clean_names() %>% clean_names() %>%
mutate(year = as.numeric(year)) mutate(year = as.numeric(year))
# something is wrong with 'bah' (don't think so anymore) - the expenditures match the german and now the
#shares match the german, but some countries are clearly wrong - with almost 100% shares in CP04, whereas some look
#relatively normal - have to figure this out - huge TIVS in the CP045 sector for those weird countries. likely some weird
#sector that has a huge TIV but not much expenditure to it so need to do a weighted average - was the case, now have done
#with weighted TIV. some eastern european countries like Bulgaria still have huge CP04 emission shares - might be correct
#if their electricity is extremely dirty - need to look at the intensities of each country individually
results = ok %>% results = ok %>%
filter(!(geo %in% c("EA","EA12","EA13","EA17", filter(!(geo %in% c("EA","EA12","EA13","EA17",
"EA18","EA19","EEA28","EEA30_2007", "EA18","EA19","EEA28","EEA30_2007",
...@@ -7550,7 +7477,8 @@ results_formatted = results %>% ...@@ -7550,7 +7477,8 @@ results_formatted = results %>%
results_formatted_with_direct_FD_fp = bind_rows(results_formatted,direct_FD_fp_wide_recombined) results_formatted_with_direct_FD_fp = bind_rows(results_formatted,direct_FD_fp_wide_recombined)
write.csv(results_formatted_with_direct_FD_fp, paste0(data_dir_income_stratified_footprints, "/results_formatted_method2_ixi_pps_hh_no_rent.csv")) write.csv(results_formatted_with_direct_FD_fp, paste0(data_dir_income_stratified_footprints, "/results_formatted_method2_ixi.csv"))
write_rds(results_formatted_with_direct_FD_fp, paste0(data_dir_income_stratified_footprints, "/results_formatted_method2_ixi.rds"))
``` ```
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment