Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
E
europe.inequality
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Terraform modules
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Peter-Paul Pichler
europe.inequality
Commits
5c0f3f21
Commit
5c0f3f21
authored
4 years ago
by
Ingram Jaccard
Browse files
Options
Downloads
Patches
Plain Diff
edit full code
parent
66d70b36
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
analysis/preprocessing/full_code.Rmd
+25
-97
25 additions, 97 deletions
analysis/preprocessing/full_code.Rmd
with
25 additions
and
97 deletions
analysis/preprocessing/full_code.Rmd
+
25
−
97
View file @
5c0f3f21
...
@@ -1117,6 +1117,7 @@ Would be in an 'income-stratified-footprints' preprocessing folder
...
@@ -1117,6 +1117,7 @@ Would be in an 'income-stratified-footprints' preprocessing folder
# income-stratified-footprints directory
# income-stratified-footprints directory
#data_dir_income_stratified_footprints = paste("/",file.path("data","metab","income-stratified-footprints", fsep=.Platform$file.sep),sep="")
#data_dir_income_stratified_footprints = paste("/",file.path("data","metab","income-stratified-footprints", fsep=.Platform$file.sep),sep="")
data_dir_income_stratified_footprints = here("analysis", "preprocessing", "income-stratified-footprints")
data_dir_income_stratified_footprints = here("analysis", "preprocessing", "income-stratified-footprints")
data_dir_exiobase = here("analysis", "preprocessing", "EXIOBASE")
################################################### !!!! method 1 - PPS HH - RENT NOT MAPPED TO EXIOBASE !!!! ###########################################
################################################### !!!! method 1 - PPS HH - RENT NOT MAPPED TO EXIOBASE !!!! ###########################################
##########################################################################################################################################################
##########################################################################################################################################################
...
@@ -2562,7 +2563,7 @@ fd_exiobase = disaggregated_final_demand %>%
...
@@ -2562,7 +2563,7 @@ fd_exiobase = disaggregated_final_demand %>%
# direct from FD - to go back to results without direct FD fp, do not run this next chunk and do not bind_rows with 'results'
# direct from FD - to go back to results without direct FD fp, do not run this next chunk and do not bind_rows with 'results'
env_ac_pefasu_no_TR = read_csv(paste0(data_dir_income_stratified_footprints, "/
data/
env_ac_pefasu_1_Data.csv")) %>%
env_ac_pefasu_no_TR = read_csv(paste0(data_dir_income_stratified_footprints, "/env_ac_pefasu_1_Data.csv")) %>%
filter(TIME == 2015) %>%
filter(TIME == 2015) %>%
mutate(geo = dplyr::recode(GEO,"Austria" = "AT",
mutate(geo = dplyr::recode(GEO,"Austria" = "AT",
"Belgium" = "BE",
"Belgium" = "BE",
...
@@ -2612,7 +2613,7 @@ env_ac_pefasu_TR = env_ac_pefasu_no_TR %>%
...
@@ -2612,7 +2613,7 @@ env_ac_pefasu_TR = env_ac_pefasu_no_TR %>%
env_ac_pefasu = rbind(env_ac_pefasu_no_TR,env_ac_pefasu_TR) %>%
env_ac_pefasu = rbind(env_ac_pefasu_no_TR,env_ac_pefasu_TR) %>%
gather(sector,share_of_total_energy,-geo)
gather(sector,share_of_total_energy,-geo)
env_ac_ainah_r2 = read_csv(paste0(data_dir_income_stratified_footprints, "/
data/
env_ac_ainah_r2_1_Data.csv")) %>%
env_ac_ainah_r2 = read_csv(paste0(data_dir_income_stratified_footprints, "/env_ac_ainah_r2_1_Data.csv")) %>%
filter(TIME == 2015) %>%
filter(TIME == 2015) %>%
mutate(geo = dplyr::recode(GEO,"Austria" = "AT",
mutate(geo = dplyr::recode(GEO,"Austria" = "AT",
"Belgium" = "BE",
"Belgium" = "BE",
...
@@ -3013,19 +3014,8 @@ results = fd_exiobase %>%
...
@@ -3013,19 +3014,8 @@ results = fd_exiobase %>%
results_with_direct_FD_fp = bind_rows(results,direct_FD_fp_wide)
results_with_direct_FD_fp = bind_rows(results,direct_FD_fp_wide)
#write.csv(results, paste0(data_dir_income_stratified_footprints, "/results_no_rent_ixi.csv"))
### create compressed results_ixi rds file
### create compressed results_ixi rds file
#if (!require("pacman")) install.packages("pacman")
#pacman::p_load(tidyverse,
# janitor,
# here)
#dat_all = read_csv(here("data/results_ixi.csv")) %>%
# clean_names()
dat_all = results_with_direct_FD_fp %>%
dat_all = results_with_direct_FD_fp %>%
clean_names()
clean_names()
...
@@ -3035,7 +3025,7 @@ sectors = dat_all %>%
...
@@ -3035,7 +3025,7 @@ sectors = dat_all %>%
mutate(sector_id = row_number())
mutate(sector_id = row_number())
#write_csv(sectors, here("data/sector_labels.csv"))
#write_csv(sectors, here("data/sector_labels.csv"))
write_csv(sectors, paste0(
data_dir_income_stratified_footprints, "
/sectors_method1_ixi
_pps_hh
.csv"))
write_csv(sectors, paste0(
here("/analysis/data/derived
/sectors_method1_ixi.csv"))
)
# convert aggregated sector labels to IDs
# convert aggregated sector labels to IDs
sectors_agg = dat_all %>%
sectors_agg = dat_all %>%
...
@@ -3043,7 +3033,7 @@ sectors_agg = dat_all %>%
...
@@ -3043,7 +3033,7 @@ sectors_agg = dat_all %>%
mutate(sector_agg_id = row_number())
mutate(sector_agg_id = row_number())
#write_csv(sectors_agg, here("data/sector_agg_labels.csv"))
#write_csv(sectors_agg, here("data/sector_agg_labels.csv"))
write_csv(sectors_agg, paste0(
data_dir_income_stratified_footprints, "
/sectors_agg_method1_ixi
_pps_hh
.csv"))
write_csv(sectors_agg, paste0(
here("/analysis/data/derived
/sectors_agg_method1_ixi.csv"))
)
# convert COICOP labels to IDs
# convert COICOP labels to IDs
coicop = dat_all %>%
coicop = dat_all %>%
...
@@ -3051,7 +3041,7 @@ coicop = dat_all %>%
...
@@ -3051,7 +3041,7 @@ coicop = dat_all %>%
mutate(coicop_id = row_number())
mutate(coicop_id = row_number())
#write_csv(sectors_agg, here("data/sector_agg_labels.csv"))
#write_csv(sectors_agg, here("data/sector_agg_labels.csv"))
write_csv(coicop, paste0(
data_dir_income_stratified_footprints, "
/coicop_method1_ixi
_pps_hh
.csv"))
write_csv(coicop, paste0(
here("/analysis/data/derived
/coicop_method1_ixi.csv"))
)
# replace sector text labels with numerical IDs (save space)
# replace sector text labels with numerical IDs (save space)
dat_compressed = dat_all %>%
dat_compressed = dat_all %>%
...
@@ -3186,25 +3176,15 @@ results_recombined = tmp_fd %>%
...
