Based on this counterfactual distribution of the energy footprint using homogeneous supply technologies, we can now scale down energy consumption across European expenditure deciles to meet supply constraints and, where necessary, "squeeze" the distribution to not undershoot minimum demand constraints in any decile. This means that, based on the current empirical distribution, for each value combination of supply and minimum necessary demand, the maximum permissible inequality can be calculated as a 10:10 ratio (Figure \@ref(fig:figure5). [*Ref to formula*]
Starting at the low end of energy supply, both (or all three with Boell) the DLE and LED scenarios satisfy energy demand without resorting to CCS technologies. The DLE scenario explicitly envisions absolute global equality (10:10 ratio of 1) in consumption, except for small differences in required energy consumption based on climatic and demographic factors, as well as differences in population density. The LED scenario does not explicitly discuss distributional aspects beyond giving different final energy consumption values for the Global North (53GJ/cap) and the Global South (27GJ/cap). However, due to the bottom-up construction of this demand scenario, these values can be interpreted as estimates for the minimum required energy demand. [*space permitting, give examples of the rather extreme nature of demand interventions here or in in scenario description/table above*]
Starting at the low end of energy supply, both (or all three with Boell) the DLE and LED scenarios satisfy energy demand without resorting to CCS technologies. The DLE scenario explicitly envisions absolute global equality (10:10 ratio of 1) in consumption, except for small differences in required energy consumption based on climatic and demographic factors, as well as differences in population density. The LED scenario does not explicitly discuss distributional aspects beyond giving different final energy consumption values for the Global North (53GJ/cap) and the Global South (27GJ/cap). However, due to the bottom-up construction of this demand scenario, these values can be interpreted as estimates for the minimum required energy demand.
The descriptions of the energy supply scenarios do not include specific details about how the energy footprints are distributed within the population. The energy savings here are achieved primarily through efficiency improvements, and perhaps also generally assumed demand reductions [*I actually know nothing about these scenarios, how do they achieve the reduction, and is energy demand actually resolved by country maybe?*]. However, Figure \@ref(fig:figure5) makes it clear that even with ambitious demand reductions, as in the LED scenario, a large reduction in inequality between the European expenditure quantiles is required.
The descriptions of the energy supply scenarios do not include specific details about how the energy footprints are distributed within the population. The energy savings here are achieved primarily through efficiency improvements, and perhaps also generally assumed demand reductions. However, Figure \@ref(fig:figure5) makes it clear that even with ambitious demand reductions, as in the LED scenario, a large reduction in inequality between the European expenditure quantiles is required.
At current inequality levels, only the two scenarios with heavy CCS deployment and GEA efficiency are possible if we assume extremely low minimum energy requirements (below 27 GJ/cap). This 27 GJ/capita is the value the low-energy demand (LED) scenario gives for the global South in 2050. If we use the value given for the global North at 53 GJ/cap (with strong demand side measures) then inequality would need to be drastically reduced, the 10:10 ratio more than halved, in all scenarios (including those with CCS deployment).
[*Figure supplement: show country map with energy reductions resulting from SSPx supply and LED demand*]
Mini-conclusion: It is not enough to maximise supply and minimise demand. To hit targets, inequality needs to dramatically reduce under all realistic scenarios.
```{r figure5, out.width="70%", fig.align="center", fig.cap="Dings. in Figure 5, all deciles have 'best technology' already"}