@@ -3186,25 +3176,15 @@ results_recombined = tmp_fd %>%
left_join(tmp_energy_domestic, by=c("year", "geo", "sector_id", "quint")) %>%
left_join(tmp_energy_domestic, by=c("year", "geo", "sector_id", "quint")) %>%
left_join(tmp_energy_europe, by = c("year", "geo", "sector_id", "quint"))
left_join(tmp_energy_europe, by = c("year", "geo", "sector_id", "quint"))
# finally re-join aggregated sector IDs
# finally re-join aggregated sector IDs
results_formatted = results_recombined %>%
results_formatted = results_recombined %>%
left_join(sector_mapping, by="sector_id") %>%
left_join(sector_mapping, by="sector_id") %>%
ungroup() %>%
ungroup() %>%
select(-coicop_id)
select(-coicop_id)
#write_rds(results_formated, here("/results_formated.rds"))
write.csv(results_formatted, paste0(data_dir_income_stratified_footprints, "/results_formatted_method1_ixi.csv"))
write.csv(results_formatted, paste0(data_dir_income_stratified_footprints, "/results_formatted_method1_ixi.csv"))
write_rds(results_formatted, paste0(data_dir_income_stratified_footprints, "/results_formatted_method1_ixi.rds"))
write_rds(results_formatted, paste0(data_dir_income_stratified_footprints, "/results_formatted_method1_ixi.rds"))
#write.csv(results_formatted, paste0(data_dir_income_stratified_footprints, "/results_formatted_method1_ixi_pps_ae.csv"))
#write_rds(results_formatted, paste0(data_dir_income_stratified_footprints, "/results_formatted_method1_ixi_pps_ae.rds"))
################################################### !!!! method 1 - PXP version - PPS HH NO RENT !!!! ####################################################
################################################### !!!! method 1 - PXP version - PPS HH NO RENT !!!! ####################################################
##########################################################################################################################################################
##########################################################################################################################################################
##########################################################################################################################################################
##########################################################################################################################################################
...
@@ -4544,7 +4524,7 @@ fd_exiobase = disaggregated_final_demand %>%
...
@@ -4544,7 +4524,7 @@ fd_exiobase = disaggregated_final_demand %>%
# direct from FD - to go back to results without direct FD fp, do not run this next chunk and do not bind_rows with 'results'
# direct from FD - to go back to results without direct FD fp, do not run this next chunk and do not bind_rows with 'results'
env_ac_pefasu_no_TR = read_csv(paste0(data_dir_income_stratified_footprints, "/
data/
env_ac_pefasu_1_Data.csv")) %>%
env_ac_pefasu_no_TR = read_csv(paste0(data_dir_income_stratified_footprints, "/env_ac_pefasu_1_Data.csv")) %>%
filter(TIME == 2015) %>%
filter(TIME == 2015) %>%
mutate(geo = dplyr::recode(GEO,"Austria" = "AT",
mutate(geo = dplyr::recode(GEO,"Austria" = "AT",
"Belgium" = "BE",
"Belgium" = "BE",
...
@@ -4594,7 +4574,7 @@ env_ac_pefasu_TR = env_ac_pefasu_no_TR %>%
...
@@ -4594,7 +4574,7 @@ env_ac_pefasu_TR = env_ac_pefasu_no_TR %>%
env_ac_pefasu = rbind(env_ac_pefasu_no_TR,env_ac_pefasu_TR) %>%
env_ac_pefasu = rbind(env_ac_pefasu_no_TR,env_ac_pefasu_TR) %>%
gather(sector,share_of_total_energy,-geo)
gather(sector,share_of_total_energy,-geo)
env_ac_ainah_r2 = read_csv(paste0(data_dir_income_stratified_footprints, "/
data/
env_ac_ainah_r2_1_Data.csv")) %>%
env_ac_ainah_r2 = read_csv(paste0(data_dir_income_stratified_footprints, "/env_ac_ainah_r2_1_Data.csv")) %>%
filter(TIME == 2015) %>%
filter(TIME == 2015) %>%
mutate(geo = dplyr::recode(GEO,"Austria" = "AT",
mutate(geo = dplyr::recode(GEO,"Austria" = "AT",
"Belgium" = "BE",
"Belgium" = "BE",
...
@@ -4994,18 +4974,8 @@ results = fd_exiobase %>%
...
@@ -4994,18 +4974,8 @@ results = fd_exiobase %>%
energy_total_europe = q1_energy_europe+q2_energy_europe+q3_energy_europe+q4_energy_europe+q5_energy_europe)
energy_total_europe = q1_energy_europe+q2_energy_europe+q3_energy_europe+q4_energy_europe+q5_energy_europe)
results_with_direct_FD_fp = bind_rows(results,direct_FD_fp_wide)
results_with_direct_FD_fp = bind_rows(results,direct_FD_fp_wide)
#write.csv(results, paste0(data_dir_income_stratified_footprints, "/results_no_rent_ixi.csv"))
### create compressed results_ixi rds file
#if (!require("pacman")) install.packages("pacman")
#pacman::p_load(tidyverse,
# janitor,
# here)
#dat_all = read_csv(here("data/results_ixi.csv")) %>%
### create compressed results_pxp rds file
# clean_names()
dat_all = results_with_direct_FD_fp %>%
dat_all = results_with_direct_FD_fp %>%
clean_names()
clean_names()
...
@@ -5015,24 +4985,22 @@ sectors = dat_all %>%
...
@@ -5015,24 +4985,22 @@ sectors = dat_all %>%
distinct(sector) %>%
distinct(sector) %>%
mutate(sector_id = row_number())
mutate(sector_id = row_number())
#
write_csv(sectors, here("data/sector_labels.csv"))
#
if interested in looking at a sectoral breakdown of the product-by-product version results, un-comment line below
write_csv(sectors, paste0(
data_dir_income_stratified_footprints, "
/sectors_method1_pxp
_pps_hh
.csv"))
#
write_csv(sectors, paste0(
here("/analysis/data/derived/si
/sectors_method1_pxp.csv"))
)
# convert aggregated sector labels to IDs
# convert aggregated sector labels to IDs
sectors_agg = dat_all %>%
sectors_agg = dat_all %>%
distinct(five_sectors) %>%
distinct(five_sectors) %>%
mutate(sector_agg_id = row_number())
mutate(sector_agg_id = row_number())
#write_csv(sectors_agg, here("data/sector_agg_labels.csv"))
#write_csv(sectors_agg, paste0(here("analysis/data/derived/si/sectors_agg_method1_pxp.csv")))
write_csv(sectors_agg, paste0(data_dir_income_stratified_footprints, "/sectors_agg_method1_pxp_pps_hh.csv"))
# convert COICOP labels to IDs
# convert COICOP labels to IDs
coicop = dat_all %>%
coicop = dat_all %>%
distinct(coicop) %>%
distinct(coicop) %>%
mutate(coicop_id = row_number())
mutate(coicop_id = row_number())
#write_csv(sectors_agg, here("data/sector_agg_labels.csv"))
#write_csv(coicop, paste0(here("analysis/data/derived/si/coicop_method1_pxp.csv")))
write_csv(coicop, paste0(data_dir_income_stratified_footprints, "/coicop_method1_pxp_pps_hh.csv"))
# replace sector text labels with numerical IDs (save space)
# replace sector text labels with numerical IDs (save space)
dat_compressed = dat_all %>%
dat_compressed = dat_all %>%
...
@@ -5175,23 +5143,11 @@ results_formatted = results_recombined %>%
...
@@ -5175,23 +5143,11 @@ results_formatted = results_recombined %>%
ungroup() %>%
ungroup() %>%
select(-coicop_id)
select(-coicop_id)
#write_rds(results_formated, here("/results_formated.rds"))
write.csv(results_formatted, paste0(data_dir_income_stratified_footprints, "/results_formatted_method1_pxp.csv"))
write_rds(results_formatted, paste0(data_dir_income_stratified_footprints, "/results_formatted_method1_pxp.rds"))
write.csv(results_formatted, paste0(data_dir_income_stratified_footprints, "/results_formatted_method1_pxp_pps_hh_no_rent.csv"))
#write_rds(results_formatted, paste0(data_dir_income_stratified_footprints, "/results_formatted_method1_pxp_pps_hh_no_rent.rds"))
#write.csv(results_formatted, paste0(data_dir_income_stratified_footprints, "/results_formatted_method1_pxp_pps_ae.csv"))
################################################### !!!! method 2 !!!! - IXI version #############################
#write_rds(results_formatted, paste0(data_dir_income_stratified_footprints, "/results_formatted_method1_pxp_pps_ae.rds"))
################################################### !!!! method 2 !!!! - IXI version - PPS HH - RENT NOT MAPPED TO EXIOBASE !!!!! #############################
###############################################################################################################################################################
###############################################################################################################################################################
###############################################################################################################################################################
###############################################################################################################################################################
...
@@ -5201,14 +5157,14 @@ write.csv(results_formatted, paste0(data_dir_income_stratified_footprints, "/res
...
@@ -5201,14 +5157,14 @@ write.csv(results_formatted, paste0(data_dir_income_stratified_footprints, "/res
# aggregate - playing around trying to go the other way
# aggregate - playing around trying to go the other way
# load 'mean expenditure by quintile' data
# load 'mean expenditure by quintile' data
hbs_exp_t133 = read_csv(paste0(data_dir_income_stratified_footprints, "/
data/
hbs_exp_t133.csv"))
hbs_exp_t133 = read_csv(paste0(data_dir_income_stratified_footprints, "/hbs_exp_t133.csv"))
# rename and arrange by country
# rename and arrange by country
mean_expenditure_by_quintile = hbs_exp_t133 %>%
mean_expenditure_by_quintile = hbs_exp_t133 %>%
rename(geo = 3, quintile = "quantile") %>%
rename(geo = 3, quintile = "quantile") %>%
arrange(geo)
arrange(geo)
# load 'mean expenditure by quintile and coicop' data
# load 'mean expenditure by quintile and coicop' data
hbs_str_t223 = read_csv(paste0(data_dir_income_stratified_footprints, "/
data/
hbs_str_t223.csv"))
hbs_str_t223 = read_csv(paste0(data_dir_income_stratified_footprints, "/hbs_str_t223.csv"))
# rename and arrange by country
# rename and arrange by country
mean_expenditure_by_coicop_sector = hbs_str_t223 %>%
mean_expenditure_by_coicop_sector = hbs_str_t223 %>%
rename(geo = 4, quintile = "quantile") %>%
rename(geo = 4, quintile = "quantile") %>%
...
@@ -5273,7 +5229,7 @@ join_expenditures = mean_expenditure_by_coicop_sector_long %>%
...
@@ -5273,7 +5229,7 @@ join_expenditures = mean_expenditure_by_coicop_sector_long %>%
# load margin tables
# load margin tables
trade_and_transport = read.csv(paste0(data_dir_income_stratified_footprints, "/
data/
SNA_TABLE45_20042020103737298.csv")) %>%
trade_and_transport = read.csv(paste0(data_dir_income_stratified_footprints, "/SNA_TABLE45_20042020103737298.csv")) %>%
select(LOCATION, PRODUCT, Product, Year, Value) %>%
select(LOCATION, PRODUCT, Product, Year, Value) %>%
mutate(geo = dplyr::recode(LOCATION,"AUT" = "AT",
mutate(geo = dplyr::recode(LOCATION,"AUT" = "AT",
"BEL" = "BE",
"BEL" = "BE",
...
@@ -5317,7 +5273,7 @@ trade_and_transport = read.csv(paste0(data_dir_income_stratified_footprints, "/d
...
@@ -5317,7 +5273,7 @@ trade_and_transport = read.csv(paste0(data_dir_income_stratified_footprints, "/d
taxes_less_subsidies = read.csv(paste0(data_dir_income_stratified_footprints, "/
data/
SNA_TABLE45_20042020104120395.csv")) %>%
taxes_less_subsidies = read.csv(paste0(data_dir_income_stratified_footprints, "/SNA_TABLE45_20042020104120395.csv")) %>%
select(LOCATION, PRODUCT, Product, Year, Value) %>%
select(LOCATION, PRODUCT, Product, Year, Value) %>%
mutate(geo = dplyr::recode(LOCATION,"AUT" = "AT",
mutate(geo = dplyr::recode(LOCATION,"AUT" = "AT",
"BEL" = "BE",
"BEL" = "BE",
...
@@ -5515,10 +5471,6 @@ shares = join_expenditures %>%
...
@@ -5515,10 +5471,6 @@ shares = join_expenditures %>%
##########################################################################################################################################################
##########################################################################################################################################################
##########################################################################################################################################################
##########################################################################################################################################################
# pre-processing
data_dir_exiobase = paste("/",file.path("data","metab","Exiobase", fsep=.Platform$file.sep),sep="")
# Exiobase - ixi version
# Exiobase - ixi version
years_exb_ixi = c(2005,2010,2015)
years_exb_ixi = c(2005,2010,2015)
...
@@ -5601,7 +5553,7 @@ for (i in years_exb_ixi){
...
@@ -5601,7 +5553,7 @@ for (i in years_exb_ixi){
# labels
# labels
Exiobase_T_labels = read.csv(paste0(data_dir_income_stratified_footprints, "/
data/
Exiobase_T_labels_ixi_w_coicop_mapping
_no_rent
.csv")) %>%
Exiobase_T_labels = read.csv(paste0(data_dir_income_stratified_footprints, "/Exiobase_T_labels_ixi_w_coicop_mapping.csv")) %>%
mutate(V1 = dplyr::recode(V1,"GR" = "EL","GB" = "UK"))
mutate(V1 = dplyr::recode(V1,"GR" = "EL","GB" = "UK"))
# TIVs
# TIVs
...
@@ -6721,22 +6673,6 @@ join_ala = mean_expenditure_by_coicop_sector_long_bp %>%
...
@@ -6721,22 +6673,6 @@ join_ala = mean_expenditure_by_coicop_sector_long_bp %>%
pm_bp = as.numeric(pm_bp),
pm_bp = as.numeric(pm_bp),
fd_me = pm_bp*((eurostat_countries_colsums*mean_exp_shares)/1000))
fd_me = pm_bp*((eurostat_countries_colsums*mean_exp_shares)/1000))
###################################################
#%>%
# rename(coicop_level1 = coicop)
# TIV only taking the mean
# mean_TIV_with_labels = TIV_with_labels %>% group_by(geo,year,coicop,coicop_level1) %>%
# summarise(TIV_CO2 = mean(TIV_CO2))
#ok = join_ala %>% left_join(mean_TIV_with_labels, by = c("geo","year","coicop")) %>%
# mutate(CO2_normal = exp_normal*TIV_CO2,
# CO2_pe = exp_pe*TIV_CO2,
# CO2_pi = exp_pi*TIV_CO2)
##################################################
Eurostat_countries_hh_fd_mean_TIV = as.data.frame(Eurostat_countries_hh_fd) %>% select(-year)
Eurostat_countries_hh_fd_mean_TIV = as.data.frame(Eurostat_countries_hh_fd) %>% select(-year)
weighted_mean_TIV_with_labels = cbind(TIVs,Eurostat_countries_hh_fd_mean_TIV) %>%
weighted_mean_TIV_with_labels = cbind(TIVs,Eurostat_countries_hh_fd_mean_TIV) %>%
...
@@ -7098,7 +7034,7 @@ ok = join_ala %>%
...
@@ -7098,7 +7034,7 @@ ok = join_ala %>%
# direct from FD - to go back to results without direct FD fp, do not run this next chunk and do not bind_rows with 'results'
# direct from FD - to go back to results without direct FD fp, do not run this next chunk and do not bind_rows with 'results'
env_ac_pefasu_no_TR = read_csv(paste0(data_dir_income_stratified_footprints, "/
data/
env_ac_pefasu_1_Data.csv")) %>%
env_ac_pefasu_no_TR = read_csv(paste0(data_dir_income_stratified_footprints, "/env_ac_pefasu_1_Data.csv")) %>%
filter(TIME == 2015) %>%
filter(TIME == 2015) %>%
mutate(geo = dplyr::recode(GEO,"Austria" = "AT",
mutate(geo = dplyr::recode(GEO,"Austria" = "AT",
"Belgium" = "BE",
"Belgium" = "BE",
...
@@ -7148,7 +7084,7 @@ env_ac_pefasu_TR = env_ac_pefasu_no_TR %>%
...
@@ -7148,7 +7084,7 @@ env_ac_pefasu_TR = env_ac_pefasu_no_TR %>%
env_ac_pefasu = rbind(env_ac_pefasu_no_TR,env_ac_pefasu_TR) %>%
env_ac_pefasu = rbind(env_ac_pefasu_no_TR,env_ac_pefasu_TR) %>%
gather(sector,share_of_total_energy,-geo)
gather(sector,share_of_total_energy,-geo)
env_ac_ainah_r2 = read_csv(paste0(data_dir_income_stratified_footprints, "/
data/
env_ac_ainah_r2_1_Data.csv")) %>%
env_ac_ainah_r2 = read_csv(paste0(data_dir_income_stratified_footprints, "/env_ac_ainah_r2_1_Data.csv")) %>%
filter(TIME == 2015) %>%
filter(TIME == 2015) %>%
mutate(geo = dplyr::recode(GEO,"Austria" = "AT",
mutate(geo = dplyr::recode(GEO,"Austria" = "AT",
"Belgium" = "BE",
"Belgium" = "BE",
...
@@ -7491,15 +7427,6 @@ direct_FD_fp_wide_recombined = tmp_co2 %>%
...
@@ -7491,15 +7427,6 @@ direct_FD_fp_wide_recombined = tmp_co2 %>%
clean_names() %>%
clean_names() %>%
mutate(year = as.numeric(year))
mutate(year = as.numeric(year))
# something is wrong with 'bah' (don't think so anymore) - the expenditures match the german and now the
#shares match the german, but some countries are clearly wrong - with almost 100% shares in CP04, whereas some look
#relatively normal - have to figure this out - huge TIVS in the CP045 sector for those weird countries. likely some weird
#sector that has a huge TIV but not much expenditure to it so need to do a weighted average - was the case, now have done
#with weighted TIV. some eastern european countries like Bulgaria still have huge CP04 emission shares - might be correct
#if their electricity is extremely dirty - need to look at the intensities of each country individually
results = ok %>%
results = ok %>%
filter(!(geo %in% c("EA","EA12","EA13","EA17",
filter(!(geo %in% c("EA","EA12","EA13","EA17",
"EA18","EA19","EEA28","EEA30_2007",
"EA18","EA19","EEA28","EEA30_2007",
...
@@ -7550,7 +7477,8 @@ results_formatted = results %>%
...
@@ -7550,7 +7477,8 @@ results_formatted = results %>%
results_formatted_with_direct_FD_fp = bind_rows(results_formatted,direct_FD_fp_wide_recombined)
results_formatted_with_direct_FD_fp = bind_rows(results_formatted,direct_FD_fp_wide_recombined)
write.csv(results_formatted_with_direct_FD_fp, paste0(data_dir_income_stratified_footprints, "/results_formatted_method2_ixi_pps_hh_no_rent.csv"))
write.csv(results_formatted_with_direct_FD_fp, paste0(data_dir_income_stratified_footprints, "/results_formatted_method2_ixi.csv"))
write_rds(results_formatted_with_direct_FD_fp, paste0(data_dir_income_stratified_footprints, "/results_formatted_method2_ixi.rds"))
```
```
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment