Skip to content
Snippets Groups Projects
title: 'full code'
output:
  html_document:
    toc: yes
    df_print: paged
  bookdown::html_document2:
    toc: yes
    toc_float: yes

Setup

This file contains all code to estimate the European income-stratified footprints and then the European expenditures deciles. There are three code chunks in this 'full code' Rmarkdown file. The first shows the EXIOBASE code, the second the income-stratified-footprints using the EUROSTAT HBS, and the third the estimation of the European expenditure deciles. All three code chunks are currently set to 'eval = FALSE', and the necessary raw data files to run them are not included in the git due to their size. We have also run the first two code chunks on a high-performance cluster computer.

The code in this 'full code' Rmarkdown file writes derived data files to the folder: 'analysis' > 'data' > 'derived'. These files can be accessed there, and own analysis performed on them without running any of the code in this Rmarkdown. The derived data files are used to create the figures in the main paper and SI (the code for the figures can be found directly within the paper and si Rmarkdown files: 'analysis' > 'paper').

To run the code in this 'full code' Rmarkdown file, follow the instructions at the start of each section (before the code chunk) explaining which files must be downloaded from where, and in which folder they should be extracted. Then remove 'eval = FALSE' in the code chunk header before running it.


# first load required R packages

knitr::opts_chunk$set(
  collapse = TRUE,
  warning = FALSE,
  message = FALSE,
  echo = FALSE,
  comment = "#>"
)

if (!require("pacman")) install.packages("pacman")
pacman::p_load(tidyverse,
               janitor,
               readr,
               here,
               wbstats,
               ISOcodes,
               viridis,
               imputeTS,
               hrbrthemes,
               wesanderson,
               glue,
               ggridges,
               patchwork)

EXIOBASE

The EXIOBASE files are publicly available online. For the results in the main paper we use EXIOBASE version3 industry-by-industry, which is available from: https://zenodo.org/record/3583071#.XjC7kSN4wpY [accessed on 12.03.2020]. In the SI, we also show some results from using EXIOBASE version3 product-by-product, which is available from: [accessed on 12.03.2020].

These files are large, global input-output tables, and we performed standard input-output calculations on them to calculate and save total intensity vectors using a high-performance cluster computer. In this document we show the code that was run on the cluster computer, but have not uploaded any EXIOBASE files to the git. Running the first code chunk would require downloading the industry-by-industry version for the years 2005, 2010 and 2015, and the product-by-product version for the years 2005 and 2010.

Each year is available as a .zip file ('IOT_year_ixi' or 'IOT_year_pxp') from the websites above. If the .zip files for the relevant study years and versions have been downloaded, they can be extracted into the 'EXIOBASE' folder in this git, which is found in the 'analysis' > 'preprocessing' folder. We have set 'EXIOBASE' empty for this purpose. Extracting each year into the EXIOBASE folder creates a folder for each year with all of the relevant files for that year and version. All code in this first code chunk leaves all file names as they are after extraction.


# set data directory for EXIOBASE files
data_dir_exiobase = here("analysis", "preprocessing", "EXIOBASE")

##### EXIOBASE industry-by-industry version

# set study years
years_exiobase_ixi = c(2005,2010,2015)

# 'for' loop which writes 'total intensity vectors' (and row-wise breakdowns) for all study satellite extensions and years to 'data_dir_exiobase' using downloaded EXIOBASE files
for (i in years_exiobase_ixi){
  
year_current = i

# read in A table as table
A = read.delim(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/A.txt"),header = F)

# write A table as .csv file
write.csv(A, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/A.csv"))

# read in A table as .csv file and extract the data only (no labels), and convert to numeric
A = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/A.csv",sep = ""),row.names=NULL,as.is=TRUE)[4:7990,4:7990]
A[is.na(A)]=0
A = mapply(A, FUN = as.numeric)
A = matrix(data = A, ncol = 7987, nrow = 7987)

# solve the Leontief inverse
L = solve(diag(dim(A)[1])-A)  
L[is.na(L)]=0

# read in final demand table (Y) as table
FD = read.delim(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/Y.txt"),header = F)

# write final demand table (Y) as .csv file
write.csv(FD, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/Y.csv"))

# read in final demand table as .csv file and extract the production sector labels
Exiobase_T_labels_ixi = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/Y.csv"))[4:7990,1:3]

# write a .csv file with only the production sector labels
write.csv(Exiobase_T_labels_ixi, paste0(data_dir_exiobase, "/Exiobase_T_labels_ixi.csv"))

# read in final demand table as .csv file and extract the final demand category labels
Exiobase_FD_labels_ixi = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/Y.csv"))[1:3,4:346]

# write a .csv file with only the final demand category labels
write.csv(Exiobase_FD_labels_ixi, paste0(data_dir_exiobase, "/Exiobase_FD_labels_ixi.csv"))

# read in final demand table as .csv file and extract the data only (no labels), and convert to numeric
FD = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/Y.csv",sep=""),row.names=NULL,as.is=TRUE)[4:7990,4:346]
FD[is.na(FD)]=0
FD = mapply(FD, FUN = as.numeric)
FD = matrix(data=FD,ncol=343,nrow=7987)

# write a .csv file with final demand data only (no labels)
write.csv(FD, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/FD_",year_current,"_ixi.csv"))

# calculate total output
total_output = L %*% rowSums(FD)

# write total output as a .csv file
write.csv(total_output, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/total_output_",year_current,"_ixi.csv"))

# read in satellite extensions table (F) as table
satellite = read.delim(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/satellite/F.txt"),header = F)

# write satellite extensions table (F) as .csv file
write.csv(satellite, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/satellite/F.csv"))

# read in satellite extensions table (F) as .csv file and extract the data only (no labels), and convert to numeric
satellite = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/satellite/F.csv",sep=""),row.names=NULL,as.is=TRUE)[3:1115,3:7989]
satellite[is.na(satellite)]=0
satellite = mapply(satellite, FUN = as.numeric)
satellite = matrix(data=satellite,ncol=7987,nrow=1113)

# write a .csv file with satellite extensions data only (no labels)
write.csv(satellite, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/satellite/satellite_",year_current,"_ixi.csv"))

# read in satellite extensions on final demand table (F_hh) as table
satellite_FD = read.delim(paste0(data_dir_exiobase, "/IOT_", year_current, "_ixi/satellite/F_hh.txt"),header = F)

# write satellite extensions on final demand table (F_hh) as .csv file
write.csv(satellite_FD, paste0(data_dir_exiobase, "/IOT_", year_current, "_ixi/satellite/F_hh.csv"))

## extract the relevant satellite extensions from the satellite table, calculate the 'total intensity 
## vectors' (and their row-wise breakdowns), and save to 'data_dir_exiobase'

# CO2 - combustion - air
CO2_combustion_air = satellite[24,]
DIV_co2_combustion_air = CO2_combustion_air/total_output
DIV_co2_combustion_air[is.na(DIV_co2_combustion_air)]=0
DIV_co2_combustion_air[DIV_co2_combustion_air == Inf]<-0
TIV_co2_combustion_air = as.vector(DIV_co2_combustion_air) %*% L

write.csv(TIV_co2_combustion_air, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_co2_combustion_air_",year_current,"_ixi.csv"))

TIV_breakdown_co2_combustion_air = as.vector(DIV_co2_combustion_air) * L
TIV_breakdown_co2_combustion_air_w_labels = cbind(Exiobase_T_labels_ixi, TIV_breakdown_co2_combustion_air)
TIV_country_breakdown_co2_combustion_air_w_labels = t(TIV_breakdown_co2_combustion_air_w_labels %>%
  group_by(V1) %>%
  select(-X,-V2) %>%
  summarise_all(funs(sum)))

write.csv(TIV_country_breakdown_co2_combustion_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_co2_combustion_air_",year_current,"_ixi.csv"))

# CO2 - non-combustion - air
## cement
CO2_noncombustion_cement_air = satellite[93,]
DIV_co2_noncombustion_cement_air = CO2_noncombustion_cement_air/total_output
DIV_co2_noncombustion_cement_air[is.na(DIV_co2_noncombustion_cement_air)]=0
DIV_co2_noncombustion_cement_air[DIV_co2_noncombustion_cement_air == Inf]<-0
TIV_co2_noncombustion_cement_air = as.vector(DIV_co2_noncombustion_cement_air) %*% L

write.csv(TIV_co2_noncombustion_cement_air, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_co2_noncombustion_cement_air_",year_current,"_ixi.csv"))

TIV_breakdown_co2_noncombustion_cement_air = as.vector(DIV_co2_noncombustion_cement_air) * L
TIV_breakdown_co2_noncombustion_cement_air_w_labels = cbind(Exiobase_T_labels_ixi, TIV_breakdown_co2_noncombustion_cement_air)
TIV_country_breakdown_co2_noncombustion_cement_air_w_labels = t(TIV_breakdown_co2_noncombustion_cement_air_w_labels %>%
                                                        group_by(V1) %>%
                                                        select(-X,-V2) %>%
                                                        summarise_all(funs(sum)))

write.csv(TIV_country_breakdown_co2_noncombustion_cement_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_co2_noncombustion_cement_air_",year_current,"_ixi.csv"))

## lime
CO2_noncombustion_lime_air = satellite[94,]
DIV_co2_noncombustion_lime_air = CO2_noncombustion_lime_air/total_output
DIV_co2_noncombustion_lime_air[is.na(DIV_co2_noncombustion_lime_air)]=0
DIV_co2_noncombustion_lime_air[DIV_co2_noncombustion_lime_air == Inf]<-0
TIV_co2_noncombustion_lime_air = as.vector(DIV_co2_noncombustion_lime_air) %*% L

write.csv(TIV_co2_noncombustion_lime_air, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_co2_noncombustion_lime_air_",year_current,"_ixi.csv"))

TIV_breakdown_co2_noncombustion_lime_air = as.vector(DIV_co2_noncombustion_lime_air) * L
TIV_breakdown_co2_noncombustion_lime_air_w_labels = cbind(Exiobase_T_labels_ixi, TIV_breakdown_co2_noncombustion_lime_air)
TIV_country_breakdown_co2_noncombustion_lime_air_w_labels = t(TIV_breakdown_co2_noncombustion_lime_air_w_labels %>%
                                                                  group_by(V1) %>%
                                                                  select(-X,-V2) %>%
                                                                  summarise_all(funs(sum)))

write.csv(TIV_country_breakdown_co2_noncombustion_lime_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_co2_noncombustion_lime_air_",year_current,"_ixi.csv"))

# CO2 - agriculture - peat decay - air
CO2_agriculture_peatdecay_air = satellite[428,]
DIV_co2_agriculture_peatdecay_air = CO2_agriculture_peatdecay_air/total_output
DIV_co2_agriculture_peatdecay_air[is.na(DIV_co2_agriculture_peatdecay_air)]=0
DIV_co2_agriculture_peatdecay_air[DIV_co2_agriculture_peatdecay_air == Inf]<-0
TIV_co2_agriculture_peatdecay_air = as.vector(DIV_co2_agriculture_peatdecay_air) %*% L

write.csv(TIV_co2_agriculture_peatdecay_air, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_co2_agriculture_peatdecay_air_",year_current,"_ixi.csv"))

TIV_breakdown_co2_agriculture_peatdecay_air = as.vector(DIV_co2_agriculture_peatdecay_air) * L
TIV_breakdown_co2_agriculture_peatdecay_air_w_labels = cbind(Exiobase_T_labels_ixi, TIV_breakdown_co2_agriculture_peatdecay_air)
TIV_country_breakdown_co2_agriculture_peatdecay_air_w_labels = t(TIV_breakdown_co2_agriculture_peatdecay_air_w_labels %>%
                                                                  group_by(V1) %>%
                                                                  select(-X,-V2) %>%
                                                                  summarise_all(funs(sum)))

write.csv(TIV_country_breakdown_co2_agriculture_peatdecay_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_co2_agriculture_peatdecay_air_",year_current,"_ixi.csv"))

# CO2 - waste - air
## biogenic
CO2_waste_biogenic_air = satellite[438,]
DIV_co2_waste_biogenic_air = CO2_waste_biogenic_air/total_output
DIV_co2_waste_biogenic_air[is.na(DIV_co2_waste_biogenic_air)]=0
DIV_co2_waste_biogenic_air[DIV_co2_waste_biogenic_air == Inf]<-0
TIV_co2_biogenic_air = as.vector(DIV_co2_waste_biogenic_air) %*% L

write.csv(TIV_co2_biogenic_air, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_co2_biogenic_air_",year_current,"_ixi.csv"))

TIV_breakdown_co2_biogenic_air = as.vector(DIV_co2_waste_biogenic_air) * L
TIV_breakdown_co2_biogenic_air_w_labels = cbind(Exiobase_T_labels_ixi, TIV_breakdown_co2_biogenic_air)
TIV_country_breakdown_co2_biogenic_air_w_labels = t(TIV_breakdown_co2_biogenic_air_w_labels %>%
                                                                   group_by(V1) %>%
                                                                   select(-X,-V2) %>%
                                                                   summarise_all(funs(sum)))

write.csv(TIV_country_breakdown_co2_biogenic_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_co2_biogenic_air_",year_current,"_ixi.csv"))

## fossil
CO2_waste_fossil_air = satellite[439,]
DIV_co2_waste_fossil_air = CO2_waste_fossil_air/total_output
DIV_co2_waste_fossil_air[is.na(DIV_co2_waste_fossil_air)]=0
DIV_co2_waste_fossil_air[DIV_co2_waste_fossil_air == Inf]<-0
TIV_co2_waste_fossil_air = as.vector(DIV_co2_waste_fossil_air) %*% L

write.csv(TIV_co2_waste_fossil_air, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_co2_waste_fossil_air_",year_current,"_ixi.csv"))

TIV_breakdown_co2_waste_fossil_air = as.vector(DIV_co2_waste_fossil_air) * L
TIV_breakdown_co2_waste_fossil_air_w_labels = cbind(Exiobase_T_labels_ixi, TIV_breakdown_co2_waste_fossil_air)
TIV_country_breakdown_co2_waste_fossil_air_w_labels = t(TIV_breakdown_co2_waste_fossil_air_w_labels %>%
                                                                   group_by(V1) %>%
                                                                   select(-X,-V2) %>%
                                                                   summarise_all(funs(sum)))

write.csv(TIV_country_breakdown_co2_waste_fossil_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_co2_waste_fossil_air_",year_current,"_ixi.csv"))

# CH4 - combustion - air
CH4_combustion_air = satellite[25,]
CH4_combustion_air = CH4_combustion_air*28
DIV_ch4_combustion_air = CH4_combustion_air/total_output
DIV_ch4_combustion_air[is.na(DIV_ch4_combustion_air)]=0
DIV_ch4_combustion_air[DIV_ch4_combustion_air == Inf]<-0
TIV_ch4_combustion_air = as.vector(DIV_ch4_combustion_air) %*% L

write.csv(TIV_ch4_combustion_air, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_ch4_CO2eq_combustion_air_",year_current,"_ixi.csv"))

TIV_breakdown_ch4_combustion_air = as.vector(DIV_ch4_combustion_air) * L
TIV_breakdown_ch4_combustion_air_w_labels = cbind(Exiobase_T_labels_ixi, TIV_breakdown_ch4_combustion_air)
TIV_country_breakdown_ch4_combustion_air_w_labels = t(TIV_breakdown_ch4_combustion_air_w_labels %>%
                                                        group_by(V1) %>%
                                                        select(-X,-V2) %>%
                                                        summarise_all(funs(sum)))

write.csv(TIV_country_breakdown_ch4_combustion_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_ch4_CO2eq_combustion_air_",year_current,"_ixi.csv"))

# CH4 - non-combustion - air
## gas
CH4_noncombustion_gas_air = satellite[68,]
CH4_noncombustion_gas_air = CH4_noncombustion_gas_air*28
DIV_ch4_noncombustion_gas_air = CH4_noncombustion_gas_air/total_output
DIV_ch4_noncombustion_gas_air[is.na(DIV_ch4_noncombustion_gas_air)]=0
DIV_ch4_noncombustion_gas_air[DIV_ch4_noncombustion_gas_air == Inf]<-0
TIV_ch4_noncombustion_gas_air = as.vector(DIV_ch4_noncombustion_gas_air) %*% L

write.csv(TIV_ch4_noncombustion_gas_air, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_ch4_CO2eq_noncombustion_gas_air_",year_current,"_ixi.csv"))

TIV_breakdown_ch4_noncombustion_gas_air = as.vector(DIV_ch4_noncombustion_gas_air) * L
TIV_breakdown_ch4_noncombustion_gas_air_w_labels = cbind(Exiobase_T_labels_ixi, TIV_breakdown_ch4_noncombustion_gas_air)
TIV_country_breakdown_ch4_noncombustion_gas_air_w_labels = t(TIV_breakdown_ch4_noncombustion_gas_air_w_labels %>%
                                                        group_by(V1) %>%
                                                        select(-X,-V2) %>%
                                                        summarise_all(funs(sum)))

write.csv(TIV_country_breakdown_ch4_noncombustion_gas_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_ch4_CO2eq_noncombustion_gas_air_",year_current,"_ixi.csv"))

## oil
CH4_noncombustion_oil_air = satellite[69,]
CH4_noncombustion_oil_air = CH4_noncombustion_oil_air*28
DIV_ch4_noncombustion_oil_air = CH4_noncombustion_oil_air/total_output
DIV_ch4_noncombustion_oil_air[is.na(DIV_ch4_noncombustion_oil_air)]=0
DIV_ch4_noncombustion_oil_air[DIV_ch4_noncombustion_oil_air == Inf]<-0
TIV_ch4_noncombustion_oil_air = as.vector(DIV_ch4_noncombustion_oil_air) %*% L

write.csv(TIV_ch4_noncombustion_oil_air, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_ch4_CO2eq_noncombustion_oil_air_",year_current,"_ixi.csv"))

TIV_breakdown_ch4_noncombustion_oil_air = as.vector(DIV_ch4_noncombustion_oil_air) * L
TIV_breakdown_ch4_noncombustion_oil_air_w_labels = cbind(Exiobase_T_labels_ixi, TIV_breakdown_ch4_noncombustion_oil_air)
TIV_country_breakdown_ch4_noncombustion_oil_air_w_labels = t(TIV_breakdown_ch4_noncombustion_oil_air_w_labels %>%
                                                               group_by(V1) %>%
                                                               select(-X,-V2) %>%
                                                               summarise_all(funs(sum)))

write.csv(TIV_country_breakdown_ch4_noncombustion_oil_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_ch4_CO2eq_noncombustion_oil_air_",year_current,"_ixi.csv"))

## anthracite
CH4_noncombustion_anthracite_air = satellite[70,]
CH4_noncombustion_anthracite_air = CH4_noncombustion_anthracite_air*28
DIV_ch4_noncombustion_anthracite_air = CH4_noncombustion_anthracite_air/total_output
DIV_ch4_noncombustion_anthracite_air[is.na(DIV_ch4_noncombustion_anthracite_air)]=0
DIV_ch4_noncombustion_anthracite_air[DIV_ch4_noncombustion_anthracite_air == Inf]<-0
TIV_ch4_noncombustion_anthracite_air = as.vector(DIV_ch4_noncombustion_anthracite_air) %*% L

write.csv(TIV_ch4_noncombustion_anthracite_air, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_ch4_CO2eq_noncombustion_anthracite_air_",year_current,"_ixi.csv"))

TIV_breakdown_ch4_noncombustion_anthracite_air = as.vector(DIV_ch4_noncombustion_anthracite_air) * L
TIV_breakdown_ch4_noncombustion_anthracite_air_w_labels = cbind(Exiobase_T_labels_ixi, TIV_breakdown_ch4_noncombustion_anthracite_air)
TIV_country_breakdown_ch4_noncombustion_anthracite_air_w_labels = t(TIV_breakdown_ch4_noncombustion_anthracite_air_w_labels %>%
                                                               group_by(V1) %>%
                                                               select(-X,-V2) %>%
                                                               summarise_all(funs(sum)))

write.csv(TIV_country_breakdown_ch4_noncombustion_anthracite_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_ch4_CO2eq_noncombustion_anthracite_air_",year_current,"_ixi.csv"))

## bituminous coal
CH4_noncombustion_bituminouscoal_air = satellite[71,]
CH4_noncombustion_bituminouscoal_air = CH4_noncombustion_bituminouscoal_air*28
DIV_ch4_noncombustion_bituminouscoal_air = CH4_noncombustion_bituminouscoal_air/total_output
DIV_ch4_noncombustion_bituminouscoal_air[is.na(DIV_ch4_noncombustion_bituminouscoal_air)]=0
DIV_ch4_noncombustion_bituminouscoal_air[DIV_ch4_noncombustion_bituminouscoal_air == Inf]<-0
TIV_ch4_noncombustion_bituminouscoal_air = as.vector(DIV_ch4_noncombustion_bituminouscoal_air) %*% L

write.csv(TIV_ch4_noncombustion_bituminouscoal_air, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_ch4_CO2eq_noncombustion_bituminouscoal_air_",year_current,"_ixi.csv"))

TIV_breakdown_ch4_noncombustion_bituminouscoal_air = as.vector(DIV_ch4_noncombustion_bituminouscoal_air) * L
TIV_breakdown_ch4_noncombustion_bituminouscoal_air_w_labels = cbind(Exiobase_T_labels_ixi, TIV_breakdown_ch4_noncombustion_bituminouscoal_air)
TIV_country_breakdown_ch4_noncombustion_bituminouscoal_air_w_labels = t(TIV_breakdown_ch4_noncombustion_bituminouscoal_air_w_labels %>%
                                                               group_by(V1) %>%
                                                               select(-X,-V2) %>%
                                                               summarise_all(funs(sum)))

write.csv(TIV_country_breakdown_ch4_noncombustion_bituminouscoal_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_ch4_CO2eq_noncombustion_bituminouscoal_air_",year_current,"_ixi.csv"))

## coking coal
CH4_noncombustion_cokingcoal_air = satellite[72,]
CH4_noncombustion_cokingcoal_air = CH4_noncombustion_cokingcoal_air*28
DIV_ch4_noncombustion_cokingcoal_air = CH4_noncombustion_cokingcoal_air/total_output
DIV_ch4_noncombustion_cokingcoal_air[is.na(DIV_ch4_noncombustion_cokingcoal_air)]=0
DIV_ch4_noncombustion_cokingcoal_air[DIV_ch4_noncombustion_cokingcoal_air == Inf]<-0
TIV_ch4_noncombustion_cokingcoal_air = as.vector(DIV_ch4_noncombustion_cokingcoal_air) %*% L

write.csv(TIV_ch4_noncombustion_cokingcoal_air, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_ch4_CO2eq_noncombustion_cokingcoal_air_",year_current,"_ixi.csv"))

TIV_breakdown_ch4_noncombustion_cokingcoal_air = as.vector(DIV_ch4_noncombustion_cokingcoal_air) * L
TIV_breakdown_ch4_noncombustion_cokingcoal_air_w_labels = cbind(Exiobase_T_labels_ixi, TIV_breakdown_ch4_noncombustion_cokingcoal_air)
TIV_country_breakdown_ch4_noncombustion_cokingcoal_air_w_labels = t(TIV_breakdown_ch4_noncombustion_cokingcoal_air_w_labels %>%
                                                               group_by(V1) %>%
                                                               select(-X,-V2) %>%
                                                               summarise_all(funs(sum)))

write.csv(TIV_country_breakdown_ch4_noncombustion_cokingcoal_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_ch4_CO2eq_noncombustion_cokingcoal_air_",year_current,"_ixi.csv"))

## lignite
CH4_noncombustion_lignite_air = satellite[73,]
CH4_noncombustion_lignite_air = CH4_noncombustion_lignite_air*28
DIV_ch4_noncombustion_lignite_air = CH4_noncombustion_lignite_air/total_output
DIV_ch4_noncombustion_lignite_air[is.na(DIV_ch4_noncombustion_lignite_air)]=0
DIV_ch4_noncombustion_lignite_air[DIV_ch4_noncombustion_lignite_air == Inf]<-0
TIV_ch4_noncombustion_lignite_air = as.vector(DIV_ch4_noncombustion_lignite_air) %*% L

write.csv(TIV_ch4_noncombustion_lignite_air, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_ch4_CO2eq_noncombustion_lignite_air_",year_current,"_ixi.csv"))

TIV_breakdown_ch4_noncombustion_lignite_air = as.vector(DIV_ch4_noncombustion_lignite_air) * L
TIV_breakdown_ch4_noncombustion_lignite_air_w_labels = cbind(Exiobase_T_labels_ixi, TIV_breakdown_ch4_noncombustion_lignite_air)
TIV_country_breakdown_ch4_noncombustion_lignite_air_w_labels = t(TIV_breakdown_ch4_noncombustion_lignite_air_w_labels %>%
                                                               group_by(V1) %>%
                                                               select(-X,-V2) %>%
                                                               summarise_all(funs(sum)))

write.csv(TIV_country_breakdown_ch4_noncombustion_lignite_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_ch4_CO2eq_noncombustion_lignite_air_",year_current,"_ixi.csv"))

## subbituminous coal
CH4_noncombustion_subbituminouscoal_air = satellite[74,]
CH4_noncombustion_subbituminouscoal_air = CH4_noncombustion_subbituminouscoal_air*28
DIV_ch4_noncombustion_subbituminouscoal_air = CH4_noncombustion_subbituminouscoal_air/total_output
DIV_ch4_noncombustion_subbituminouscoal_air[is.na(DIV_ch4_noncombustion_subbituminouscoal_air)]=0
DIV_ch4_noncombustion_subbituminouscoal_air[DIV_ch4_noncombustion_subbituminouscoal_air == Inf]<-0
TIV_ch4_noncombustion_subbituminouscoal_air = as.vector(DIV_ch4_noncombustion_subbituminouscoal_air) %*% L

write.csv(TIV_ch4_noncombustion_subbituminouscoal_air, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_ch4_CO2eq_noncombustion_subbituminouscoal_air_",year_current,"_ixi.csv"))

TIV_breakdown_ch4_noncombustion_subbituminouscoal_air = as.vector(DIV_ch4_noncombustion_subbituminouscoal_air) * L
TIV_breakdown_ch4_noncombustion_subbituminouscoal_air_w_labels = cbind(Exiobase_T_labels_ixi, TIV_breakdown_ch4_noncombustion_subbituminouscoal_air)
TIV_country_breakdown_ch4_noncombustion_subbituminouscoal_air_w_labels = t(TIV_breakdown_ch4_noncombustion_subbituminouscoal_air_w_labels %>%
                                                               group_by(V1) %>%
                                                               select(-X,-V2) %>%
                                                               summarise_all(funs(sum)))

write.csv(TIV_country_breakdown_ch4_noncombustion_subbituminouscoal_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_ch4_CO2eq_noncombustion_subbituminouscoal_air_",year_current,"_ixi.csv"))

## oil refinery
CH4_noncombustion_oilrefinery_air = satellite[75,]
CH4_noncombustion_oilrefinery_air = CH4_noncombustion_oilrefinery_air*28
DIV_ch4_noncombustion_oilrefinery_air = CH4_noncombustion_oilrefinery_air/total_output
DIV_ch4_noncombustion_oilrefinery_air[is.na(DIV_ch4_noncombustion_oilrefinery_air)]=0
DIV_ch4_noncombustion_oilrefinery_air[DIV_ch4_noncombustion_oilrefinery_air == Inf]<-0
TIV_ch4_noncombustion_oilrefinery_air = as.vector(DIV_ch4_noncombustion_oilrefinery_air) %*% L

write.csv(TIV_ch4_noncombustion_oilrefinery_air, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_ch4_CO2eq_noncombustion_oilrefinery_air_",year_current,"_ixi.csv"))

TIV_breakdown_ch4_noncombustion_oilrefinery_air = as.vector(DIV_ch4_noncombustion_oilrefinery_air) * L
TIV_breakdown_ch4_noncombustion_oilrefinery_air_w_labels = cbind(Exiobase_T_labels_ixi, TIV_breakdown_ch4_noncombustion_oilrefinery_air)
TIV_country_breakdown_ch4_noncombustion_oilrefinery_air_w_labels = t(TIV_breakdown_ch4_noncombustion_oilrefinery_air_w_labels %>%
                                                                             group_by(V1) %>%
                                                                             select(-X,-V2) %>%
                                                                             summarise_all(funs(sum)))

write.csv(TIV_country_breakdown_ch4_noncombustion_oilrefinery_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_ch4_CO2eq_noncombustion_oilrefinery_air_",year_current,"_ixi.csv"))

# CH4 - agriculture - air
CH4_agriculture_air = satellite[427,]
CH4_agriculture_air = CH4_agriculture_air*28
DIV_ch4_agriculture_air = CH4_agriculture_air/total_output
DIV_ch4_agriculture_air[is.na(DIV_ch4_agriculture_air)]=0
DIV_ch4_agriculture_air[DIV_ch4_agriculture_air == Inf]<-0
TIV_ch4_agriculture_air = as.vector(DIV_ch4_agriculture_air) %*% L

write.csv(TIV_ch4_agriculture_air, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_ch4_CO2eq_agriculture_air_",year_current,"_ixi.csv"))

TIV_breakdown_ch4_agriculture_air = as.vector(DIV_ch4_agriculture_air) * L
TIV_breakdown_ch4_agriculture_air_w_labels = cbind(Exiobase_T_labels_ixi, TIV_breakdown_ch4_agriculture_air)
TIV_country_breakdown_ch4_agriculture_air_w_labels = t(TIV_breakdown_ch4_agriculture_air_w_labels %>%
                                                                             group_by(V1) %>%
                                                                             select(-X,-V2) %>%
                                                                             summarise_all(funs(sum)))

write.csv(TIV_country_breakdown_ch4_agriculture_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_ch4_CO2eq_agriculture_air_",year_current,"_ixi.csv"))

# CH4 - waste - air
CH4_waste_air = satellite[436,]
CH4_waste_air = CH4_waste_air*28
DIV_ch4_waste_air = CH4_waste_air/total_output
DIV_ch4_waste_air[is.na(DIV_ch4_waste_air)]=0
DIV_ch4_waste_air[DIV_ch4_waste_air == Inf]<-0
TIV_ch4_waste_air = as.vector(DIV_ch4_waste_air) %*% L

write.csv(TIV_ch4_waste_air, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_ch4_CO2eq_waste_air_",year_current,"_ixi.csv"))

TIV_breakdown_ch4_waste_air = as.vector(DIV_ch4_waste_air) * L
TIV_breakdown_ch4_waste_air_w_labels = cbind(Exiobase_T_labels_ixi, TIV_breakdown_ch4_waste_air)
TIV_country_breakdown_ch4_waste_air_w_labels = t(TIV_breakdown_ch4_waste_air_w_labels %>%
                                                                             group_by(V1) %>%
                                                                             select(-X,-V2) %>%
                                                                             summarise_all(funs(sum)))

write.csv(TIV_country_breakdown_ch4_waste_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_ch4_CO2eq_waste_air_",year_current,"_ixi.csv"))

# N2O - combustion - air
N2O_combustion_air = satellite[26,]
N2O_combustion_air = N2O_combustion_air*265
DIV_n2o_combustion_air = N2O_combustion_air/total_output
DIV_n2o_combustion_air[is.na(DIV_n2o_combustion_air)]=0
DIV_n2o_combustion_air[DIV_n2o_combustion_air == Inf]<-0
TIV_n2o_combustion_air = as.vector(DIV_n2o_combustion_air) %*% L

write.csv(TIV_n2o_combustion_air, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_n2o_CO2eq_combustion_air_",year_current,"_ixi.csv"))

TIV_breakdown_n2o_combustion_air = as.vector(DIV_n2o_combustion_air) * L
TIV_breakdown_n2o_combustion_air_w_labels = cbind(Exiobase_T_labels_ixi, TIV_breakdown_n2o_combustion_air)
TIV_country_breakdown_n2o_combustion_air_w_labels = t(TIV_breakdown_n2o_combustion_air_w_labels %>%
                                                        group_by(V1) %>%
                                                        select(-X,-V2) %>%
                                                        summarise_all(funs(sum)))

write.csv(TIV_country_breakdown_n2o_combustion_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_n2o_CO2eq_combustion_air_",year_current,"_ixi.csv"))

# N2O - agriculture - air
N2O_agriculture_air = satellite[430,]
N2O_agriculture_air = N2O_agriculture_air*265
DIV_n2o_agriculture_air = N2O_agriculture_air/total_output
DIV_n2o_agriculture_air[is.na(DIV_n2o_agriculture_air)]=0
DIV_n2o_agriculture_air[DIV_n2o_agriculture_air == Inf]<-0
TIV_n2o_agriculture_air = as.vector(DIV_n2o_agriculture_air) %*% L

write.csv(TIV_n2o_agriculture_air, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_n2o_CO2eq_agriculture_air_",year_current,"_ixi.csv"))

TIV_breakdown_n2o_agriculture_air = as.vector(DIV_n2o_agriculture_air) * L
TIV_breakdown_n2o_agriculture_air_w_labels = cbind(Exiobase_T_labels_ixi, TIV_breakdown_n2o_agriculture_air)
TIV_country_breakdown_n2o_agriculture_air_w_labels = t(TIV_breakdown_n2o_agriculture_air_w_labels %>%
                                                                             group_by(V1) %>%
                                                                             select(-X,-V2) %>%
                                                                             summarise_all(funs(sum)))

write.csv(TIV_country_breakdown_n2o_agriculture_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_n2o_CO2eq_agriculture_air_",year_current,"_ixi.csv"))

# SF6 - air
SF6_air = satellite[424,]
SF6_air = SF6_air*23500
DIV_sf6_air = SF6_air/total_output
DIV_sf6_air[is.na(DIV_sf6_air)]=0
DIV_sf6_air[DIV_sf6_air == Inf]<-0
TIV_sf6_air = as.vector(DIV_sf6_air) %*% L

write.csv(TIV_sf6_air, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_sf6_CO2eq_air_",year_current,"_ixi.csv"))

TIV_breakdown_sf6_air = as.vector(DIV_sf6_air) * L
TIV_breakdown_sf6_air_w_labels = cbind(Exiobase_T_labels_ixi, TIV_breakdown_sf6_air)
TIV_country_breakdown_sf6_air_w_labels = t(TIV_breakdown_sf6_air_w_labels %>%
                                                        group_by(V1) %>%
                                                        select(-X,-V2) %>%
                                                        summarise_all(funs(sum)))

write.csv(TIV_country_breakdown_sf6_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_sf6_CO2eq_air_",year_current,"_ixi.csv"))

# HFC - air
HFC_air = satellite[425,]
DIV_hfc_air = HFC_air/total_output
DIV_hfc_air[is.na(DIV_hfc_air)]=0
DIV_hfc_air[DIV_hfc_air == Inf]<-0
TIV_hfc_air = as.vector(DIV_hfc_air) %*% L

write.csv(TIV_hfc_air, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_hfc_CO2eq_air_",year_current,"_ixi.csv"))

TIV_breakdown_hfc_air = as.vector(DIV_hfc_air) * L
TIV_breakdown_hfc_air_w_labels = cbind(Exiobase_T_labels_ixi, TIV_breakdown_hfc_air)
TIV_country_breakdown_hfc_air_w_labels = t(TIV_breakdown_hfc_air_w_labels %>%
                                                        group_by(V1) %>%
                                                        select(-X,-V2) %>%
                                                        summarise_all(funs(sum)))

write.csv(TIV_country_breakdown_hfc_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_hfc_CO2eq_air_",year_current,"_ixi.csv"))

# PFC - air
PFC_air = satellite[426,]
DIV_pfc_air = PFC_air/total_output
DIV_pfc_air[is.na(DIV_pfc_air)]=0
DIV_pfc_air[DIV_pfc_air == Inf]<-0
TIV_pfc_air = as.vector(DIV_pfc_air) %*% L

write.csv(TIV_pfc_air, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_pfc_CO2eq_air_",year_current,"_ixi.csv"))

TIV_breakdown_pfc_air = as.vector(DIV_pfc_air) * L
TIV_breakdown_pfc_air_w_labels = cbind(Exiobase_T_labels_ixi, TIV_breakdown_pfc_air)
TIV_country_breakdown_pfc_air_w_labels = t(TIV_breakdown_pfc_air_w_labels %>%
                                             group_by(V1) %>%
                                             select(-X,-V2) %>%
                                             summarise_all(funs(sum)))

write.csv(TIV_country_breakdown_pfc_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_pfc_CO2eq_air_",year_current,"_ixi.csv"))

# Energy carrier - use
energy_carrier_use = satellite[470,]
write.csv(energy_carrier_use, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/satellite/energy_carrier_use_",year_current,"_ixi.csv"))
DIV_e_u = energy_carrier_use/total_output
DIV_e_u[is.na(DIV_e_u)]=0
DIV_e_u[DIV_e_u == Inf]<-0
TIV_e_u = as.vector(DIV_e_u) %*% L

write.csv(TIV_e_u, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_energy_carrier_use_",year_current,"_ixi.csv"))

TIV_breakdown_e_u = as.vector(DIV_e_u) * L
TIV_breakdown_e_u_w_labels = cbind(Exiobase_T_labels_ixi, TIV_breakdown_e_u)
TIV_country_breakdown_e_u_w_labels = t(TIV_breakdown_e_u_w_labels %>%
                                             group_by(V1) %>%
                                             select(-X,-V2) %>%
                                             summarise_all(funs(sum)))

write.csv(TIV_country_breakdown_e_u_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_energy_carrier_use_",year_current,"_ixi.csv"))
}


##### EXIOBASE product-by-product version

# set study years
years_exiobase_pxp = c(2005,2010)

# 'for' loop which writes 'total intensity vectors' (and row-wise breakdowns) for all study satellite extensions and years to 'data_dir_exiobase' using downloaded EXIOBASE files
for (i in years_exiobase_pxp){
  
year_current = i

# read in A table as table
A = read.delim(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/A.txt"),header = F)

# write A table as .csv file
write.csv(A, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/A.csv"))

# read in A table as .csv file and extract the data only (no labels), and convert to numeric
A = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/A.csv",sep = ""),row.names=NULL,as.is=TRUE)[4:9803,4:9803]
A[is.na(A)]=0
A = mapply(A, FUN = as.numeric)
A = matrix(data = A, ncol = 9800, nrow = 9800)

# solve the Leontief inverse
L = solve(diag(dim(A)[1])-A)
L[is.na(L)]=0

# read in final demand table (Y) as table
FD = read.delim(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/Y.txt"),header = F)

# write final demand table (Y) as .csv file
write.csv(FD, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/Y.csv"))

# read in final demand table as .csv file and extract the production sector labels
Exiobase_T_labels_pxp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/Y.csv"))[4:9803,1:3]

# write a .csv file with only the production sector labels
write.csv(Exiobase_T_labels_pxp, paste0(data_dir_exiobase, "/Exiobase_T_labels_pxp.csv"))

# read in final demand table as .csv file and extract the final demand category labels
Exiobase_FD_labels_pxp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/Y.csv"))[1:3,4:346]

# write a .csv file with only the final demand category labels
write.csv(Exiobase_FD_labels_pxp, paste0(data_dir_exiobase, "/Exiobase_FD_labels_pxp.csv"))

# read in final demand table as .csv file and extract the data only (no labels), and convert to numeric
FD = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/Y.csv",sep=""),row.names=NULL,as.is=TRUE)[4:9803,4:346]
FD[is.na(FD)]=0
FD = mapply(FD, FUN = as.numeric)
FD = matrix(data=FD,ncol=343,nrow=9800)

# write a .csv file with final demand data only (no labels)
write.csv(FD, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/FD_",year_current,"_pxp.csv"))

# calculate total output
total_output = L %*% rowSums(FD)

# write total output as a .csv file
write.csv(total_output, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/total_output_",year_current,"_pxp.csv"))

# read in satellite extensions table (F) as table
satellite = read.delim(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/satellite/F.txt"),header = F)

# write satellite extensions table (F) as .csv file
write.csv(satellite, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/satellite/F.csv"))

# read in satellite extensions table (F) as .csv file and extract the data only (no labels), and convert to numeric
satellite = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/satellite/F.csv",sep=""),row.names=NULL,as.is=TRUE)[3:1106,3:9802]
satellite[is.na(satellite)]=0
satellite = mapply(satellite, FUN = as.numeric)
satellite = matrix(data=satellite,ncol=9800,nrow=1104)

# write a .csv file with satellite extensions data only (no labels)
write.csv(satellite, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/satellite/satellite_",year_current,"_pxp.csv"))

# read in satellite extensions on final demand table (F_hh) as table
satellite_FD = read.delim(paste0(data_dir_exiobase, "/IOT_", year_current, "_pxp/satellite/F_hh.txt"),header = F)

# write satellite extensions on final demand table (F_hh) as .csv file
write.csv(satellite_FD, paste0(data_dir_exiobase, "/IOT_", year_current, "_pxp/satellite/F_hh.csv"))

## extract the relevant satellite extensions from the satellite table, calculate the 'total intensity 
## vectors' (and their row-wise breakdowns), and write them as .csv files to 'data_dir_exiobase'

# CO2 - combustion - air
CO2_combustion_air = satellite[24,]
DIV_co2_combustion_air = CO2_combustion_air/total_output
DIV_co2_combustion_air[is.na(DIV_co2_combustion_air)]=0
DIV_co2_combustion_air[DIV_co2_combustion_air == Inf]<-0
TIV_co2_combustion_air = as.vector(DIV_co2_combustion_air) %*% L

write.csv(TIV_co2_combustion_air, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_co2_combustion_air_",year_current,"_pxp.csv"))

TIV_breakdown_co2_combustion_air = as.vector(DIV_co2_combustion_air) * L
TIV_breakdown_co2_combustion_air_w_labels = cbind(Exiobase_T_labels_pxp, TIV_breakdown_co2_combustion_air)
TIV_country_breakdown_co2_combustion_air_w_labels = t(TIV_breakdown_co2_combustion_air_w_labels %>%
  group_by(V1) %>%
  select(-X,-V2) %>%
  summarise_all(funs(sum)))

write.csv(TIV_country_breakdown_co2_combustion_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_co2_combustion_air_",year_current,"_pxp.csv"))

# CO2 - non-combustion - air
## cement
CO2_noncombustion_cement_air = satellite[93,]
DIV_co2_noncombustion_cement_air = CO2_noncombustion_cement_air/total_output
DIV_co2_noncombustion_cement_air[is.na(DIV_co2_noncombustion_cement_air)]=0
DIV_co2_noncombustion_cement_air[DIV_co2_noncombustion_cement_air == Inf]<-0
TIV_co2_noncombustion_cement_air = as.vector(DIV_co2_noncombustion_cement_air) %*% L

write.csv(TIV_co2_noncombustion_cement_air, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_co2_noncombustion_cement_air_",year_current,"_pxp.csv"))

TIV_breakdown_co2_noncombustion_cement_air = as.vector(DIV_co2_noncombustion_cement_air) * L
TIV_breakdown_co2_noncombustion_cement_air_w_labels = cbind(Exiobase_T_labels_pxp, TIV_breakdown_co2_noncombustion_cement_air)
TIV_country_breakdown_co2_noncombustion_cement_air_w_labels = t(TIV_breakdown_co2_noncombustion_cement_air_w_labels %>%
                                                                  group_by(V1) %>%
                                                                  select(-X,-V2) %>%
                                                                  summarise_all(funs(sum)))

write.csv(TIV_country_breakdown_co2_noncombustion_cement_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_co2_noncombustion_cement_air_",year_current,"_pxp.csv"))

## lime
CO2_noncombustion_lime_air = satellite[94,]
DIV_co2_noncombustion_lime_air = CO2_noncombustion_lime_air/total_output
DIV_co2_noncombustion_lime_air[is.na(DIV_co2_noncombustion_lime_air)]=0
DIV_co2_noncombustion_lime_air[DIV_co2_noncombustion_lime_air == Inf]<-0
TIV_co2_noncombustion_lime_air = as.vector(DIV_co2_noncombustion_lime_air) %*% L

write.csv(TIV_co2_noncombustion_lime_air, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_co2_noncombustion_lime_air_",year_current,"_pxp.csv"))

TIV_breakdown_co2_noncombustion_lime_air = as.vector(DIV_co2_noncombustion_lime_air) * L
TIV_breakdown_co2_noncombustion_lime_air_w_labels = cbind(Exiobase_T_labels_pxp, TIV_breakdown_co2_noncombustion_lime_air)
TIV_country_breakdown_co2_noncombustion_lime_air_w_labels = t(TIV_breakdown_co2_noncombustion_lime_air_w_labels %>%
                                                                group_by(V1) %>%
                                                                select(-X,-V2) %>%
                                                                summarise_all(funs(sum)))

write.csv(TIV_country_breakdown_co2_noncombustion_lime_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_co2_noncombustion_lime_air_",year_current,"_pxp.csv"))

# CO2 - agriculture - peat decay - air
CO2_agriculture_peatdecay_air = satellite[428,]
DIV_co2_agriculture_peatdecay_air = CO2_agriculture_peatdecay_air/total_output
DIV_co2_agriculture_peatdecay_air[is.na(DIV_co2_agriculture_peatdecay_air)]=0
DIV_co2_agriculture_peatdecay_air[DIV_co2_agriculture_peatdecay_air == Inf]<-0
TIV_co2_agriculture_peatdecay_air = as.vector(DIV_co2_agriculture_peatdecay_air) %*% L

write.csv(TIV_co2_agriculture_peatdecay_air, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_co2_agriculture_peatdecay_air_",year_current,"_pxp.csv"))

TIV_breakdown_co2_agriculture_peatdecay_air = as.vector(DIV_co2_agriculture_peatdecay_air) * L
TIV_breakdown_co2_agriculture_peatdecay_air_w_labels = cbind(Exiobase_T_labels_pxp, TIV_breakdown_co2_agriculture_peatdecay_air)
TIV_country_breakdown_co2_agriculture_peatdecay_air_w_labels = t(TIV_breakdown_co2_agriculture_peatdecay_air_w_labels %>%
                                                                   group_by(V1) %>%
                                                                   select(-X,-V2) %>%
                                                                   summarise_all(funs(sum)))

write.csv(TIV_country_breakdown_co2_agriculture_peatdecay_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_co2_agriculture_peatdecay_air_",year_current,"_pxp.csv"))

# CO2 - waste - air
## biogenic
CO2_waste_biogenic_air = satellite[438,]
DIV_co2_waste_biogenic_air = CO2_waste_biogenic_air/total_output
DIV_co2_waste_biogenic_air[is.na(DIV_co2_waste_biogenic_air)]=0
DIV_co2_waste_biogenic_air[DIV_co2_waste_biogenic_air == Inf]<-0
TIV_co2_biogenic_air = as.vector(DIV_co2_waste_biogenic_air) %*% L

write.csv(TIV_co2_biogenic_air, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_co2_biogenic_air_",year_current,"_pxp.csv"))

TIV_breakdown_co2_biogenic_air = as.vector(DIV_co2_waste_biogenic_air) * L
TIV_breakdown_co2_biogenic_air_w_labels = cbind(Exiobase_T_labels_pxp, TIV_breakdown_co2_biogenic_air)
TIV_country_breakdown_co2_biogenic_air_w_labels = t(TIV_breakdown_co2_biogenic_air_w_labels %>%
                                                      group_by(V1) %>%
                                                      select(-X,-V2) %>%
                                                      summarise_all(funs(sum)))

write.csv(TIV_country_breakdown_co2_biogenic_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_co2_biogenic_air_",year_current,"_pxp.csv"))

## fossil
CO2_waste_fossil_air = satellite[439,]
DIV_co2_waste_fossil_air = CO2_waste_fossil_air/total_output
DIV_co2_waste_fossil_air[is.na(DIV_co2_waste_fossil_air)]=0
DIV_co2_waste_fossil_air[DIV_co2_waste_fossil_air == Inf]<-0
TIV_co2_waste_fossil_air = as.vector(DIV_co2_waste_fossil_air) %*% L

write.csv(TIV_co2_waste_fossil_air, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_co2_waste_fossil_air_",year_current,"_pxp.csv"))

TIV_breakdown_co2_waste_fossil_air = as.vector(DIV_co2_waste_fossil_air) * L
TIV_breakdown_co2_waste_fossil_air_w_labels = cbind(Exiobase_T_labels_pxp, TIV_breakdown_co2_waste_fossil_air)
TIV_country_breakdown_co2_waste_fossil_air_w_labels = t(TIV_breakdown_co2_waste_fossil_air_w_labels %>%
                                                          group_by(V1) %>%
                                                          select(-X,-V2) %>%
                                                          summarise_all(funs(sum)))

write.csv(TIV_country_breakdown_co2_waste_fossil_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_co2_waste_fossil_air_",year_current,"_pxp.csv"))

# CH4 - combustion - air
CH4_combustion_air = satellite[25,]
CH4_combustion_air = CH4_combustion_air*28
DIV_ch4_combustion_air = CH4_combustion_air/total_output
DIV_ch4_combustion_air[is.na(DIV_ch4_combustion_air)]=0
DIV_ch4_combustion_air[DIV_ch4_combustion_air == Inf]<-0
TIV_ch4_combustion_air = as.vector(DIV_ch4_combustion_air) %*% L

write.csv(TIV_ch4_combustion_air, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_ch4_CO2eq_combustion_air_",year_current,"_pxp.csv"))

TIV_breakdown_ch4_combustion_air = as.vector(DIV_ch4_combustion_air) * L
TIV_breakdown_ch4_combustion_air_w_labels = cbind(Exiobase_T_labels_pxp, TIV_breakdown_ch4_combustion_air)
TIV_country_breakdown_ch4_combustion_air_w_labels = t(TIV_breakdown_ch4_combustion_air_w_labels %>%
                                                        group_by(V1) %>%
                                                        select(-X,-V2) %>%
                                                        summarise_all(funs(sum)))

write.csv(TIV_country_breakdown_ch4_combustion_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_ch4_CO2eq_combustion_air_",year_current,"_pxp.csv"))

# CH4 - non-combustion - air
## gas
CH4_noncombustion_gas_air = satellite[68,]
CH4_noncombustion_gas_air = CH4_noncombustion_gas_air*28
DIV_ch4_noncombustion_gas_air = CH4_noncombustion_gas_air/total_output
DIV_ch4_noncombustion_gas_air[is.na(DIV_ch4_noncombustion_gas_air)]=0
DIV_ch4_noncombustion_gas_air[DIV_ch4_noncombustion_gas_air == Inf]<-0
TIV_ch4_noncombustion_gas_air = as.vector(DIV_ch4_noncombustion_gas_air) %*% L

write.csv(TIV_ch4_noncombustion_gas_air, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_ch4_CO2eq_noncombustion_gas_air_",year_current,"_pxp.csv"))

TIV_breakdown_ch4_noncombustion_gas_air = as.vector(DIV_ch4_noncombustion_gas_air) * L
TIV_breakdown_ch4_noncombustion_gas_air_w_labels = cbind(Exiobase_T_labels_pxp, TIV_breakdown_ch4_noncombustion_gas_air)
TIV_country_breakdown_ch4_noncombustion_gas_air_w_labels = t(TIV_breakdown_ch4_noncombustion_gas_air_w_labels %>%
                                                               group_by(V1) %>%
                                                               select(-X,-V2) %>%
                                                               summarise_all(funs(sum)))

write.csv(TIV_country_breakdown_ch4_noncombustion_gas_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_ch4_CO2eq_noncombustion_gas_air_",year_current,"_pxp.csv"))

## oil
CH4_noncombustion_oil_air = satellite[69,]
CH4_noncombustion_oil_air = CH4_noncombustion_oil_air*28
DIV_ch4_noncombustion_oil_air = CH4_noncombustion_oil_air/total_output
DIV_ch4_noncombustion_oil_air[is.na(DIV_ch4_noncombustion_oil_air)]=0
DIV_ch4_noncombustion_oil_air[DIV_ch4_noncombustion_oil_air == Inf]<-0
TIV_ch4_noncombustion_oil_air = as.vector(DIV_ch4_noncombustion_oil_air) %*% L

write.csv(TIV_ch4_noncombustion_oil_air, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_ch4_CO2eq_noncombustion_oil_air_",year_current,"_pxp.csv"))

TIV_breakdown_ch4_noncombustion_oil_air = as.vector(DIV_ch4_noncombustion_oil_air) * L
TIV_breakdown_ch4_noncombustion_oil_air_w_labels = cbind(Exiobase_T_labels_pxp, TIV_breakdown_ch4_noncombustion_oil_air)
TIV_country_breakdown_ch4_noncombustion_oil_air_w_labels = t(TIV_breakdown_ch4_noncombustion_oil_air_w_labels %>%
                                                               group_by(V1) %>%
                                                               select(-X,-V2) %>%
                                                               summarise_all(funs(sum)))

write.csv(TIV_country_breakdown_ch4_noncombustion_oil_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_ch4_CO2eq_noncombustion_oil_air_",year_current,"_pxp.csv"))

## anthracite
CH4_noncombustion_anthracite_air = satellite[70,]
CH4_noncombustion_anthracite_air = CH4_noncombustion_anthracite_air*28
DIV_ch4_noncombustion_anthracite_air = CH4_noncombustion_anthracite_air/total_output
DIV_ch4_noncombustion_anthracite_air[is.na(DIV_ch4_noncombustion_anthracite_air)]=0
DIV_ch4_noncombustion_anthracite_air[DIV_ch4_noncombustion_anthracite_air == Inf]<-0
TIV_ch4_noncombustion_anthracite_air = as.vector(DIV_ch4_noncombustion_anthracite_air) %*% L

write.csv(TIV_ch4_noncombustion_anthracite_air, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_ch4_CO2eq_noncombustion_anthracite_air_",year_current,"_pxp.csv"))

TIV_breakdown_ch4_noncombustion_anthracite_air = as.vector(DIV_ch4_noncombustion_anthracite_air) * L
TIV_breakdown_ch4_noncombustion_anthracite_air_w_labels = cbind(Exiobase_T_labels_pxp, TIV_breakdown_ch4_noncombustion_anthracite_air)
TIV_country_breakdown_ch4_noncombustion_anthracite_air_w_labels = t(TIV_breakdown_ch4_noncombustion_anthracite_air_w_labels %>%
                                                                      group_by(V1) %>%
                                                                      select(-X,-V2) %>%
                                                                      summarise_all(funs(sum)))

write.csv(TIV_country_breakdown_ch4_noncombustion_anthracite_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_ch4_CO2eq_noncombustion_anthracite_air_",year_current,"_pxp.csv"))

## bituminous coal
CH4_noncombustion_bituminouscoal_air = satellite[71,]
CH4_noncombustion_bituminouscoal_air = CH4_noncombustion_bituminouscoal_air*28
DIV_ch4_noncombustion_bituminouscoal_air = CH4_noncombustion_bituminouscoal_air/total_output
DIV_ch4_noncombustion_bituminouscoal_air[is.na(DIV_ch4_noncombustion_bituminouscoal_air)]=0
DIV_ch4_noncombustion_bituminouscoal_air[DIV_ch4_noncombustion_bituminouscoal_air == Inf]<-0
TIV_ch4_noncombustion_bituminouscoal_air = as.vector(DIV_ch4_noncombustion_bituminouscoal_air) %*% L

write.csv(TIV_ch4_noncombustion_bituminouscoal_air, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_ch4_CO2eq_noncombustion_bituminouscoal_air_",year_current,"_pxp.csv"))

TIV_breakdown_ch4_noncombustion_bituminouscoal_air = as.vector(DIV_ch4_noncombustion_bituminouscoal_air) * L
TIV_breakdown_ch4_noncombustion_bituminouscoal_air_w_labels = cbind(Exiobase_T_labels_pxp, TIV_breakdown_ch4_noncombustion_bituminouscoal_air)
TIV_country_breakdown_ch4_noncombustion_bituminouscoal_air_w_labels = t(TIV_breakdown_ch4_noncombustion_bituminouscoal_air_w_labels %>%
                                                                          group_by(V1) %>%
                                                                          select(-X,-V2) %>%
                                                                          summarise_all(funs(sum)))

write.csv(TIV_country_breakdown_ch4_noncombustion_bituminouscoal_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_ch4_CO2eq_noncombustion_bituminouscoal_air_",year_current,"_pxp.csv"))

## coking coal
CH4_noncombustion_cokingcoal_air = satellite[72,]
CH4_noncombustion_cokingcoal_air = CH4_noncombustion_cokingcoal_air*28
DIV_ch4_noncombustion_cokingcoal_air = CH4_noncombustion_cokingcoal_air/total_output
DIV_ch4_noncombustion_cokingcoal_air[is.na(DIV_ch4_noncombustion_cokingcoal_air)]=0
DIV_ch4_noncombustion_cokingcoal_air[DIV_ch4_noncombustion_cokingcoal_air == Inf]<-0
TIV_ch4_noncombustion_cokingcoal_air = as.vector(DIV_ch4_noncombustion_cokingcoal_air) %*% L

write.csv(TIV_ch4_noncombustion_cokingcoal_air, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_ch4_CO2eq_noncombustion_cokingcoal_air_",year_current,"_pxp.csv"))

TIV_breakdown_ch4_noncombustion_cokingcoal_air = as.vector(DIV_ch4_noncombustion_cokingcoal_air) * L
TIV_breakdown_ch4_noncombustion_cokingcoal_air_w_labels = cbind(Exiobase_T_labels_pxp, TIV_breakdown_ch4_noncombustion_cokingcoal_air)
TIV_country_breakdown_ch4_noncombustion_cokingcoal_air_w_labels = t(TIV_breakdown_ch4_noncombustion_cokingcoal_air_w_labels %>%
                                                                      group_by(V1) %>%
                                                                      select(-X,-V2) %>%
                                                                      summarise_all(funs(sum)))

write.csv(TIV_country_breakdown_ch4_noncombustion_cokingcoal_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_ch4_CO2eq_noncombustion_cokingcoal_air_",year_current,"_pxp.csv"))

## lignite
CH4_noncombustion_lignite_air = satellite[73,]
CH4_noncombustion_lignite_air = CH4_noncombustion_lignite_air*28
DIV_ch4_noncombustion_lignite_air = CH4_noncombustion_lignite_air/total_output
DIV_ch4_noncombustion_lignite_air[is.na(DIV_ch4_noncombustion_lignite_air)]=0
DIV_ch4_noncombustion_lignite_air[DIV_ch4_noncombustion_lignite_air == Inf]<-0
TIV_ch4_noncombustion_lignite_air = as.vector(DIV_ch4_noncombustion_lignite_air) %*% L

write.csv(TIV_ch4_noncombustion_lignite_air, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_ch4_CO2eq_noncombustion_lignite_air_",year_current,"_pxp.csv"))

TIV_breakdown_ch4_noncombustion_lignite_air = as.vector(DIV_ch4_noncombustion_lignite_air) * L
TIV_breakdown_ch4_noncombustion_lignite_air_w_labels = cbind(Exiobase_T_labels_pxp, TIV_breakdown_ch4_noncombustion_lignite_air)
TIV_country_breakdown_ch4_noncombustion_lignite_air_w_labels = t(TIV_breakdown_ch4_noncombustion_lignite_air_w_labels %>%
                                                                   group_by(V1) %>%
                                                                   select(-X,-V2) %>%
                                                                   summarise_all(funs(sum)))

write.csv(TIV_country_breakdown_ch4_noncombustion_lignite_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_ch4_CO2eq_noncombustion_lignite_air_",year_current,"_pxp.csv"))

## subbituminous coal
CH4_noncombustion_subbituminouscoal_air = satellite[74,]
CH4_noncombustion_subbituminouscoal_air = CH4_noncombustion_subbituminouscoal_air*28
DIV_ch4_noncombustion_subbituminouscoal_air = CH4_noncombustion_subbituminouscoal_air/total_output
DIV_ch4_noncombustion_subbituminouscoal_air[is.na(DIV_ch4_noncombustion_subbituminouscoal_air)]=0
DIV_ch4_noncombustion_subbituminouscoal_air[DIV_ch4_noncombustion_subbituminouscoal_air == Inf]<-0
TIV_ch4_noncombustion_subbituminouscoal_air = as.vector(DIV_ch4_noncombustion_subbituminouscoal_air) %*% L

write.csv(TIV_ch4_noncombustion_subbituminouscoal_air, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_ch4_CO2eq_noncombustion_subbituminouscoal_air_",year_current,"_pxp.csv"))

TIV_breakdown_ch4_noncombustion_subbituminouscoal_air = as.vector(DIV_ch4_noncombustion_subbituminouscoal_air) * L
TIV_breakdown_ch4_noncombustion_subbituminouscoal_air_w_labels = cbind(Exiobase_T_labels_pxp, TIV_breakdown_ch4_noncombustion_subbituminouscoal_air)
TIV_country_breakdown_ch4_noncombustion_subbituminouscoal_air_w_labels = t(TIV_breakdown_ch4_noncombustion_subbituminouscoal_air_w_labels %>%
                                                                             group_by(V1) %>%
                                                                             select(-X,-V2) %>%
                                                                             summarise_all(funs(sum)))

write.csv(TIV_country_breakdown_ch4_noncombustion_subbituminouscoal_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_ch4_CO2eq_noncombustion_subbituminouscoal_air_",year_current,"_pxp.csv"))

## oil refinery
CH4_noncombustion_oilrefinery_air = satellite[75,]
CH4_noncombustion_oilrefinery_air = CH4_noncombustion_oilrefinery_air*28
DIV_ch4_noncombustion_oilrefinery_air = CH4_noncombustion_oilrefinery_air/total_output
DIV_ch4_noncombustion_oilrefinery_air[is.na(DIV_ch4_noncombustion_oilrefinery_air)]=0
DIV_ch4_noncombustion_oilrefinery_air[DIV_ch4_noncombustion_oilrefinery_air == Inf]<-0
TIV_ch4_noncombustion_oilrefinery_air = as.vector(DIV_ch4_noncombustion_oilrefinery_air) %*% L

write.csv(TIV_ch4_noncombustion_oilrefinery_air, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_ch4_CO2eq_noncombustion_oilrefinery_air_",year_current,"_pxp.csv"))

TIV_breakdown_ch4_noncombustion_oilrefinery_air = as.vector(DIV_ch4_noncombustion_oilrefinery_air) * L
TIV_breakdown_ch4_noncombustion_oilrefinery_air_w_labels = cbind(Exiobase_T_labels_pxp, TIV_breakdown_ch4_noncombustion_oilrefinery_air)
TIV_country_breakdown_ch4_noncombustion_oilrefinery_air_w_labels = t(TIV_breakdown_ch4_noncombustion_oilrefinery_air_w_labels %>%
                                                                       group_by(V1) %>%
                                                                       select(-X,-V2) %>%
                                                                       summarise_all(funs(sum)))

write.csv(TIV_country_breakdown_ch4_noncombustion_oilrefinery_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_ch4_CO2eq_noncombustion_oilrefinery_air_",year_current,"_pxp.csv"))

# CH4 - agriculture - air
CH4_agriculture_air = satellite[427,]
CH4_agriculture_air = CH4_agriculture_air*28
DIV_ch4_agriculture_air = CH4_agriculture_air/total_output
DIV_ch4_agriculture_air[is.na(DIV_ch4_agriculture_air)]=0
DIV_ch4_agriculture_air[DIV_ch4_agriculture_air == Inf]<-0
TIV_ch4_agriculture_air = as.vector(DIV_ch4_agriculture_air) %*% L

write.csv(TIV_ch4_agriculture_air, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_ch4_CO2eq_agriculture_air_",year_current,"_pxp.csv"))

TIV_breakdown_ch4_agriculture_air = as.vector(DIV_ch4_agriculture_air) * L
TIV_breakdown_ch4_agriculture_air_w_labels = cbind(Exiobase_T_labels_pxp, TIV_breakdown_ch4_agriculture_air)
TIV_country_breakdown_ch4_agriculture_air_w_labels = t(TIV_breakdown_ch4_agriculture_air_w_labels %>%
                                                         group_by(V1) %>%
                                                         select(-X,-V2) %>%
                                                         summarise_all(funs(sum)))

write.csv(TIV_country_breakdown_ch4_agriculture_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_ch4_CO2eq_agriculture_air_",year_current,"_pxp.csv"))

# CH4 - waste - air
CH4_waste_air = satellite[436,]
CH4_waste_air = CH4_waste_air*28
DIV_ch4_waste_air = CH4_waste_air/total_output
DIV_ch4_waste_air[is.na(DIV_ch4_waste_air)]=0
DIV_ch4_waste_air[DIV_ch4_waste_air == Inf]<-0
TIV_ch4_waste_air = as.vector(DIV_ch4_waste_air) %*% L

write.csv(TIV_ch4_waste_air, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_ch4_CO2eq_waste_air_",year_current,"_pxp.csv"))

TIV_breakdown_ch4_waste_air = as.vector(DIV_ch4_waste_air) * L
TIV_breakdown_ch4_waste_air_w_labels = cbind(Exiobase_T_labels_pxp, TIV_breakdown_ch4_waste_air)
TIV_country_breakdown_ch4_waste_air_w_labels = t(TIV_breakdown_ch4_waste_air_w_labels %>%
                                                   group_by(V1) %>%
                                                   select(-X,-V2) %>%
                                                   summarise_all(funs(sum)))

write.csv(TIV_country_breakdown_ch4_waste_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_ch4_CO2eq_waste_air_",year_current,"_pxp.csv"))

# N2O - combustion - air
N2O_combustion_air = satellite[26,]
N2O_combustion_air = N2O_combustion_air*265
DIV_n2o_combustion_air = N2O_combustion_air/total_output
DIV_n2o_combustion_air[is.na(DIV_n2o_combustion_air)]=0
DIV_n2o_combustion_air[DIV_n2o_combustion_air == Inf]<-0
TIV_n2o_combustion_air = as.vector(DIV_n2o_combustion_air) %*% L

write.csv(TIV_n2o_combustion_air, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_n2o_CO2eq_combustion_air_",year_current,"_pxp.csv"))

TIV_breakdown_n2o_combustion_air = as.vector(DIV_n2o_combustion_air) * L
TIV_breakdown_n2o_combustion_air_w_labels = cbind(Exiobase_T_labels_pxp, TIV_breakdown_n2o_combustion_air)
TIV_country_breakdown_n2o_combustion_air_w_labels = t(TIV_breakdown_n2o_combustion_air_w_labels %>%
                                                        group_by(V1) %>%
                                                        select(-X,-V2) %>%
                                                        summarise_all(funs(sum)))

write.csv(TIV_country_breakdown_n2o_combustion_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_n2o_CO2eq_combustion_air_",year_current,"_pxp.csv"))

# N2O - agriculture - air
N2O_agriculture_air = satellite[430,]
N2O_agriculture_air = N2O_agriculture_air*265
DIV_n2o_agriculture_air = N2O_agriculture_air/total_output
DIV_n2o_agriculture_air[is.na(DIV_n2o_agriculture_air)]=0
DIV_n2o_agriculture_air[DIV_n2o_agriculture_air == Inf]<-0
TIV_n2o_agriculture_air = as.vector(DIV_n2o_agriculture_air) %*% L

write.csv(TIV_n2o_agriculture_air, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_n2o_CO2eq_agriculture_air_",year_current,"_pxp.csv"))

TIV_breakdown_n2o_agriculture_air = as.vector(DIV_n2o_agriculture_air) * L
TIV_breakdown_n2o_agriculture_air_w_labels = cbind(Exiobase_T_labels_pxp, TIV_breakdown_n2o_agriculture_air)
TIV_country_breakdown_n2o_agriculture_air_w_labels = t(TIV_breakdown_n2o_agriculture_air_w_labels %>%
                                                         group_by(V1) %>%
                                                         select(-X,-V2) %>%
                                                         summarise_all(funs(sum)))

write.csv(TIV_country_breakdown_n2o_agriculture_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_n2o_CO2eq_agriculture_air_",year_current,"_pxp.csv"))

# SF6 - air
SF6_air = satellite[424,]
SF6_air = SF6_air*23500
DIV_sf6_air = SF6_air/total_output
DIV_sf6_air[is.na(DIV_sf6_air)]=0
DIV_sf6_air[DIV_sf6_air == Inf]<-0
TIV_sf6_air = as.vector(DIV_sf6_air) %*% L

write.csv(TIV_sf6_air, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_sf6_CO2eq_air_",year_current,"_pxp.csv"))

TIV_breakdown_sf6_air = as.vector(DIV_sf6_air) * L
TIV_breakdown_sf6_air_w_labels = cbind(Exiobase_T_labels_pxp, TIV_breakdown_sf6_air)
TIV_country_breakdown_sf6_air_w_labels = t(TIV_breakdown_sf6_air_w_labels %>%
                                             group_by(V1) %>%
                                             select(-X,-V2) %>%
                                             summarise_all(funs(sum)))

write.csv(TIV_country_breakdown_sf6_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_sf6_CO2eq_air_",year_current,"_pxp.csv"))

# HFC - air
HFC_air = satellite[425,]
DIV_hfc_air = HFC_air/total_output
DIV_hfc_air[is.na(DIV_hfc_air)]=0
DIV_hfc_air[DIV_hfc_air == Inf]<-0
TIV_hfc_air = as.vector(DIV_hfc_air) %*% L

write.csv(TIV_hfc_air, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_hfc_CO2eq_air_",year_current,"_pxp.csv"))

TIV_breakdown_hfc_air = as.vector(DIV_hfc_air) * L
TIV_breakdown_hfc_air_w_labels = cbind(Exiobase_T_labels_pxp, TIV_breakdown_hfc_air)
TIV_country_breakdown_hfc_air_w_labels = t(TIV_breakdown_hfc_air_w_labels %>%
                                             group_by(V1) %>%
                                             select(-X,-V2) %>%
                                             summarise_all(funs(sum)))

write.csv(TIV_country_breakdown_hfc_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_hfc_CO2eq_air_",year_current,"_pxp.csv"))

# PFC - air
PFC_air = satellite[426,]
DIV_pfc_air = PFC_air/total_output
DIV_pfc_air[is.na(DIV_pfc_air)]=0
DIV_pfc_air[DIV_pfc_air == Inf]<-0
TIV_pfc_air = as.vector(DIV_pfc_air) %*% L

write.csv(TIV_pfc_air, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_pfc_CO2eq_air_",year_current,"_pxp.csv"))

TIV_breakdown_pfc_air = as.vector(DIV_pfc_air) * L
TIV_breakdown_pfc_air_w_labels = cbind(Exiobase_T_labels_pxp, TIV_breakdown_pfc_air)
TIV_country_breakdown_pfc_air_w_labels = t(TIV_breakdown_pfc_air_w_labels %>%
                                             group_by(V1) %>%
                                             select(-X,-V2) %>%
                                             summarise_all(funs(sum)))

write.csv(TIV_country_breakdown_pfc_air_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_pfc_CO2eq_air_",year_current,"_pxp.csv"))

# Energy carrier - use
energy_carrier_use = satellite[470,]
DIV_e_u = energy_carrier_use/total_output
DIV_e_u[is.na(DIV_e_u)]=0
DIV_e_u[DIV_e_u == Inf]<-0
TIV_e_u = as.vector(DIV_e_u) %*% L

write.csv(TIV_e_u, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_energy_carrier_use_",year_current,"_pxp.csv"))

TIV_breakdown_e_u = as.vector(DIV_e_u) * L
TIV_breakdown_e_u_w_labels = cbind(Exiobase_T_labels_pxp, TIV_breakdown_e_u)
TIV_country_breakdown_e_u_w_labels = t(TIV_breakdown_e_u_w_labels %>%
                                         group_by(V1) %>%
                                         select(-X,-V2) %>%
                                         summarise_all(funs(sum)))

write.csv(TIV_country_breakdown_e_u_w_labels, paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_energy_carrier_use_",year_current,"_pxp.csv"))
}

isf

HBS: European household budget survey from EUROSTAT, macro-data, from : https://ec.europa.eu/eurostat/web/household-budget-surveys/database [accessed on 22.05.2020]

  1. 'Mean consumption expenditure by income quintile (hbs_exp_t133)'

  2. 'Structure of consumption expenditure by income quintile and COICOP consumption purpose (hbs_str_t223)'

Would be in an 'income-stratified-footprints' preprocessing folder

  1. The 'lfst_hhnhtych' table from EUROSTAT, selecting all available years and total households [accessed on 04.05.2020].

  2. Norway is missing from the 'lfst_hhnhtych' EUROSTAT table. We download Norwegian data from the Norwegian statistical office: https://www.ssb.no/en/statbank/table/10986/. We select 'Private households', 'the whole country', no household type selection, all years (2005-2019), and continue with 'Table - Layout 1', then save the table as a 'Tab delimited without heading (csv)' file [accessed on 04.05.2020].


# income-stratified-footprints directory
#data_dir_income_stratified_footprints = paste("/",file.path("data","metab","income-stratified-footprints", fsep=.Platform$file.sep),sep="")
data_dir_income_stratified_footprints = here("analysis", "preprocessing", "income-stratified-footprints")
data_dir_exiobase = here("analysis", "preprocessing", "EXIOBASE")

################################################### !!!! method 1 - PPS HH - RENT NOT MAPPED TO EXIOBASE  !!!! ###########################################
##########################################################################################################################################################
##########################################################################################################################################################

#### IF YOU WANT THE RESULTS USING PPS PER ADULT EQUIVALENT - FILTER 'MEAN EXPENDITURE BY QUINTILE' BELOW FOR (unit == "PPS_AE") AND MAKE SURE TO UNCOMMENT 
#### THE LINE SAVING IT AT THE END (AND COMMENT OUT THE LINE SAVING THE 'PPS HH' VERSION) - for both ixi and pxp Exiobase versions

## Eurostat Household Budget Survey

# load 'mean expenditure by quintile' data
hbs_exp_t133 = read_csv(paste0(data_dir_income_stratified_footprints, "/hbs_exp_t133.csv"))
# rename and arrange by country
mean_expenditure_by_quintile = hbs_exp_t133 %>% 
  rename(geo = 3, quintile = "quantile") %>%
  arrange(geo)

# load 'mean expenditure by quintile and coicop' data
hbs_str_t223 = read_csv(paste0(data_dir_income_stratified_footprints, "/hbs_str_t223.csv"))
# rename and arrange by country
mean_expenditure_by_coicop_sector = hbs_str_t223 %>% 
  rename(geo = 4, quintile = "quantile") %>%
  arrange(geo) 

# create long data set 
mean_expenditure_by_quintile_long = mean_expenditure_by_quintile %>%
  filter(!(quintile %in% c("UNK","TOTAL"))) %>%
  filter(!(geo %in% c("EA",
                      "EA12",
                      "EA13",
                      "EA17",
                      "EA18",
                      "EA19",
                      "EEA28",
                      "EEA30_2007",
                      "EFTA",
                      "EU15",
                      "EU25",
                      "EU27_2007",
                      "EU27_2020",
                      "EU28"))) %>%
  gather(year,pps,-quintile,-unit,-geo) %>%
  rename(mean_expenditure = pps)

write_csv(mean_expenditure_by_quintile_long, paste0(data_dir_income_stratified_footprints, "/mean_expenditure_by_quintile_long.csv"))

# create long data sets for both
mean_expenditure_by_quintile_long = mean_expenditure_by_quintile %>%
  filter(unit == "PPS_HH") %>% # filter 'mean expenditure by quintile' in PPS per HouseHold
  filter(!(quintile %in% c("UNK","TOTAL"))) %>% # filter out unknown and total expenditure
  select(-unit) %>%
  gather(year,pps,-quintile,-geo)

mean_expenditure_by_coicop_sector_long = mean_expenditure_by_coicop_sector %>% 
  filter(!(quintile %in% c("UNK","TOTAL"))) %>% # filter out unknown and total expenditure
  select(-unit) %>%
  gather(year,pm,-quintile,-coicop,-geo) %>%
  mutate(coicop = dplyr::recode(coicop, "CP041" = "rent",        
                                "CP042" = "rent")) %>%           
  group_by(geo,quintile,coicop,year) %>%                               
  mutate(pm = parse_number(pm),
         pm = as.numeric(pm)) %>%
  summarise(pm = sum(pm, na.rm = TRUE)) %>%
  ungroup() %>%
  mutate(pm = ifelse(geo == "DE" & year == 2005 & quintile == "QUINTILE1" & 
                       coicop == "CP072", 92-21-14,pm)) %>%
  mutate(pm = ifelse(geo == "DE" & year == 2005 & quintile == "QUINTILE2" & 
                       coicop == "CP072", 108-22-12,pm)) %>%
  mutate(pm = ifelse(geo == "DE" & year == 2005 & quintile == "QUINTILE3" & 
                       coicop == "CP072", 124-32-11,pm)) %>%
  mutate(pm = ifelse(geo == "DE" & year == 2005 & quintile == "QUINTILE4" & 
                       coicop == "CP072", 133-43-10,pm)) %>%
  mutate(pm = ifelse(geo == "DE" & year == 2005 & quintile == "QUINTILE5" & 
                       coicop == "CP072", 162-81-11,pm)) %>%
  mutate(pm = ifelse(geo == "DE" & year == 2010 & quintile == "QUINTILE1" & 
                       coicop == "CP044", 412-4-78-322,pm)) %>%
  mutate(pm = ifelse(geo == "DE" & year == 2010 & quintile == "QUINTILE2" & 
                       coicop == "CP044", 355-5-68-265,pm)) %>%
  mutate(pm = ifelse(geo == "DE" & year == 2010 & quintile == "QUINTILE3" & 
                       coicop == "CP044", 325-8-64-229,pm)) %>%
  mutate(pm = ifelse(geo == "DE" & year == 2010 & quintile == "QUINTILE4" & 
                       coicop == "CP044", 300-9-58-204,pm)) %>%
  mutate(pm = ifelse(geo == "DE" & year == 2010 & quintile == "QUINTILE5" & 
                       coicop == "CP044", 249-10-46-167,pm)) %>%
  mutate(pm = ifelse(geo == "DE" & year == 2015 & quintile == "QUINTILE1" & 
                       coicop == "CP044", 433-3-82-340,pm)) %>%
  mutate(pm = ifelse(geo == "DE" & year == 2015 & quintile == "QUINTILE2" & 
                       coicop == "CP044", 376-6-70-284,pm)) %>%
  mutate(pm = ifelse(geo == "DE" & year == 2015 & quintile == "QUINTILE3" & 
                       coicop == "CP044", 351-9-67-251,pm)) %>%
  mutate(pm = ifelse(geo == "DE" & year == 2015 & quintile == "QUINTILE4" & 
                       coicop == "CP044", 326-10-61-228,pm)) %>%
  mutate(pm = ifelse(geo == "DE" & year == 2015 & quintile == "QUINTILE5" & 
                       coicop == "CP044", 280-9-49-195,pm)) 
## In the code above, I collapse (sum) the two 'rent' HBS sectors 'CP041' and 'CP042' to create a 
## single 'rent' sector so as to allocate all rent to 'Real-estate services' in Exiobase. 


# join the HBS expenditure tables together
join_expenditures = mean_expenditure_by_coicop_sector_long %>% 
  left_join(mean_expenditure_by_quintile_long, by = c("geo","quintile","year")) %>%
  mutate(pps = as.numeric(pps),
         pm = as.numeric(pm),
         pps_coicop = pm*(pps/1000))



################################################### !!!! method 1 - IXI version - PPS HH NO RENT !!!! ####################################################
##########################################################################################################################################################
##########################################################################################################################################################

## Exiobase - ixi version

years_exb_ixi = c(2005,2010,2015)

disaggregated_final_demand = NULL

TIVs = NULL

domestic_TIVs = NULL

europe_TIVs = NULL

national_fp = NULL

national_territorial = NULL

for (i in years_exb_ixi){
  year_current = i
  
  Exiobase_FD =  read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/FD_",year_current,"_ixi.csv"))[,-1]
  
  # select household final demand vectors for study countries
  
  AT = Exiobase_FD[,1]
  BE = Exiobase_FD[,8]
  BG = Exiobase_FD[,15]
  CY = Exiobase_FD[,22]
  CZ = Exiobase_FD[,29]
  DE = Exiobase_FD[,36]
  DK = Exiobase_FD[,43]
  EE = Exiobase_FD[,50]
  EL = Exiobase_FD[,78]
  ES = Exiobase_FD[,57]
  FI = Exiobase_FD[,64]
  FR = Exiobase_FD[,71]
  HR = Exiobase_FD[,85]
  HU = Exiobase_FD[,92]
  IE = Exiobase_FD[,99]
  IT = Exiobase_FD[,106]
  LT = Exiobase_FD[,113]
  LU = Exiobase_FD[,120]
  LV = Exiobase_FD[,127]
  MT = Exiobase_FD[,134]
  NL = Exiobase_FD[,141]
  NO = Exiobase_FD[,288]
  PL = Exiobase_FD[,148]
  PT = Exiobase_FD[,155]
  RO = Exiobase_FD[,162]
  SE = Exiobase_FD[,169]
  SI = Exiobase_FD[,176]
  SK = Exiobase_FD[,183]
  TR = Exiobase_FD[,274]
  UK = Exiobase_FD[,190]
  
  Eurostat_countries = cbind(AT,BE,BG,CY,CZ,DE,DK,EE,EL,ES,FI,FR,HR,HU,IE,IT,LT,LU,LV,MT,NL,NO,PL,PT,RO,SE,SI,SK,TR,UK)
  
  # labels
  
  Exiobase_T_labels = read.csv(paste0(data_dir_income_stratified_footprints, "/Exiobase_T_labels_ixi_w_coicop_mapping.csv")) %>%
    mutate(V1 = dplyr::recode(V1,"GR" = "EL","GB" = "UK")) 
  
  
  # hh fd with production sector labels
  
  hh_fd_with_production_sector_labels = cbind(Exiobase_T_labels,Eurostat_countries) %>% rename(geo = V1, sector = V2)
  
  # assumption of same purchase structure between quintiles of domestic and foreign final demand 
  
  # replicate each cell of each country's hh final demand as many times as there are income groups in the HBS data - in this preliminary case:5
  
  cells_repeat = data.frame(hh_fd_with_production_sector_labels %>% slice(rep(1:n(), each = 5))) 
  
  quintiles = data.frame(rep(c("QUINTILE1","QUINTILE2","QUINTILE3","QUINTILE4","QUINTILE5"),163)) %>% rename_at(1,~"quintile")
  
  replicated = cbind(cells_repeat,quintiles) %>% rename(country_of_production = geo)
  
  # make fd data long
  
  replicated_long = replicated %>% gather(geo, value,-sector,-coicop,-quintile,-five_sectors,-country_of_production)
  
  year = as.character(rep(year_current,nrow(replicated_long)))
  
  replicated_long = cbind(year,replicated_long)
  
  
  disaggregated_final_demand = rbind(disaggregated_final_demand, replicated_long)
  
  
  # TIVs
  
  # CO2 - combustion - air
  
  Exiobase_TIV_co2_combustion_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_co2_combustion_air_",year_current,"_ixi.csv"))[,-1]
  
  Exiobase_TIV_country_breakdown_co2_combustion_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_co2_combustion_air_", year_current,"_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    gather(country, TIV_CO2_combustion_domestic)
  
  Exiobase_TIV_europe_breakdown_co2_combustion_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_co2_combustion_air_", year_current,"_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    mutate_at(vars(AT:ZA), funs(as.numeric(as.character(.)))) %>%
    mutate(TIV_CO2_combustion_europe = AT +
             BE + BG + CY + CZ +
             DE + DK + EE + 
             ES + FI + FR + 
             GB + GR + HR +
             HU + IE + IT +
             LT + LU + LV +
             MT + NL + PL +
             PT + TR + SK + 
             SI + SE + RO +
             NO,
           TIV_CO2_combustion_not_europe = AU +
             BR + CA + CH + CN +
             ID + IN + JP + KR +
             MX + RU + TW + US + 
             WA + WE + WF + WL + WM +
             ZA) %>%
    select(TIV_CO2_combustion_europe,TIV_CO2_combustion_not_europe)
  
  # CO2 - noncombustion - cement - air
  
  Exiobase_TIV_co2_noncombustion_cement_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_co2_noncombustion_cement_air_",year_current,"_ixi.csv"))[,-1]
  
  Exiobase_TIV_country_breakdown_co2_noncombustion_cement_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_co2_noncombustion_cement_air_",year_current,"_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    gather(country, TIV_CO2_noncombustion_cement_domestic)
  
  Exiobase_TIV_europe_breakdown_co2_noncombustion_cement_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_co2_noncombustion_cement_air_",year_current,"_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    mutate_at(vars(AT:ZA), funs(as.numeric(as.character(.)))) %>%
    mutate(TIV_CO2_noncombustion_cement_europe = AT +
             BE + BG + CY + CZ +
             DE + DK + EE + 
             ES + FI + FR + 
             GB + GR + HR +
             HU + IE + IT +
             LT + LU + LV +
             MT + NL + PL +
             PT + TR + SK + 
             SI + SE + RO +
             NO,
           TIV_CO2_noncombustion_cement_not_europe = AU +
             BR + CA + CH + CN +
             ID + IN + JP + KR +
             MX + RU + TW + US + 
             WA + WE + WF + WL + WM +
             ZA) %>%
    select(TIV_CO2_noncombustion_cement_europe,TIV_CO2_noncombustion_cement_not_europe)
  
  # CO2 - noncombustion - lime - air
  
  Exiobase_TIV_co2_noncombustion_lime_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_co2_noncombustion_lime_air_",year_current,"_ixi.csv"))[,-1]
  
  Exiobase_TIV_country_breakdown_co2_noncombustion_lime_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_co2_noncombustion_lime_air_",year_current,"_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    gather(country, TIV_CO2_noncombustion_lime_domestic)
  
  Exiobase_TIV_europe_breakdown_co2_noncombustion_lime_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_co2_noncombustion_lime_air_",year_current,"_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    mutate_at(vars(AT:ZA), funs(as.numeric(as.character(.)))) %>%
    mutate(TIV_CO2_noncombustion_lime_europe = AT +
             BE + BG + CY + CZ +
             DE + DK + EE + 
             ES + FI + FR + 
             GB + GR + HR +
             HU + IE + IT +
             LT + LU + LV +
             MT + NL + PL +
             PT + TR + SK + 
             SI + SE + RO +
             NO,
           TIV_CO2_noncombustion_lime_not_europe = AU +
             BR + CA + CH + CN +
             ID + IN + JP + KR +
             MX + RU + TW + US + 
             WA + WE + WF + WL + WM +
             ZA) %>%
    select(TIV_CO2_noncombustion_lime_europe,TIV_CO2_noncombustion_lime_not_europe)
  
  # CO2 - agriculture - peat decay - air
  
  Exiobase_TIV_co2_agriculture_peatdecay_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_co2_agriculture_peatdecay_air_",year_current,"_ixi.csv"))[,-1]
  
  Exiobase_TIV_country_breakdown_co2_agriculture_peatdecay_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_co2_agriculture_peatdecay_air_",year_current,"_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    gather(country, TIV_CO2_agriculture_peatdecay_domestic)
  
  Exiobase_TIV_europe_breakdown_co2_agriculture_peatdecay_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_co2_agriculture_peatdecay_air_",year_current,"_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    mutate_at(vars(AT:ZA), funs(as.numeric(as.character(.)))) %>%
    mutate(TIV_CO2_agriculture_peatdecay_europe = AT +
             BE + BG + CY + CZ +
             DE + DK + EE + 
             ES + FI + FR + 
             GB + GR + HR +
             HU + IE + IT +
             LT + LU + LV +
             MT + NL + PL +
             PT + TR + SK + 
             SI + SE + RO +
             NO,
           TIV_CO2_agriculture_peatdecay_not_europe = AU +
             BR + CA + CH + CN +
             ID + IN + JP + KR +
             MX + RU + TW + US + 
             WA + WE + WF + WL + WM +
             ZA) %>%
    select(TIV_CO2_agriculture_peatdecay_europe,TIV_CO2_agriculture_peatdecay_not_europe)
  
  # CO2 - waste - biogenic - air
  
  Exiobase_TIV_co2_waste_biogenic_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_co2_biogenic_air_",year_current,"_ixi.csv"))[,-1]
  
  Exiobase_TIV_country_breakdown_co2_waste_biogenic_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_co2_biogenic_air_",year_current,"_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    gather(country, TIV_CO2_waste_biogenic_domestic)
  
  Exiobase_TIV_europe_breakdown_co2_waste_biogenic_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_co2_biogenic_air_",year_current,"_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    mutate_at(vars(AT:ZA), funs(as.numeric(as.character(.)))) %>%
    mutate(TIV_CO2_waste_biogenic_europe = AT +
             BE + BG + CY + CZ +
             DE + DK + EE + 
             ES + FI + FR + 
             GB + GR + HR +
             HU + IE + IT +
             LT + LU + LV +
             MT + NL + PL +
             PT + TR + SK + 
             SI + SE + RO +
             NO,
           TIV_CO2_waste_biogenic_not_europe = AU +
             BR + CA + CH + CN +
             ID + IN + JP + KR +
             MX + RU + TW + US + 
             WA + WE + WF + WL + WM +
             ZA) %>%
    select(TIV_CO2_waste_biogenic_europe,TIV_CO2_waste_biogenic_not_europe)
  
  # CO2 - waste - fossil - air
  
  Exiobase_TIV_co2_waste_fossil_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_co2_waste_fossil_air_",year_current,"_ixi.csv"))[,-1]
  
  Exiobase_TIV_country_breakdown_co2_waste_fossil_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_co2_waste_fossil_air_",year_current,"_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    gather(country, TIV_CO2_waste_fossil_domestic)
  
  Exiobase_TIV_europe_breakdown_co2_waste_fossil_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_co2_waste_fossil_air_",year_current,"_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    mutate_at(vars(AT:ZA), funs(as.numeric(as.character(.)))) %>%
    mutate(TIV_CO2_waste_fossil_europe = AT +
             BE + BG + CY + CZ +
             DE + DK + EE + 
             ES + FI + FR + 
             GB + GR + HR +
             HU + IE + IT +
             LT + LU + LV +
             MT + NL + PL +
             PT + TR + SK + 
             SI + SE + RO +
             NO,
           TIV_CO2_waste_fossil_not_europe = AU +
             BR + CA + CH + CN +
             ID + IN + JP + KR +
             MX + RU + TW + US + 
             WA + WE + WF + WL + WM +
             ZA) %>%
    select(TIV_CO2_waste_fossil_europe,TIV_CO2_waste_fossil_not_europe)
  
  
  
  # CH4 - combustion -air
  
  Exiobase_TIV_ch4_combustion_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_ch4_CO2eq_combustion_air_",year_current,"_ixi.csv"))[,-1]
  
  Exiobase_TIV_country_breakdown_ch4_combustion_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_ch4_CO2eq_combustion_air_", year_current, "_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    gather(country, TIV_CH4_combustion_domestic)
  
  Exiobase_TIV_europe_breakdown_ch4_combustion_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_ch4_CO2eq_combustion_air_", year_current, "_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    mutate_at(vars(AT:ZA), funs(as.numeric(as.character(.)))) %>%
    mutate(TIV_CH4_combustion_europe = AT +
             BE + BG + CY + CZ +
             DE + DK + EE + 
             ES + FI + FR + 
             GB + GR + HR +
             HU + IE + IT +
             LT + LU + LV +
             MT + NL + PL +
             PT + TR + SK + 
             SI + SE + RO +
             NO,
           TIV_CH4_combustion_not_europe = AU +
             BR + CA + CH + CN +
             ID + IN + JP + KR +
             MX + RU + TW + US + 
             WA + WE + WF + WL + WM +
             ZA) %>%
    select(TIV_CH4_combustion_europe,TIV_CH4_combustion_not_europe)
  
  # CH4 - noncombustion - gas - air
  
  Exiobase_TIV_ch4_noncombustion_gas_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_ch4_CO2eq_noncombustion_gas_air_",year_current,"_ixi.csv"))[,-1]
  
  Exiobase_TIV_country_breakdown_ch4_noncombustion_gas_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_ch4_CO2eq_noncombustion_gas_air_", year_current, "_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    gather(country, TIV_CH4_noncombustion_gas_domestic)
  
  Exiobase_TIV_europe_breakdown_ch4_noncombustion_gas_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_ch4_CO2eq_noncombustion_gas_air_", year_current, "_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    mutate_at(vars(AT:ZA), funs(as.numeric(as.character(.)))) %>%
    mutate(TIV_CH4_noncombustion_gas_europe = AT +
             BE + BG + CY + CZ +
             DE + DK + EE + 
             ES + FI + FR + 
             GB + GR + HR +
             HU + IE + IT +
             LT + LU + LV +
             MT + NL + PL +
             PT + TR + SK + 
             SI + SE + RO +
             NO,
           TIV_CH4_noncombustion_gas_not_europe = AU +
             BR + CA + CH + CN +
             ID + IN + JP + KR +
             MX + RU + TW + US + 
             WA + WE + WF + WL + WM +
             ZA) %>%
    select(TIV_CH4_noncombustion_gas_europe,TIV_CH4_noncombustion_gas_not_europe)
  
  # CH4 - noncombustion - oil - air
  
  Exiobase_TIV_ch4_noncombustion_oil_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_ch4_CO2eq_noncombustion_oil_air_",year_current,"_ixi.csv"))[,-1]
  
  Exiobase_TIV_country_breakdown_ch4_noncombustion_oil_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_ch4_CO2eq_noncombustion_oil_air_", year_current, "_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    gather(country, TIV_CH4_noncombustion_oil_domestic)
  
  Exiobase_TIV_europe_breakdown_ch4_noncombustion_oil_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_ch4_CO2eq_noncombustion_oil_air_", year_current, "_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    mutate_at(vars(AT:ZA), funs(as.numeric(as.character(.)))) %>%
    mutate(TIV_CH4_noncombustion_oil_europe = AT +
             BE + BG + CY + CZ +
             DE + DK + EE + 
             ES + FI + FR + 
             GB + GR + HR +
             HU + IE + IT +
             LT + LU + LV +
             MT + NL + PL +
             PT + TR + SK + 
             SI + SE + RO +
             NO,
           TIV_CH4_noncombustion_oil_not_europe = AU +
             BR + CA + CH + CN +
             ID + IN + JP + KR +
             MX + RU + TW + US + 
             WA + WE + WF + WL + WM +
             ZA) %>%
    select(TIV_CH4_noncombustion_oil_europe,TIV_CH4_noncombustion_oil_not_europe)
  
  # CH4 - noncombustion - anthracite - air
  
  Exiobase_TIV_ch4_noncombustion_anthracite_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_ch4_CO2eq_noncombustion_anthracite_air_",year_current,"_ixi.csv"))[,-1]
  
  Exiobase_TIV_country_breakdown_ch4_noncombustion_anthracite_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_ch4_CO2eq_noncombustion_anthracite_air_", year_current, "_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    gather(country, TIV_CH4_noncombustion_anthracite_domestic)
  
  Exiobase_TIV_europe_breakdown_ch4_noncombustion_anthracite_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_ch4_CO2eq_noncombustion_anthracite_air_", year_current, "_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    mutate_at(vars(AT:ZA), funs(as.numeric(as.character(.)))) %>%
    mutate(TIV_CH4_noncombustion_anthracite_europe = AT +
             BE + BG + CY + CZ +
             DE + DK + EE + 
             ES + FI + FR + 
             GB + GR + HR +
             HU + IE + IT +
             LT + LU + LV +
             MT + NL + PL +
             PT + TR + SK + 
             SI + SE + RO +
             NO,
           TIV_CH4_noncombustion_anthracite_not_europe = AU +
             BR + CA + CH + CN +
             ID + IN + JP + KR +
             MX + RU + TW + US + 
             WA + WE + WF + WL + WM +
             ZA) %>%
    select(TIV_CH4_noncombustion_anthracite_europe,TIV_CH4_noncombustion_anthracite_not_europe)
  
  # CH4 - noncombustion - bituminouscoal - air
  
  Exiobase_TIV_ch4_noncombustion_bituminouscoal_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_ch4_CO2eq_noncombustion_bituminouscoal_air_",year_current,"_ixi.csv"))[,-1]
  
  Exiobase_TIV_country_breakdown_ch4_noncombustion_bituminouscoal_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_ch4_CO2eq_noncombustion_bituminouscoal_air_", year_current, "_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    gather(country, TIV_CH4_noncombustion_bituminouscoal_domestic)
  
  Exiobase_TIV_europe_breakdown_ch4_noncombustion_bituminouscoal_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_ch4_CO2eq_noncombustion_bituminouscoal_air_", year_current, "_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    mutate_at(vars(AT:ZA), funs(as.numeric(as.character(.)))) %>%
    mutate(TIV_CH4_noncombustion_bituminouscoal_europe = AT +
             BE + BG + CY + CZ +
             DE + DK + EE + 
             ES + FI + FR + 
             GB + GR + HR +
             HU + IE + IT +
             LT + LU + LV +
             MT + NL + PL +
             PT + TR + SK + 
             SI + SE + RO +
             NO,
           TIV_CH4_noncombustion_bituminouscoal_not_europe = AU +
             BR + CA + CH + CN +
             ID + IN + JP + KR +
             MX + RU + TW + US + 
             WA + WE + WF + WL + WM +
             ZA) %>%
    select(TIV_CH4_noncombustion_bituminouscoal_europe,TIV_CH4_noncombustion_bituminouscoal_not_europe)
  
  # CH4 - noncombustion - cokingcoal - air
  
  Exiobase_TIV_ch4_noncombustion_cokingcoal_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_ch4_CO2eq_noncombustion_cokingcoal_air_",year_current,"_ixi.csv"))[,-1]
  
  Exiobase_TIV_country_breakdown_ch4_noncombustion_cokingcoal_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_ch4_CO2eq_noncombustion_cokingcoal_air_", year_current, "_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    gather(country, TIV_CH4_noncombustion_cokingcoal_domestic)
  
  Exiobase_TIV_europe_breakdown_ch4_noncombustion_cokingcoal_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_ch4_CO2eq_noncombustion_cokingcoal_air_", year_current, "_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    mutate_at(vars(AT:ZA), funs(as.numeric(as.character(.)))) %>%
    mutate(TIV_CH4_noncombustion_cokingcoal_europe = AT +
             BE + BG + CY + CZ +
             DE + DK + EE + 
             ES + FI + FR + 
             GB + GR + HR +
             HU + IE + IT +
             LT + LU + LV +
             MT + NL + PL +
             PT + TR + SK + 
             SI + SE + RO +
             NO,
           TIV_CH4_noncombustion_cokingcoal_not_europe = AU +
             BR + CA + CH + CN +
             ID + IN + JP + KR +
             MX + RU + TW + US + 
             WA + WE + WF + WL + WM +
             ZA) %>%
    select(TIV_CH4_noncombustion_cokingcoal_europe,TIV_CH4_noncombustion_cokingcoal_not_europe)
  
  # CH4 - noncombustion - lignite - air
  
  Exiobase_TIV_ch4_noncombustion_lignite_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_ch4_CO2eq_noncombustion_lignite_air_",year_current,"_ixi.csv"))[,-1]
  
  Exiobase_TIV_country_breakdown_ch4_noncombustion_lignite_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_ch4_CO2eq_noncombustion_lignite_air_", year_current, "_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    gather(country, TIV_CH4_noncombustion_lignite_domestic)
  
  Exiobase_TIV_europe_breakdown_ch4_noncombustion_lignite_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_ch4_CO2eq_noncombustion_lignite_air_", year_current, "_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    mutate_at(vars(AT:ZA), funs(as.numeric(as.character(.)))) %>%
    mutate(TIV_CH4_noncombustion_lignite_europe = AT +
             BE + BG + CY + CZ +
             DE + DK + EE + 
             ES + FI + FR + 
             GB + GR + HR +
             HU + IE + IT +
             LT + LU + LV +
             MT + NL + PL +
             PT + TR + SK + 
             SI + SE + RO +
             NO,
           TIV_CH4_noncombustion_lignite_not_europe = AU +
             BR + CA + CH + CN +
             ID + IN + JP + KR +
             MX + RU + TW + US + 
             WA + WE + WF + WL + WM +
             ZA) %>%
    select(TIV_CH4_noncombustion_lignite_europe,TIV_CH4_noncombustion_lignite_not_europe)
  
  # CH4 - noncombustion - subbituminouscoal - air
  
  Exiobase_TIV_ch4_noncombustion_subbituminouscoal_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_ch4_CO2eq_noncombustion_subbituminouscoal_air_",year_current,"_ixi.csv"))[,-1]
  
  Exiobase_TIV_country_breakdown_ch4_noncombustion_subbituminouscoal_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_ch4_CO2eq_noncombustion_subbituminouscoal_air_", year_current, "_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    gather(country, TIV_CH4_noncombustion_subbituminouscoal_domestic)
  
  Exiobase_TIV_europe_breakdown_ch4_noncombustion_subbituminouscoal_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_ch4_CO2eq_noncombustion_subbituminouscoal_air_", year_current, "_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    mutate_at(vars(AT:ZA), funs(as.numeric(as.character(.)))) %>%
    mutate(TIV_CH4_noncombustion_subbituminouscoal_europe = AT +
             BE + BG + CY + CZ +
             DE + DK + EE + 
             ES + FI + FR + 
             GB + GR + HR +
             HU + IE + IT +
             LT + LU + LV +
             MT + NL + PL +
             PT + TR + SK + 
             SI + SE + RO +
             NO,
           TIV_CH4_noncombustion_subbituminouscoal_not_europe = AU +
             BR + CA + CH + CN +
             ID + IN + JP + KR +
             MX + RU + TW + US + 
             WA + WE + WF + WL + WM +
             ZA) %>%
    select(TIV_CH4_noncombustion_subbituminouscoal_europe,TIV_CH4_noncombustion_subbituminouscoal_not_europe)
  
  # CH4 - noncombustion - oilrefinery - air
  
  Exiobase_TIV_ch4_noncombustion_oilrefinery_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_ch4_CO2eq_noncombustion_oilrefinery_air_",year_current,"_ixi.csv"))[,-1]
  
  Exiobase_TIV_country_breakdown_ch4_noncombustion_oilrefinery_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_ch4_CO2eq_noncombustion_oilrefinery_air_", year_current, "_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    gather(country, TIV_CH4_noncombustion_oilrefinery_domestic)
  
  Exiobase_TIV_europe_breakdown_ch4_noncombustion_oilrefinery_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_ch4_CO2eq_noncombustion_oilrefinery_air_", year_current, "_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    mutate_at(vars(AT:ZA), funs(as.numeric(as.character(.)))) %>%
    mutate(TIV_CH4_noncombustion_oilrefinery_europe = AT +
             BE + BG + CY + CZ +
             DE + DK + EE + 
             ES + FI + FR + 
             GB + GR + HR +
             HU + IE + IT +
             LT + LU + LV +
             MT + NL + PL +
             PT + TR + SK + 
             SI + SE + RO +
             NO,
           TIV_CH4_noncombustion_oilrefinery_not_europe = AU +
             BR + CA + CH + CN +
             ID + IN + JP + KR +
             MX + RU + TW + US + 
             WA + WE + WF + WL + WM +
             ZA) %>%
    select(TIV_CH4_noncombustion_oilrefinery_europe,TIV_CH4_noncombustion_oilrefinery_not_europe)
  
  # CH4 - agriculture - air
  
  Exiobase_TIV_ch4_agriculture_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_ch4_CO2eq_agriculture_air_",year_current,"_ixi.csv"))[,-1]
  
  Exiobase_TIV_country_breakdown_ch4_agriculture_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_ch4_CO2eq_agriculture_air_", year_current, "_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    gather(country, TIV_CH4_agriculture_domestic)
  
  Exiobase_TIV_europe_breakdown_ch4_agriculture_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_ch4_CO2eq_agriculture_air_", year_current, "_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    mutate_at(vars(AT:ZA), funs(as.numeric(as.character(.)))) %>%
    mutate(TIV_CH4_agriculture_europe = AT +
             BE + BG + CY + CZ +
             DE + DK + EE + 
             ES + FI + FR + 
             GB + GR + HR +
             HU + IE + IT +
             LT + LU + LV +
             MT + NL + PL +
             PT + TR + SK + 
             SI + SE + RO +
             NO,
           TIV_CH4_agriculture_not_europe = AU +
             BR + CA + CH + CN +
             ID + IN + JP + KR +
             MX + RU + TW + US + 
             WA + WE + WF + WL + WM +
             ZA) %>%
    select(TIV_CH4_agriculture_europe,TIV_CH4_agriculture_not_europe)
  
  # CH4 - waste - air
  
  Exiobase_TIV_ch4_waste_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_ch4_CO2eq_waste_air_",year_current,"_ixi.csv"))[,-1]
  
  Exiobase_TIV_country_breakdown_ch4_waste_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_ch4_CO2eq_waste_air_", year_current, "_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    gather(country, TIV_CH4_waste_domestic)
  
  Exiobase_TIV_europe_breakdown_ch4_waste_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_ch4_CO2eq_waste_air_", year_current, "_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    mutate_at(vars(AT:ZA), funs(as.numeric(as.character(.)))) %>%
    mutate(TIV_CH4_waste_europe = AT +
             BE + BG + CY + CZ +
             DE + DK + EE + 
             ES + FI + FR + 
             GB + GR + HR +
             HU + IE + IT +
             LT + LU + LV +
             MT + NL + PL +
             PT + TR + SK + 
             SI + SE + RO +
             NO,
           TIV_CH4_waste_not_europe = AU +
             BR + CA + CH + CN +
             ID + IN + JP + KR +
             MX + RU + TW + US + 
             WA + WE + WF + WL + WM +
             ZA) %>%
    select(TIV_CH4_waste_europe,TIV_CH4_waste_not_europe)
  
  
  # N2O - combustion - air
  
  Exiobase_TIV_n2o_combustion_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_n2o_CO2eq_combustion_air_",year_current,"_ixi.csv"))[,-1]
  
  Exiobase_TIV_country_breakdown_n2o_combustion_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_n2o_CO2eq_combustion_air_",year_current,"_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    gather(country, TIV_N2O_combustion_domestic)
  
  Exiobase_TIV_europe_breakdown_n2o_combustion_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_n2o_CO2eq_combustion_air_",year_current,"_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    mutate_at(vars(AT:ZA), funs(as.numeric(as.character(.)))) %>%
    mutate(TIV_N2O_combustion_europe = AT +
             BE + BG + CY + CZ +
             DE + DK + EE + 
             ES + FI + FR + 
             GB + GR + HR +
             HU + IE + IT +
             LT + LU + LV +
             MT + NL + PL +
             PT + TR + SK + 
             SI + SE + RO +
             NO,
           TIV_N2O_combustion_not_europe = AU +
             BR + CA + CH + CN +
             ID + IN + JP + KR +
             MX + RU + TW + US + 
             WA + WE + WF + WL + WM +
             ZA) %>%
    select(TIV_N2O_combustion_europe,TIV_N2O_combustion_not_europe)
  
  # N2O - agriculture - air
  
  Exiobase_TIV_n2o_agriculture_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_n2o_CO2eq_agriculture_air_",year_current,"_ixi.csv"))[,-1]
  
  Exiobase_TIV_country_breakdown_n2o_agriculture_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_n2o_CO2eq_agriculture_air_",year_current,"_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    gather(country, TIV_N2O_agriculture_domestic)
  
  Exiobase_TIV_europe_breakdown_n2o_agriculture_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_n2o_CO2eq_agriculture_air_",year_current,"_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    mutate_at(vars(AT:ZA), funs(as.numeric(as.character(.)))) %>%
    mutate(TIV_N2O_agriculture_europe = AT +
             BE + BG + CY + CZ +
             DE + DK + EE + 
             ES + FI + FR + 
             GB + GR + HR +
             HU + IE + IT +
             LT + LU + LV +
             MT + NL + PL +
             PT + TR + SK + 
             SI + SE + RO +
             NO,
           TIV_N2O_agriculture_not_europe = AU +
             BR + CA + CH + CN +
             ID + IN + JP + KR +
             MX + RU + TW + US + 
             WA + WE + WF + WL + WM +
             ZA) %>%
    select(TIV_N2O_agriculture_europe,TIV_N2O_agriculture_not_europe)
  
  # SF6 - air
  
  Exiobase_TIV_sf6_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_sf6_CO2eq_air_",year_current,"_ixi.csv"))[,-1]
  
  Exiobase_TIV_country_breakdown_sf6_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_sf6_CO2eq_air_",year_current,"_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    gather(country, TIV_SF6_domestic)
  
  Exiobase_TIV_europe_breakdown_sf6_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_sf6_CO2eq_air_",year_current,"_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    mutate_at(vars(AT:ZA), funs(as.numeric(as.character(.)))) %>%
    mutate(TIV_SF6_europe = AT +
             BE + BG + CY + CZ +
             DE + DK + EE + 
             ES + FI + FR + 
             GB + GR + HR +
             HU + IE + IT +
             LT + LU + LV +
             MT + NL + PL +
             PT + TR + SK + 
             SI + SE + RO +
             NO,
           TIV_SF6_not_europe = AU +
             BR + CA + CH + CN +
             ID + IN + JP + KR +
             MX + RU + TW + US + 
             WA + WE + WF + WL + WM +
             ZA) %>%
    select(TIV_SF6_europe,TIV_SF6_not_europe)
  
  # HFC - air
  
  Exiobase_TIV_hfc_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_hfc_CO2eq_air_",year_current,"_ixi.csv"))[,-1]
  
  Exiobase_TIV_country_breakdown_hfc_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_hfc_CO2eq_air_",year_current,"_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    gather(country, TIV_HFC_domestic)
  
  Exiobase_TIV_europe_breakdown_hfc_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_hfc_CO2eq_air_",year_current,"_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    mutate_at(vars(AT:ZA), funs(as.numeric(as.character(.)))) %>%
    mutate(TIV_HFC_europe = AT +
             BE + BG + CY + CZ +
             DE + DK + EE + 
             ES + FI + FR + 
             GB + GR + HR +
             HU + IE + IT +
             LT + LU + LV +
             MT + NL + PL +
             PT + TR + SK + 
             SI + SE + RO +
             NO,
           TIV_HFC_not_europe = AU +
             BR + CA + CH + CN +
             ID + IN + JP + KR +
             MX + RU + TW + US + 
             WA + WE + WF + WL + WM +
             ZA) %>%
    select(TIV_HFC_europe,TIV_HFC_not_europe)
  
  # PFC - air
  
  Exiobase_TIV_pfc_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_pfc_CO2eq_air_",year_current,"_ixi.csv"))[,-1]
  
  Exiobase_TIV_country_breakdown_pfc_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_pfc_CO2eq_air_",year_current,"_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    gather(country, TIV_PFC_domestic)
  
  Exiobase_TIV_europe_breakdown_pfc_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_pfc_CO2eq_air_",year_current,"_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    mutate_at(vars(AT:ZA), funs(as.numeric(as.character(.)))) %>%
    mutate(TIV_PFC_europe = AT +
             BE + BG + CY + CZ +
             DE + DK + EE + 
             ES + FI + FR + 
             GB + GR + HR +
             HU + IE + IT +
             LT + LU + LV +
             MT + NL + PL +
             PT + TR + SK + 
             SI + SE + RO +
             NO,
           TIV_PFC_not_europe = AU +
             BR + CA + CH + CN +
             ID + IN + JP + KR +
             MX + RU + TW + US + 
             WA + WE + WF + WL + WM +
             ZA) %>%
    select(TIV_PFC_europe,TIV_PFC_not_europe)
  
  # Energy use
  
  Exiobase_TIV_energy_use_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_energy_carrier_use_",year_current,"_ixi.csv"))[,-1]
  
  Exiobase_TIV_country_breakdown_energy_use_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_energy_carrier_use_",year_current,"_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    gather(country, TIV_energy_domestic)
  
  Exiobase_TIV_europe_breakdown_energy_use_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_energy_carrier_use_",year_current,"_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    mutate_at(vars(AT:ZA), funs(as.numeric(as.character(.)))) %>%
    mutate(TIV_energy_europe = AT +
             BE + BG + CY + CZ +
             DE + DK + EE + 
             ES + FI + FR + 
             GB + GR + HR +
             HU + IE + IT +
             LT + LU + LV +
             MT + NL + PL +
             PT + TR + SK + 
             SI + SE + RO +
             NO,
           TIV_energy_not_europe = AU +
             BR + CA + CH + CN +
             ID + IN + JP + KR +
             MX + RU + TW + US + 
             WA + WE + WF + WL + WM +
             ZA) %>%
    select(TIV_energy_europe,TIV_energy_not_europe)
  
  # join with labels
  
  TIV_with_labels = cbind(Exiobase_T_labels,
                          t(Exiobase_TIV_co2_combustion_bp),
                          t(Exiobase_TIV_co2_noncombustion_cement_bp),
                          t(Exiobase_TIV_co2_noncombustion_lime_bp),
                          t(Exiobase_TIV_co2_agriculture_peatdecay_bp),
                          t(Exiobase_TIV_co2_waste_biogenic_bp),
                          t(Exiobase_TIV_co2_waste_fossil_bp),
                          t(Exiobase_TIV_ch4_combustion_bp),
                          t(Exiobase_TIV_ch4_noncombustion_gas_bp),
                          t(Exiobase_TIV_ch4_noncombustion_oil_bp),
                          t(Exiobase_TIV_ch4_noncombustion_anthracite_bp),
                          t(Exiobase_TIV_ch4_noncombustion_bituminouscoal_bp),
                          t(Exiobase_TIV_ch4_noncombustion_cokingcoal_bp),
                          t(Exiobase_TIV_ch4_noncombustion_lignite_bp),
                          t(Exiobase_TIV_ch4_noncombustion_subbituminouscoal_bp),
                          t(Exiobase_TIV_ch4_noncombustion_oilrefinery_bp),
                          t(Exiobase_TIV_ch4_agriculture_bp),
                          t(Exiobase_TIV_ch4_waste_bp),
                          t(Exiobase_TIV_n2o_combustion_bp),
                          t(Exiobase_TIV_n2o_agriculture_bp),
                          t(Exiobase_TIV_sf6_bp),
                          t(Exiobase_TIV_hfc_bp),
                          t(Exiobase_TIV_pfc_bp),
                          t(Exiobase_TIV_energy_use_bp)) %>% 
    rename(TIV_CO2_combustion = "t(Exiobase_TIV_co2_combustion_bp)",
           TIV_CO2_noncombustion_cement = "t(Exiobase_TIV_co2_noncombustion_cement_bp)",
           TIV_CO2_noncombustion_lime = "t(Exiobase_TIV_co2_noncombustion_lime_bp)",
           TIV_CO2_agriculture_peatdecay = "t(Exiobase_TIV_co2_agriculture_peatdecay_bp)",
           TIV_CO2_waste_biogenic = "t(Exiobase_TIV_co2_waste_biogenic_bp)",
           TIV_CO2_waste_fossil = "t(Exiobase_TIV_co2_waste_fossil_bp)",
           TIV_CH4_combustion = "t(Exiobase_TIV_ch4_combustion_bp)",
           TIV_CH4_noncombustion_gas = "t(Exiobase_TIV_ch4_noncombustion_gas_bp)",
           TIV_CH4_noncombustion_oil = "t(Exiobase_TIV_ch4_noncombustion_oil_bp)",
           TIV_CH4_noncombustion_anthracite = "t(Exiobase_TIV_ch4_noncombustion_anthracite_bp)",
           TIV_CH4_noncombustion_bituminouscoal = "t(Exiobase_TIV_ch4_noncombustion_bituminouscoal_bp)",
           TIV_CH4_noncombustion_cokingcoal = "t(Exiobase_TIV_ch4_noncombustion_cokingcoal_bp)",
           TIV_CH4_noncombustion_lignite = "t(Exiobase_TIV_ch4_noncombustion_lignite_bp)",
           TIV_CH4_noncombustion_subbituminouscoal = "t(Exiobase_TIV_ch4_noncombustion_subbituminouscoal_bp)",
           TIV_CH4_noncombustion_oilrefinery = "t(Exiobase_TIV_ch4_noncombustion_oilrefinery_bp)",
           TIV_CH4_agriculture = "t(Exiobase_TIV_ch4_agriculture_bp)",
           TIV_CH4_waste = "t(Exiobase_TIV_ch4_waste_bp)",
           TIV_N2O_combustion = "t(Exiobase_TIV_n2o_combustion_bp)",
           TIV_N2O_agriculture = "t(Exiobase_TIV_n2o_agriculture_bp)",
           TIV_SF6 = "t(Exiobase_TIV_sf6_bp)",
           TIV_HFC = "t(Exiobase_TIV_hfc_bp)",
           TIV_PFC = "t(Exiobase_TIV_pfc_bp)",
           TIV_energy = "t(Exiobase_TIV_energy_use_bp)") %>% 
    mutate(V1 = dplyr::recode(V1,"GR" = "EL","GB" = "UK")) 
  
  year = as.character(rep(year_current,nrow(TIV_with_labels)))
  
  look = cbind(year,TIV_with_labels) %>% 
    rename(country_of_production = V1, sector = V2)
  
  
  
  TIVs = rbind(TIVs,look)
  
  
  # join domestic_TIVs with labels
  
  domestic_TIV_with_labels = cbind(Exiobase_T_labels,
                                   Exiobase_TIV_country_breakdown_co2_combustion_bp,
                                   Exiobase_TIV_country_breakdown_co2_noncombustion_cement_bp %>% select(-country),
                                   Exiobase_TIV_country_breakdown_co2_noncombustion_lime_bp %>% select(-country),
                                   Exiobase_TIV_country_breakdown_co2_agriculture_peatdecay_bp %>% select(-country),
                                   Exiobase_TIV_country_breakdown_co2_waste_biogenic_bp %>% select(-country),
                                   Exiobase_TIV_country_breakdown_co2_waste_fossil_bp %>% select(-country),
                                   Exiobase_TIV_country_breakdown_ch4_combustion_bp %>% select(-country),
                                   Exiobase_TIV_country_breakdown_ch4_noncombustion_gas_bp %>% select(-country),
                                   Exiobase_TIV_country_breakdown_ch4_noncombustion_oil_bp %>% select(-country),
                                   Exiobase_TIV_country_breakdown_ch4_noncombustion_anthracite_bp %>% select(-country),
                                   Exiobase_TIV_country_breakdown_ch4_noncombustion_bituminouscoal_bp %>% select(-country),
                                   Exiobase_TIV_country_breakdown_ch4_noncombustion_cokingcoal_bp %>% select(-country),
                                   Exiobase_TIV_country_breakdown_ch4_noncombustion_lignite_bp %>% select(-country),
                                   Exiobase_TIV_country_breakdown_ch4_noncombustion_subbituminouscoal_bp %>% select(-country),
                                   Exiobase_TIV_country_breakdown_ch4_noncombustion_oilrefinery_bp %>% select(-country),
                                   Exiobase_TIV_country_breakdown_ch4_agriculture_bp %>% select(-country),
                                   Exiobase_TIV_country_breakdown_ch4_waste_bp %>% select(-country),
                                   Exiobase_TIV_country_breakdown_n2o_combustion_bp %>% select(-country),
                                   Exiobase_TIV_country_breakdown_n2o_agriculture_bp %>% select(-country),
                                   Exiobase_TIV_country_breakdown_sf6_bp %>% select(-country),
                                   Exiobase_TIV_country_breakdown_hfc_bp %>% select(-country),
                                   Exiobase_TIV_country_breakdown_pfc_bp %>% select(-country),
                                   Exiobase_TIV_country_breakdown_energy_use_bp %>% select(-country))  %>% 
    mutate(V1 = dplyr::recode(V1,"GR" = "EL","GB" = "UK"),
           country = dplyr::recode(country, "GR" = "EL", "GB" = "UK")) 
  
  year_domestic = as.character(rep(year_current,nrow(domestic_TIV_with_labels)))
  
  look_domestic = cbind(year_domestic,domestic_TIV_with_labels) %>% 
    rename(country_of_production = V1, sector = V2, geo = country, year = year_domestic) %>%
    mutate(TIV_CO2_combustion_domestic = as.numeric(TIV_CO2_combustion_domestic),
           TIV_CO2_noncombustion_cement_domestic = as.numeric(TIV_CO2_noncombustion_cement_domestic),
           TIV_CO2_noncombustion_lime_domestic = as.numeric(TIV_CO2_noncombustion_lime_domestic),
           TIV_CO2_agriculture_peatdecay_domestic = as.numeric(TIV_CO2_agriculture_peatdecay_domestic),
           TIV_CO2_waste_biogenic_domestic = as.numeric(TIV_CO2_waste_biogenic_domestic),
           TIV_CO2_waste_fossil_domestic = as.numeric(TIV_CO2_waste_fossil_domestic),
           TIV_CH4_combustion_domestic = as.numeric(TIV_CH4_combustion_domestic),
           TIV_CH4_noncombustion_gas_domestic = as.numeric(TIV_CH4_noncombustion_gas_domestic),
           TIV_CH4_noncombustion_oil_domestic = as.numeric(TIV_CH4_noncombustion_oil_domestic),
           TIV_CH4_noncombustion_anthracite_domestic = as.numeric(TIV_CH4_noncombustion_anthracite_domestic),
           TIV_CH4_noncombustion_bituminouscoal_domestic = as.numeric(TIV_CH4_noncombustion_bituminouscoal_domestic),
           TIV_CH4_noncombustion_cokingcoal_domestic = as.numeric(TIV_CH4_noncombustion_cokingcoal_domestic),
           TIV_CH4_noncombustion_lignite_domestic = as.numeric(TIV_CH4_noncombustion_lignite_domestic),
           TIV_CH4_noncombustion_subbituminouscoal_domestic = as.numeric(TIV_CH4_noncombustion_subbituminouscoal_domestic),
           TIV_CH4_noncombustion_oilrefinery_domestic = as.numeric(TIV_CH4_noncombustion_oilrefinery_domestic),
           TIV_CH4_agriculture_domestic = as.numeric(TIV_CH4_agriculture_domestic),
           TIV_CH4_waste_domestic = as.numeric(TIV_CH4_waste_domestic),
           TIV_N2O_combustion_domestic = as.numeric(TIV_N2O_combustion_domestic),
           TIV_N2O_agriculture_domestic = as.numeric(TIV_N2O_agriculture_domestic),
           TIV_SF6_domestic = as.numeric(TIV_SF6_domestic),
           TIV_HFC_domestic = as.numeric(TIV_HFC_domestic),
           TIV_PFC_domestic = as.numeric(TIV_PFC_domestic),
           TIV_energy_domestic = as.numeric(TIV_energy_domestic))
  
  domestic_TIVs = rbind(domestic_TIVs, look_domestic)
  
  # european TIVs with labels 
  
  europe_TIV_with_labels = cbind(Exiobase_T_labels,
                                 Exiobase_TIV_europe_breakdown_co2_combustion_bp,
                                 Exiobase_TIV_europe_breakdown_co2_noncombustion_cement_bp,
                                 Exiobase_TIV_europe_breakdown_co2_noncombustion_lime_bp,
                                 Exiobase_TIV_europe_breakdown_co2_agriculture_peatdecay_bp,
                                 Exiobase_TIV_europe_breakdown_co2_waste_biogenic_bp,
                                 Exiobase_TIV_europe_breakdown_co2_waste_fossil_bp,
                                 Exiobase_TIV_europe_breakdown_ch4_combustion_bp,
                                 Exiobase_TIV_europe_breakdown_ch4_noncombustion_gas_bp,
                                 Exiobase_TIV_europe_breakdown_ch4_noncombustion_oil_bp,
                                 Exiobase_TIV_europe_breakdown_ch4_noncombustion_anthracite_bp,
                                 Exiobase_TIV_europe_breakdown_ch4_noncombustion_bituminouscoal_bp,
                                 Exiobase_TIV_europe_breakdown_ch4_noncombustion_cokingcoal_bp,
                                 Exiobase_TIV_europe_breakdown_ch4_noncombustion_lignite_bp,
                                 Exiobase_TIV_europe_breakdown_ch4_noncombustion_subbituminouscoal_bp,
                                 Exiobase_TIV_europe_breakdown_ch4_noncombustion_oilrefinery_bp,
                                 Exiobase_TIV_europe_breakdown_ch4_agriculture_bp,
                                 Exiobase_TIV_europe_breakdown_ch4_waste_bp,
                                 Exiobase_TIV_europe_breakdown_n2o_combustion_bp,
                                 Exiobase_TIV_europe_breakdown_n2o_agriculture_bp,
                                 Exiobase_TIV_europe_breakdown_sf6_bp,
                                 Exiobase_TIV_europe_breakdown_hfc_bp,
                                 Exiobase_TIV_europe_breakdown_pfc_bp,
                                 Exiobase_TIV_europe_breakdown_energy_use_bp) %>% 
    mutate(V1 = dplyr::recode(V1,"GR" = "EL","GB" = "UK")) 
  
  year_europe = as.character(rep(year_current,nrow(europe_TIV_with_labels)))
  
  look_europe = cbind(year_europe,europe_TIV_with_labels) %>% 
    rename(country_of_production = V1, sector = V2, year = year_europe) %>%
    mutate(TIV_CO2_combustion_europe = as.numeric(TIV_CO2_combustion_europe),
           TIV_CO2_noncombustion_cement_europe = as.numeric(TIV_CO2_noncombustion_cement_europe),
           TIV_CO2_noncombustion_lime_europe = as.numeric(TIV_CO2_noncombustion_lime_europe),
           TIV_CO2_agriculture_peatdecay_europe = as.numeric(TIV_CO2_agriculture_peatdecay_europe),
           TIV_CO2_waste_biogenic_europe = as.numeric(TIV_CO2_waste_biogenic_europe),
           TIV_CO2_waste_fossil_europe = as.numeric(TIV_CO2_waste_fossil_europe),
           TIV_CH4_combustion_europe = as.numeric(TIV_CH4_combustion_europe),
           TIV_CH4_noncombustion_gas_europe = as.numeric(TIV_CH4_noncombustion_gas_europe),
           TIV_CH4_noncombustion_oil_europe = as.numeric(TIV_CH4_noncombustion_oil_europe),
           TIV_CH4_noncombustion_anthracite_europe = as.numeric(TIV_CH4_noncombustion_anthracite_europe),
           TIV_CH4_noncombustion_bituminouscoal_europe = as.numeric(TIV_CH4_noncombustion_bituminouscoal_europe),
           TIV_CH4_noncombustion_cokingcoal_europe = as.numeric(TIV_CH4_noncombustion_cokingcoal_europe),
           TIV_CH4_noncombustion_lignite_europe = as.numeric(TIV_CH4_noncombustion_lignite_europe),
           TIV_CH4_noncombustion_subbituminouscoal_europe = as.numeric(TIV_CH4_noncombustion_subbituminouscoal_europe),
           TIV_CH4_noncombustion_oilrefinery_europe = as.numeric(TIV_CH4_noncombustion_oilrefinery_europe),
           TIV_CH4_agriculture_europe = as.numeric(TIV_CH4_agriculture_europe),
           TIV_CH4_waste_europe = as.numeric(TIV_CH4_waste_europe),
           TIV_N2O_combustion_europe = as.numeric(TIV_N2O_combustion_europe),
           TIV_N2O_agriculture_europe = as.numeric(TIV_N2O_agriculture_europe),
           TIV_SF6_europe = as.numeric(TIV_SF6_europe),
           TIV_HFC_europe = as.numeric(TIV_HFC_europe),
           TIV_PFC_europe = as.numeric(TIV_PFC_europe),
           TIV_energy_europe = as.numeric(TIV_energy_europe))
  
  europe_TIVs = rbind(europe_TIVs, look_europe)
  
  
  
  # total national footprints
  
  # FD labels
  
  Exiobase_FD_labels = as.data.frame(t(read.csv(paste0(data_dir_exiobase, "/Exiobase_FD_labels_ixi.csv")))[-1,-3]) %>%
    mutate(V1 = dplyr::recode(V1,"GR" = "EL","GB" = "UK")) 
  
  national_CO2_combustion_footprints = Exiobase_FD * t(Exiobase_TIV_co2_combustion_bp)
  
  national_CO2_noncombustion_cement_footprints = Exiobase_FD * t(Exiobase_TIV_co2_noncombustion_cement_bp)
  
  national_CO2_noncombustion_lime_footprints = Exiobase_FD * t(Exiobase_TIV_co2_noncombustion_lime_bp)
  
  national_CO2_agriculture_peatdecay_footprints = Exiobase_FD * t(Exiobase_TIV_co2_agriculture_peatdecay_bp)
  
  national_CO2_waste_biogenic_footprints = Exiobase_FD * t(Exiobase_TIV_co2_waste_biogenic_bp)
  
  national_CO2_waste_fossil_footprints = Exiobase_FD * t(Exiobase_TIV_co2_waste_fossil_bp)
  
  national_CH4_combustion_footprints = Exiobase_FD * t(Exiobase_TIV_ch4_combustion_bp)
  
  national_CH4_noncombustion_gas_footprints = Exiobase_FD * t(Exiobase_TIV_ch4_noncombustion_gas_bp)
  
  national_CH4_noncombustion_oil_footprints = Exiobase_FD * t(Exiobase_TIV_ch4_noncombustion_oil_bp)
  
  national_CH4_noncombustion_anthracite_footprints = Exiobase_FD * t(Exiobase_TIV_ch4_noncombustion_anthracite_bp)
  
  national_CH4_noncombustion_bituminouscoal_footprints = Exiobase_FD * t(Exiobase_TIV_ch4_noncombustion_bituminouscoal_bp)
  
  national_CH4_noncombustion_cokingcoal_footprints = Exiobase_FD * t(Exiobase_TIV_ch4_noncombustion_cokingcoal_bp)
  
  national_CH4_noncombustion_lignite_footprints = Exiobase_FD * t(Exiobase_TIV_ch4_noncombustion_lignite_bp)
  
  national_CH4_noncombustion_subbituminouscoal_footprints = Exiobase_FD * t(Exiobase_TIV_ch4_noncombustion_subbituminouscoal_bp)
  
  national_CH4_noncombustion_oilrefinery_footprints = Exiobase_FD * t(Exiobase_TIV_ch4_noncombustion_oilrefinery_bp)
  
  national_CH4_agriculture_footprints = Exiobase_FD * t(Exiobase_TIV_ch4_agriculture_bp)
  
  national_CH4_waste_footprints = Exiobase_FD * t(Exiobase_TIV_ch4_waste_bp)
  
  national_N2O_combustion_footprints = Exiobase_FD * t(Exiobase_TIV_n2o_combustion_bp)
  
  national_N2O_agriculture_footprints = Exiobase_FD * t(Exiobase_TIV_n2o_agriculture_bp)
  
  national_SF6_footprints = Exiobase_FD * t(Exiobase_TIV_sf6_bp)
  
  national_HFC_footprints = Exiobase_FD * t(Exiobase_TIV_hfc_bp)
  
  national_PFC_footprints = Exiobase_FD * t(Exiobase_TIV_pfc_bp)
  
  national_energy_footprints = Exiobase_FD * t(Exiobase_TIV_energy_use_bp)
  
  
  # together
  
  national_footprints_w_labels = cbind(Exiobase_FD_labels, 
                                       rowSums(t(national_CO2_combustion_footprints)),
                                       rowSums(t(national_CO2_noncombustion_cement_footprints)), 
                                       rowSums(t(national_CO2_noncombustion_lime_footprints)), 
                                       rowSums(t(national_CO2_agriculture_peatdecay_footprints)), 
                                       rowSums(t(national_CO2_waste_biogenic_footprints)), 
                                       rowSums(t(national_CO2_waste_fossil_footprints)),
                                       rowSums(t(national_CH4_combustion_footprints)),
                                       rowSums(t(national_CH4_noncombustion_gas_footprints)),
                                       rowSums(t(national_CH4_noncombustion_oil_footprints)),
                                       rowSums(t(national_CH4_noncombustion_anthracite_footprints)), 
                                       rowSums(t(national_CH4_noncombustion_bituminouscoal_footprints)), 
                                       rowSums(t(national_CH4_noncombustion_cokingcoal_footprints)),
                                       rowSums(t(national_CH4_noncombustion_lignite_footprints)),
                                       rowSums(t(national_CH4_noncombustion_subbituminouscoal_footprints)), 
                                       rowSums(t(national_CH4_noncombustion_oilrefinery_footprints)), 
                                       rowSums(t(national_CH4_agriculture_footprints)),
                                       rowSums(t(national_CH4_waste_footprints)),
                                       rowSums(t(national_N2O_combustion_footprints)),
                                       rowSums(t(national_N2O_agriculture_footprints)),
                                       rowSums(t(national_SF6_footprints)),
                                       rowSums(t(national_HFC_footprints)),
                                       rowSums(t(national_PFC_footprints)),
                                       rowSums(t(national_energy_footprints))) %>%
    mutate(V1 = dplyr::recode(V1,"GR" = "EL","GB" = "UK")) 
  
  year_national_fp = as.character(rep(year_current,nrow(national_footprints_w_labels)))
  
  # direct FD emissions
  
  direct_FD_extensions = read.csv(paste0(data_dir_exiobase, "/IOT_", year_current, "_ixi/satellite/F_hh.csv", sep = ""),row.names=NULL,as.is=TRUE)[3:1115,3:345]
  direct_FD_extensions[is.na(direct_FD_extensions)]=0
  direct_FD_extensions = mapply(direct_FD_extensions, FUN = as.numeric)
  direct_FD_extensions = matrix(data=direct_FD_extensions,ncol=343,nrow=1113)
  
  direct_FD_co2_combustion = direct_FD_extensions[24,]
  direct_FD_co2_noncombustion_cement = direct_FD_extensions[93,]
  direct_FD_co2_noncombustion_lime = direct_FD_extensions[94,]
  direct_FD_co2_agriculture_peatdecay = direct_FD_extensions[428,]
  direct_FD_co2_waste_biogenic = direct_FD_extensions[438,]
  direct_FD_co2_waste_fossil = direct_FD_extensions[439,]
  direct_FD_ch4_combustion = direct_FD_extensions[25,]*28
  direct_FD_ch4_noncombustion_gas = direct_FD_extensions[68,]*28
  direct_FD_ch4_noncombustion_oil = direct_FD_extensions[69,]*28
  direct_FD_ch4_noncombustion_anthracite = direct_FD_extensions[70,]*28
  direct_FD_ch4_noncombustion_bituminouscoal = direct_FD_extensions[71,]*28
  direct_FD_ch4_noncombustion_cokingcoal = direct_FD_extensions[72,]*28
  direct_FD_ch4_noncombustion_lignite = direct_FD_extensions[73,]*28
  direct_FD_ch4_noncombustion_subbituminouscoal = direct_FD_extensions[74,]*28
  direct_FD_ch4_noncombustion_oilrefinery = direct_FD_extensions[75,]*28
  direct_FD_ch4_agriculture = direct_FD_extensions[427,]*28
  direct_FD_ch4_waste = direct_FD_extensions[436,]*28
  direct_FD_n2o_combustion = direct_FD_extensions[26,]*265
  direct_FD_n2o_agriculture = direct_FD_extensions[430,]*265
  direct_FD_sf6 = direct_FD_extensions[424,]*23500
  direct_FD_hfc = direct_FD_extensions[425,]
  direct_FD_pfc = direct_FD_extensions[426,]
  direct_FD_energy = direct_FD_extensions[470,]
  
  
  direct_FD_fp = data.frame(direct_FD_co2_combustion,
                            direct_FD_co2_noncombustion_cement,
                            direct_FD_co2_noncombustion_lime,
                            direct_FD_co2_agriculture_peatdecay,
                            direct_FD_co2_waste_biogenic,
                            direct_FD_co2_waste_fossil,
                            direct_FD_ch4_combustion,
                            direct_FD_ch4_noncombustion_gas,
                            direct_FD_ch4_noncombustion_oil,
                            direct_FD_ch4_noncombustion_anthracite,
                            direct_FD_ch4_noncombustion_bituminouscoal,
                            direct_FD_ch4_noncombustion_cokingcoal,
                            direct_FD_ch4_noncombustion_lignite,
                            direct_FD_ch4_noncombustion_subbituminouscoal,
                            direct_FD_ch4_noncombustion_oilrefinery,
                            direct_FD_ch4_agriculture,
                            direct_FD_ch4_waste,
                            direct_FD_n2o_combustion,
                            direct_FD_n2o_agriculture,
                            direct_FD_sf6,
                            direct_FD_hfc,
                            direct_FD_pfc,
                            direct_FD_energy)
  
  look_national_fp = as.data.frame(cbind(year_national_fp,
                                         national_footprints_w_labels,
                                         direct_FD_fp)) %>% 
    rename(year = year_national_fp,
           geo = V1, 
           fd_category = V2, 
           co2_combustion = "rowSums(t(national_CO2_combustion_footprints))",
           co2_noncombustion_cement = "rowSums(t(national_CO2_noncombustion_cement_footprints))",
           co2_noncombustion_lime = "rowSums(t(national_CO2_noncombustion_lime_footprints))",
           co2_agriculture_peatdecay = "rowSums(t(national_CO2_agriculture_peatdecay_footprints))",
           co2_waste_biogenic = "rowSums(t(national_CO2_waste_biogenic_footprints))",
           co2_waste_fossil = "rowSums(t(national_CO2_waste_fossil_footprints))",
           ch4_combustion = "rowSums(t(national_CH4_combustion_footprints))",
           ch4_noncombustion_gas = "rowSums(t(national_CH4_noncombustion_gas_footprints))",
           ch4_noncombustion_oil = "rowSums(t(national_CH4_noncombustion_oil_footprints))",
           ch4_noncombustion_anthracite = "rowSums(t(national_CH4_noncombustion_anthracite_footprints))",
           ch4_noncombustion_bituminouscoal = "rowSums(t(national_CH4_noncombustion_bituminouscoal_footprints))",
           ch4_noncombustion_cokingcoal = "rowSums(t(national_CH4_noncombustion_cokingcoal_footprints))",
           ch4_noncombustion_lignite = "rowSums(t(national_CH4_noncombustion_lignite_footprints))",
           ch4_noncombustion_subbituminouscoal = "rowSums(t(national_CH4_noncombustion_subbituminouscoal_footprints))",
           ch4_noncombustion_oilrefinery = "rowSums(t(national_CH4_noncombustion_oilrefinery_footprints))",
           ch4_agriculture = "rowSums(t(national_CH4_agriculture_footprints))",
           ch4_waste = "rowSums(t(national_CH4_waste_footprints))",
           n2o_combustion = "rowSums(t(national_N2O_combustion_footprints))",
           n2o_agriculture = "rowSums(t(national_N2O_agriculture_footprints))",
           sf6 = "rowSums(t(national_SF6_footprints))",
           hfc = "rowSums(t(national_HFC_footprints))",
           pfc = "rowSums(t(national_PFC_footprints))",
           energy = "rowSums(t(national_energy_footprints))") %>%
    select(year,
           geo,
           fd_category,
           co2_combustion,
           direct_FD_co2_combustion,
           co2_noncombustion_cement,
           direct_FD_co2_noncombustion_cement,
           co2_noncombustion_lime,
           direct_FD_co2_noncombustion_lime,
           co2_agriculture_peatdecay,
           direct_FD_co2_agriculture_peatdecay,
           co2_waste_biogenic,
           direct_FD_co2_waste_biogenic,
           co2_waste_fossil,
           direct_FD_co2_waste_fossil,
           ch4_combustion,
           direct_FD_ch4_combustion,
           ch4_noncombustion_gas,
           direct_FD_ch4_noncombustion_gas,
           ch4_noncombustion_oil,
           direct_FD_ch4_noncombustion_oil,
           ch4_noncombustion_anthracite,
           direct_FD_ch4_noncombustion_anthracite,
           ch4_noncombustion_bituminouscoal,
           direct_FD_ch4_noncombustion_bituminouscoal,
           ch4_noncombustion_cokingcoal,
           direct_FD_ch4_noncombustion_cokingcoal,
           ch4_noncombustion_lignite,
           direct_FD_ch4_noncombustion_lignite,
           ch4_noncombustion_subbituminouscoal,
           direct_FD_ch4_noncombustion_subbituminouscoal,
           ch4_noncombustion_oilrefinery,
           direct_FD_ch4_noncombustion_oilrefinery,
           ch4_agriculture,
           direct_FD_ch4_agriculture,
           ch4_waste,
           direct_FD_ch4_waste,
           n2o_combustion,
           direct_FD_n2o_combustion,
           n2o_agriculture,
           direct_FD_n2o_agriculture,
           sf6,
           direct_FD_sf6,
           hfc,
           direct_FD_hfc,
           pfc,
           direct_FD_pfc,
           energy,
           direct_FD_energy)
  
  
  national_fp = rbind(national_fp, look_national_fp)
  
  
  
  # national territorial
  
  satellite = read.csv(paste0(data_dir_exiobase, "/IOT_", year_current, "_ixi/satellite/satellite_",year_current,"_ixi.csv"))[,-1]
  
  
  CO2_combustion_air = satellite[24,]
  
  CO2_noncombustion_cement_air = satellite[93,]
  
  CO2_noncombustion_lime_air = satellite[94,]
  
  CO2_agriculture_peatdecay_air = satellite[428,]
  
  CO2_waste_biogenic_air = satellite[438,]
  
  CO2_waste_fossil_air = satellite[439,]
  
  CH4_combustion_air = satellite[25,]
  CH4_combustion_air = CH4_combustion_air*28
  
  CH4_noncombustion_gas_air = satellite[68,]
  CH4_noncombustion_gas_air = CH4_noncombustion_gas_air*28
  
  CH4_noncombustion_oil_air = satellite[69,]
  CH4_noncombustion_oil_air = CH4_noncombustion_oil_air*28
  
  CH4_noncombustion_anthracite_air = satellite[70,]
  CH4_noncombustion_anthracite_air = CH4_noncombustion_anthracite_air*28
  
  CH4_noncombustion_bituminouscoal_air = satellite[71,]
  CH4_noncombustion_bituminouscoal_air = CH4_noncombustion_bituminouscoal_air*28
  
  CH4_noncombustion_cokingcoal_air = satellite[72,]
  CH4_noncombustion_cokingcoal_air = CH4_noncombustion_cokingcoal_air*28
  
  CH4_noncombustion_lignite_air = satellite[73,]
  CH4_noncombustion_lignite_air = CH4_noncombustion_lignite_air*28
  
  CH4_noncombustion_subbituminouscoal_air = satellite[74,]
  CH4_noncombustion_subbituminouscoal_air = CH4_noncombustion_subbituminouscoal_air*28
  
  CH4_noncombustion_oilrefinery_air = satellite[75,]
  CH4_noncombustion_oilrefinery_air = CH4_noncombustion_oilrefinery_air*28
  
  CH4_agriculture_air = satellite[427,]
  CH4_agriculture_air = CH4_agriculture_air*28
  
  CH4_waste_air = satellite[436,]
  CH4_waste_air = CH4_waste_air*28
  
  N2O_combustion_air = satellite[26,]
  N2O_combustion_air = N2O_combustion_air*265
  
  N2O_agriculture_air = satellite[430,]
  N2O_agriculture_air = N2O_agriculture_air*265
  
  SF6_air = satellite[424,]
  SF6_air = SF6_air*23500
  
  HFC_air = satellite[425,]
  
  PFC_air = satellite[426,]
  
  energy_carrier_use = satellite[470,]
  
  
  territorial = data.frame(t(CO2_combustion_air),
                           t(CO2_noncombustion_cement_air),
                           t(CO2_noncombustion_lime_air),
                           t(CO2_agriculture_peatdecay_air),
                           t(CO2_waste_biogenic_air),
                           t(CO2_waste_fossil_air),
                           t(CH4_combustion_air),
                           t(CH4_noncombustion_gas_air),
                           t(CH4_noncombustion_oil_air),
                           t(CH4_noncombustion_anthracite_air),
                           t(CH4_noncombustion_bituminouscoal_air),
                           t(CH4_noncombustion_cokingcoal_air),
                           t(CH4_noncombustion_lignite_air),
                           t(CH4_noncombustion_subbituminouscoal_air),
                           t(CH4_noncombustion_oilrefinery_air),
                           t(CH4_agriculture_air),
                           t(CH4_waste_air),
                           t(N2O_combustion_air),
                           t(N2O_agriculture_air),
                           t(SF6_air),
                           t(HFC_air),
                           t(PFC_air),
                           t(energy_carrier_use)) %>%
    rename(CO2_combustion = 1, 
           CO2_noncombustion_cement = 2,
           CO2_noncombustion_lime = 3,
           CO2_agriculture_peatdecay = 4,
           CO2_waste_biogenic = 5,
           CO2_waste_fossil = 6,
           CH4_combustion = 7, 
           CH4_noncombustion_gas = 8,
           CH4_noncombustion_oil = 9,
           CH4_noncombustion_anthracite = 10,
           CH4_noncombustion_bituminouscoal = 11,
           CH4_noncombustion_cokingcoal = 12,
           CH4_noncombustion_lignite = 13,
           CH4_noncombustion_subbituminouscoal = 14,
           CH4_noncombustion_oilrefinery = 15,
           CH4_agriculture = 16,
           CH4_waste = 17,
           N2O_combustion = 18, 
           N2O_agriculture = 19,
           SF6 = 20,
           HFC = 21, PFC = 22, energy = 23)
  
  year_territorial = as.character(rep(year_current,nrow(territorial)))
  
  look_territorial = as.data.frame(cbind(year_territorial,
                                         Exiobase_T_labels,
                                         territorial)) %>%
    rename(year = year_territorial,
           geo = V1,
           sector = V2) %>%
    select(-coicop,-five_sectors)
  
  national_territorial = rbind(national_territorial, look_territorial)
  
}

write.csv(national_territorial, paste0(data_dir_income_stratified_footprints, "/national_territorial_ixi.csv"))
write_rds(national_territorial, paste0(data_dir_income_stratified_footprints, "/national_territorial_ixi.rds"))


write.csv(national_fp, paste0(data_dir_income_stratified_footprints, "/national_fp_ixi.csv"))
write_rds(national_fp, paste0(data_dir_income_stratified_footprints, "/national_fp_ixi.rds"))

# calculate quintile shares within each sector
shares = join_expenditures %>%
  group_by(coicop,geo,year) %>%
  mutate(share = pps_coicop/sum(pps_coicop))

# pre-processing

fd_exiobase = disaggregated_final_demand %>% 
  left_join(shares, by = c("year","geo","coicop","quintile")) %>%
  mutate(disaggregated_fd = value*share) %>%
  select(year,geo,quintile,country_of_production,sector,coicop,disaggregated_fd) %>%
  spread(quintile,disaggregated_fd)

# direct from FD - to go back to results without direct FD fp, do not run this next chunk and do not bind_rows with 'results'

env_ac_pefasu_no_TR = read_csv(paste0(data_dir_income_stratified_footprints, "/env_ac_pefasu_1_Data.csv")) %>%
  filter(TIME == 2015) %>%
  mutate(geo = dplyr::recode(GEO,"Austria" = "AT", 
                             "Belgium" = "BE",
                             "Cyprus" = "CY",
                             "Czechia" = "CZ",
                             "Denmark" = "DK",
                             "Estonia" = "EE",
                             "Finland" = "FI",
                             "France" = "FR",
                             "Germany (until 1990 former territory of the FRG)" = "DE",
                             "Greece" = "EL",
                             "Hungary" = "HU",
                             "Ireland" = "IE",
                             "Italy" = "IT",
                             "Latvia" = "LV",
                             "Lithuania" = "LT",
                             "Luxembourg" = "LU",
                             "Malta" = "MT",
                             "Netherlands" = "NL",
                             "Norway" = "NO",
                             "Poland" = "PL",
                             "Portugal" = "PT",
                             "Romania" = "RO",
                             "Slovakia" = "SK",
                             "Slovenia" = "SI",
                             "Spain" = "ES",
                             "Sweden" = "SE",
                             "United Kingdom" = "UK",
                             "Bulgaria" = "BG",
                             "Croatia" = "HR")) %>%
  select(NACE_R2,geo,Value) %>%
  mutate(Value = parse_number(Value),
         Value = as.numeric(Value)) %>%
  spread(NACE_R2,Value) %>%
  clean_names() %>%
  mutate(HH_HEAT = heating_cooling_activities_by_households/total_activities_by_households,
         HH_TRA = transport_activities_by_households/total_activities_by_households,
         HH_OTH = other_activities_by_households/total_activities_by_households) %>%
  select(geo,HH_HEAT,HH_TRA,HH_OTH) 


env_ac_pefasu_TR = env_ac_pefasu_no_TR %>%
  filter(geo == "BG") %>%
  mutate(geo = dplyr::recode(geo,
                             "BG" = "TR"))

env_ac_pefasu = rbind(env_ac_pefasu_no_TR,env_ac_pefasu_TR) %>%
  gather(sector,share_of_total_energy,-geo)

env_ac_ainah_r2 = read_csv(paste0(data_dir_income_stratified_footprints, "/env_ac_ainah_r2_1_Data.csv")) %>%
  filter(TIME == 2015) %>%
  mutate(geo = dplyr::recode(GEO,"Austria" = "AT", 
                             "Belgium" = "BE",
                             "Cyprus" = "CY",
                             "Czechia" = "CZ",
                             "Denmark" = "DK",
                             "Estonia" = "EE",
                             "Finland" = "FI",
                             "France" = "FR",
                             "Germany (until 1990 former territory of the FRG)" = "DE",
                             "Greece" = "EL",
                             "Hungary" = "HU",
                             "Ireland" = "IE",
                             "Italy" = "IT",
                             "Latvia" = "LV",
                             "Lithuania" = "LT",
                             "Luxembourg" = "LU",
                             "Malta" = "MT",
                             "Netherlands" = "NL",
                             "Norway" = "NO",
                             "Poland" = "PL",
                             "Portugal" = "PT",
                             "Romania" = "RO",
                             "Slovakia" = "SK",
                             "Slovenia" = "SI",
                             "Spain" = "ES",
                             "Sweden" = "SE",
                             "Turkey" = "TR",
                             "United Kingdom" = "UK",
                             "Bulgaria" = "BG",
                             "Croatia" = "HR")) %>%
  select(NACE_R2,AIRPOL,geo,Value) %>%
  mutate(Value = parse_number(Value),
         Value = as.numeric(Value)) %>%
  spread(NACE_R2,Value) %>%
  clean_names() %>%
  mutate(HH_HEAT = heating_cooling_activities_by_households/total_activities_by_households,
         HH_TRA = transport_activities_by_households/total_activities_by_households,
         HH_OTH = other_activities_by_households/total_activities_by_households) %>%
  select(geo,airpol,HH_HEAT,HH_TRA,HH_OTH) 


env_ac_ainah_r2_co2 = env_ac_ainah_r2 %>%
  filter(airpol == "Carbon dioxide") %>%
  select(-airpol) %>%
  gather(sector,share_of_total_co2,-geo)

env_ac_ainah_r2_ch4 = env_ac_ainah_r2 %>%
  filter(airpol == "Methane") %>%
  select(-airpol) %>%
  gather(sector,share_of_total_ch4,-geo)

env_ac_ainah_r2_n2o = env_ac_ainah_r2 %>%
  filter(airpol == "Nitrous oxide") %>%
  select(-airpol) %>%
  gather(sector,share_of_total_n2o,-geo)

direct_FD_fp_long = national_fp %>%
  filter(fd_category == "Final consumption expenditure by households",
         geo %in% c("AT",
                    "BE", "BG", "CY", "CZ",
                    "DE" , "DK" , "EE" , 
                    "ES" , "FI" , "FR" , 
                    "UK", "EL", "HR" ,
                    "HU" , "IE" , "IT" ,
                    "LT" , "LU" , "LV" ,
                    "MT" , "NL" , "PL" ,
                    "PT" , "TR" , "SK" ,
                    "SI" , "SE" , "RO" ,
                    "NO")) %>%
  select(year,geo,fd_category,direct_FD_co2_combustion,
         direct_FD_co2_noncombustion_cement,
         direct_FD_co2_noncombustion_lime,
         direct_FD_co2_agriculture_peatdecay,
         direct_FD_co2_waste_biogenic,
         direct_FD_co2_waste_fossil,
         direct_FD_ch4_combustion,
         direct_FD_ch4_noncombustion_gas,
         direct_FD_ch4_noncombustion_oil,
         direct_FD_ch4_noncombustion_anthracite,
         direct_FD_ch4_noncombustion_bituminouscoal,
         direct_FD_ch4_noncombustion_cokingcoal,
         direct_FD_ch4_noncombustion_lignite,
         direct_FD_ch4_noncombustion_subbituminouscoal,
         direct_FD_ch4_noncombustion_oilrefinery,
         direct_FD_ch4_agriculture,
         direct_FD_ch4_waste,
         direct_FD_n2o_combustion,
         direct_FD_n2o_agriculture,
         direct_FD_sf6,
         direct_FD_hfc,
         direct_FD_pfc,
         direct_FD_energy) %>%   
  slice(rep(1:n(), each = 3)) 

sector = rep(c("HH_HEAT","HH_TRA","HH_OTH"), nrow(direct_FD_fp_long)/3) 

direct_FD_fp_long_disagg = cbind(sector,direct_FD_fp_long) %>%
  mutate(coicop = ifelse(sector == "HH_TRA","CP072",
                         ifelse(sector == "HH_HEAT","CP045","CP05")), 
         five_sectors = ifelse(sector == "HH_TRA", "transport",
                               ifelse(sector == "HH_HEAT", "shelter", "manufactured goods"))) %>%
  left_join(env_ac_ainah_r2_co2, by = c("geo","sector")) %>%
  left_join(env_ac_ainah_r2_ch4, by = c("geo","sector")) %>%
  left_join(env_ac_ainah_r2_n2o, by = c("geo","sector")) %>%
  left_join(env_ac_pefasu, by = c("geo","sector")) %>%
  mutate(direct_FD_co2 = (direct_FD_co2_combustion +
                            direct_FD_co2_noncombustion_cement +
                            direct_FD_co2_noncombustion_lime +
                            direct_FD_co2_agriculture_peatdecay +
                            direct_FD_co2_waste_biogenic +
                            direct_FD_co2_waste_fossil)*share_of_total_co2,
         direct_FD_ch4 = (direct_FD_ch4_combustion +
                            direct_FD_ch4_noncombustion_gas +
                            direct_FD_ch4_noncombustion_oil +
                            direct_FD_ch4_noncombustion_anthracite +
                            direct_FD_ch4_noncombustion_bituminouscoal +
                            direct_FD_ch4_noncombustion_cokingcoal +
                            direct_FD_ch4_noncombustion_lignite +
                            direct_FD_ch4_noncombustion_subbituminouscoal +
                            direct_FD_ch4_noncombustion_oilrefinery +
                            direct_FD_ch4_agriculture +
                            direct_FD_ch4_waste)*share_of_total_ch4,
         direct_FD_n2o = (direct_FD_n2o_combustion +
                            direct_FD_n2o_agriculture)*share_of_total_n2o,
         direct_FD_energy = direct_FD_energy*share_of_total_energy) %>%
  left_join(shares, by = c("year","geo","coicop")) %>%
  mutate(disaggregated_direct_FD_co2 = direct_FD_co2*share,
         disaggregated_direct_FD_ch4 = direct_FD_ch4*share,
         disaggregated_direct_FD_n2o = direct_FD_n2o*share,
         disaggregated_direct_FD_energy = direct_FD_energy*share) %>%
  select(year,geo,sector, quintile,
         coicop, five_sectors,
         disaggregated_direct_FD_co2,
         disaggregated_direct_FD_ch4,
         disaggregated_direct_FD_n2o,
         disaggregated_direct_FD_energy) 

direct_FD_co2 = direct_FD_fp_long_disagg %>%
  select(year,geo,sector,quintile,coicop,five_sectors,disaggregated_direct_FD_co2) %>%
  spread(quintile,disaggregated_direct_FD_co2) %>%
  rename(q1_co2 = QUINTILE1,
         q2_co2 = QUINTILE2,
         q3_co2 = QUINTILE3,
         q4_co2 = QUINTILE4,
         q5_co2 = QUINTILE5) %>%
  mutate(q1_co2_domestic = q1_co2,
         q2_co2_domestic = q2_co2,
         q3_co2_domestic = q3_co2,
         q4_co2_domestic = q4_co2,
         q5_co2_domestic = q5_co2,
         co2_total = q1_co2+q2_co2+q3_co2+q4_co2+q5_co2,
         co2_total_domestic = q1_co2_domestic+
           q2_co2_domestic+q3_co2_domestic+
           q4_co2_domestic+q5_co2_domestic)

direct_FD_ch4 = direct_FD_fp_long_disagg %>%
  select(year,geo,sector,quintile,coicop,five_sectors,disaggregated_direct_FD_ch4) %>%
  spread(quintile,disaggregated_direct_FD_ch4) %>%
  rename(q1_ch4 = QUINTILE1,
         q2_ch4 = QUINTILE2,
         q3_ch4 = QUINTILE3,
         q4_ch4 = QUINTILE4,
         q5_ch4 = QUINTILE5) %>%
  mutate(q1_ch4_domestic = q1_ch4,
         q2_ch4_domestic = q2_ch4,
         q3_ch4_domestic = q3_ch4,
         q4_ch4_domestic = q4_ch4,
         q5_ch4_domestic = q5_ch4,
         ch4_total = q1_ch4+q2_ch4+q3_ch4+q4_ch4+q5_ch4,
         ch4_total_domestic = q1_ch4_domestic+
           q2_ch4_domestic+q3_ch4_domestic+
           q4_ch4_domestic+q5_ch4_domestic)


direct_FD_n2o = direct_FD_fp_long_disagg %>%
  select(year,geo,sector,quintile,coicop,five_sectors,disaggregated_direct_FD_n2o) %>%
  spread(quintile,disaggregated_direct_FD_n2o) %>%
  rename(q1_n2o = QUINTILE1,
         q2_n2o = QUINTILE2,
         q3_n2o = QUINTILE3,
         q4_n2o = QUINTILE4,
         q5_n2o = QUINTILE5) %>%
  mutate(q1_n2o_domestic = q1_n2o,
         q2_n2o_domestic = q2_n2o,
         q3_n2o_domestic = q3_n2o,
         q4_n2o_domestic = q4_n2o,
         q5_n2o_domestic = q5_n2o,
         n2o_total = q1_n2o+q2_n2o+q3_n2o+q4_n2o+q5_n2o,
         n2o_total_domestic = q1_n2o_domestic+
           q2_n2o_domestic+q3_n2o_domestic+
           q4_n2o_domestic+q5_n2o_domestic)

direct_FD_energy = direct_FD_fp_long_disagg %>%
  select(year,geo,sector,quintile,coicop,five_sectors,disaggregated_direct_FD_energy) %>%
  spread(quintile,disaggregated_direct_FD_energy) %>%
  rename(q1_energy = QUINTILE1,
         q2_energy = QUINTILE2,
         q3_energy = QUINTILE3,
         q4_energy = QUINTILE4,
         q5_energy = QUINTILE5) %>%
  mutate(q1_energy_domestic = q1_energy,
         q2_energy_domestic = q2_energy,
         q3_energy_domestic = q3_energy,
         q4_energy_domestic = q4_energy,
         q5_energy_domestic = q5_energy,
         energy_total = q1_energy+q2_energy+q3_energy+q4_energy+q5_energy,
         energy_total_domestic = q1_energy_domestic+
           q2_energy_domestic+q3_energy_domestic+
           q4_energy_domestic+q5_energy_domestic)


direct_FD_fp_wide = direct_FD_co2 %>%
  left_join(direct_FD_ch4, by = c("year","geo",
                                  "sector","coicop",
                                  "five_sectors")) %>%
  left_join(direct_FD_n2o, by = c("year","geo",
                                  "sector","coicop",
                                  "five_sectors")) %>%
  left_join(direct_FD_energy, by = c("year","geo",
                                     "sector","coicop",
                                     "five_sectors")) %>%
  mutate(country_of_production = geo) %>%
  mutate(q1_co2eq = q1_co2 + q1_ch4 + q1_n2o,
         q2_co2eq = q2_co2 + q2_ch4 + q2_n2o,
         q3_co2eq = q3_co2 + q3_ch4 + q3_n2o,
         q4_co2eq = q4_co2 + q4_ch4 + q4_n2o,
         q5_co2eq = q5_co2 + q5_ch4 + q5_n2o,
         co2eq_total = q1_co2eq +
           q2_co2eq + q3_co2eq +
           q4_co2eq + q5_co2eq,
         q1_co2eq_domestic = q1_co2_domestic + q1_ch4_domestic + q1_n2o_domestic,
         q2_co2eq_domestic = q2_co2_domestic + q2_ch4_domestic + q2_n2o_domestic,
         q3_co2eq_domestic = q3_co2_domestic + q3_ch4_domestic + q3_n2o_domestic,
         q4_co2eq_domestic = q4_co2_domestic + q4_ch4_domestic + q4_n2o_domestic,
         q5_co2eq_domestic = q5_co2_domestic + q5_ch4_domestic + q5_n2o_domestic,
         co2eq_total_domestic = q1_co2eq_domestic +
           q2_co2eq_domestic + q3_co2eq_domestic +
           q4_co2eq_domestic + q5_co2eq_domestic) %>%
  select(-q1_ch4,
         -q2_ch4,
         -q3_ch4,
         -q4_ch4,
         -q5_ch4,
         -ch4_total,
         -q1_ch4_domestic,
         -q2_ch4_domestic,
         -q3_ch4_domestic,
         -q4_ch4_domestic,
         -q5_ch4_domestic,
         -ch4_total_domestic,
         -q1_n2o,
         -q2_n2o,
         -q3_n2o,
         -q4_n2o,
         -q5_n2o,
         -n2o_total,
         -q1_n2o_domestic,
         -q2_n2o_domestic,
         -q3_n2o_domestic,
         -q4_n2o_domestic,
         -q5_n2o_domestic,
         -n2o_total_domestic)



results = fd_exiobase %>%
  left_join(TIVs, by = c("year", "country_of_production", "coicop", "sector")) %>%
  left_join(europe_TIVs, by = c("year", "country_of_production", "coicop", "sector", "five_sectors")) %>%
  left_join(domestic_TIVs, by = c("year", "geo", "country_of_production", "coicop", "sector", "five_sectors")) %>%
  transmute(year,geo,country_of_production,sector,coicop,five_sectors,
            QUINTILE1,
            QUINTILE2,
            QUINTILE3,
            QUINTILE4,
            QUINTILE5,
            fd_total = QUINTILE1+QUINTILE2+QUINTILE3+QUINTILE4+QUINTILE5,
            TIV_CO2 = TIV_CO2_combustion + 
              TIV_CO2_noncombustion_cement + 
              TIV_CO2_noncombustion_lime +
              TIV_CO2_agriculture_peatdecay +
              TIV_CO2_waste_biogenic + 
              TIV_CO2_waste_fossil,
            q1_co2 = QUINTILE1*TIV_CO2,
            q2_co2 = QUINTILE2*TIV_CO2,
            q3_co2 = QUINTILE3*TIV_CO2,
            q4_co2 = QUINTILE4*TIV_CO2,
            q5_co2 = QUINTILE5*TIV_CO2,
            co2_total = q1_co2+q2_co2+q3_co2+q4_co2+q5_co2,
            TIV_CO2_domestic = TIV_CO2_combustion_domestic +
              TIV_CO2_noncombustion_cement_domestic +
              TIV_CO2_noncombustion_lime_domestic +
              TIV_CO2_agriculture_peatdecay_domestic +
              TIV_CO2_waste_biogenic_domestic +
              TIV_CO2_waste_fossil_domestic,
            q1_co2_domestic = QUINTILE1*TIV_CO2_domestic,
            q2_co2_domestic = QUINTILE2*TIV_CO2_domestic,
            q3_co2_domestic = QUINTILE3*TIV_CO2_domestic,
            q4_co2_domestic = QUINTILE4*TIV_CO2_domestic,
            q5_co2_domestic = QUINTILE5*TIV_CO2_domestic,
            co2_total_domestic = q1_co2_domestic+q2_co2_domestic+q3_co2_domestic+q4_co2_domestic+q5_co2_domestic,
            TIV_CO2_europe = TIV_CO2_combustion_europe +
              TIV_CO2_noncombustion_cement_europe +
              TIV_CO2_noncombustion_lime_europe +
              TIV_CO2_agriculture_peatdecay_europe +
              TIV_CO2_waste_biogenic_europe +
              TIV_CO2_waste_fossil_europe,
            q1_co2_europe = QUINTILE1*(TIV_CO2_europe - TIV_CO2_domestic),
            q2_co2_europe = QUINTILE2*(TIV_CO2_europe - TIV_CO2_domestic),
            q3_co2_europe = QUINTILE3*(TIV_CO2_europe - TIV_CO2_domestic),
            q4_co2_europe = QUINTILE4*(TIV_CO2_europe - TIV_CO2_domestic),
            q5_co2_europe = QUINTILE5*(TIV_CO2_europe - TIV_CO2_domestic),
            co2_total_europe = q1_co2_europe+q2_co2_europe+q3_co2_europe+q4_co2_europe+q5_co2_europe,
            TIV_CO2eq = TIV_CO2 + 
              TIV_CH4_combustion + 
              TIV_CH4_noncombustion_gas +
              TIV_CH4_noncombustion_oil +
              TIV_CH4_noncombustion_anthracite +
              TIV_CH4_noncombustion_bituminouscoal +
              TIV_CH4_noncombustion_cokingcoal +
              TIV_CH4_noncombustion_lignite +
              TIV_CH4_noncombustion_subbituminouscoal +
              TIV_CH4_noncombustion_oilrefinery +
              TIV_CH4_agriculture +
              TIV_CH4_waste +
              TIV_N2O_combustion + 
              TIV_N2O_agriculture +
              TIV_SF6 + TIV_HFC + TIV_PFC,
            q1_co2eq = QUINTILE1*TIV_CO2eq,
            q2_co2eq = QUINTILE2*TIV_CO2eq,
            q3_co2eq = QUINTILE3*TIV_CO2eq,
            q4_co2eq = QUINTILE4*TIV_CO2eq,
            q5_co2eq = QUINTILE5*TIV_CO2eq,
            co2eq_total = q1_co2eq + q2_co2eq + q3_co2eq + q4_co2eq + q5_co2eq,
            TIV_CO2eq_domestic = TIV_CO2_domestic + 
              TIV_CH4_combustion_domestic + 
              TIV_CH4_noncombustion_gas_domestic +
              TIV_CH4_noncombustion_oil_domestic +
              TIV_CH4_noncombustion_anthracite_domestic +
              TIV_CH4_noncombustion_bituminouscoal_domestic +
              TIV_CH4_noncombustion_cokingcoal_domestic +
              TIV_CH4_noncombustion_lignite_domestic +
              TIV_CH4_noncombustion_subbituminouscoal_domestic +
              TIV_CH4_noncombustion_oilrefinery_domestic +
              TIV_CH4_agriculture_domestic +
              TIV_CH4_waste_domestic +
              TIV_N2O_combustion_domestic + 
              TIV_N2O_agriculture_domestic +
              TIV_SF6_domestic + TIV_HFC_domestic + TIV_PFC_domestic,
            q1_co2eq_domestic = QUINTILE1*TIV_CO2eq_domestic,
            q2_co2eq_domestic = QUINTILE2*TIV_CO2eq_domestic,
            q3_co2eq_domestic = QUINTILE3*TIV_CO2eq_domestic,
            q4_co2eq_domestic = QUINTILE4*TIV_CO2eq_domestic,
            q5_co2eq_domestic = QUINTILE5*TIV_CO2eq_domestic,
            co2eq_total_domestic = q1_co2eq_domestic + q2_co2eq_domestic + q3_co2eq_domestic + q4_co2eq_domestic + q5_co2eq_domestic,
            TIV_CO2eq_europe = TIV_CO2_europe + 
              TIV_CH4_combustion_europe + 
              TIV_CH4_noncombustion_gas_europe +
              TIV_CH4_noncombustion_oil_europe +
              TIV_CH4_noncombustion_anthracite_europe +
              TIV_CH4_noncombustion_bituminouscoal_europe +
              TIV_CH4_noncombustion_cokingcoal_europe +
              TIV_CH4_noncombustion_lignite_europe +
              TIV_CH4_noncombustion_subbituminouscoal_europe +
              TIV_CH4_noncombustion_oilrefinery_europe +
              TIV_CH4_agriculture_europe +
              TIV_CH4_waste_europe +
              TIV_N2O_combustion_europe + 
              TIV_N2O_agriculture_europe +
              TIV_SF6_europe + TIV_HFC_europe + TIV_PFC_europe,
            q1_co2eq_europe = QUINTILE1*(TIV_CO2eq_europe - TIV_CO2eq_domestic),
            q2_co2eq_europe = QUINTILE2*(TIV_CO2eq_europe - TIV_CO2eq_domestic),
            q3_co2eq_europe = QUINTILE3*(TIV_CO2eq_europe - TIV_CO2eq_domestic),
            q4_co2eq_europe = QUINTILE4*(TIV_CO2eq_europe - TIV_CO2eq_domestic),
            q5_co2eq_europe = QUINTILE5*(TIV_CO2eq_europe - TIV_CO2eq_domestic),
            co2eq_total_europe = q1_co2eq_europe + q2_co2eq_europe + q3_co2eq_europe + q4_co2eq_europe + q5_co2eq_europe,
            TIV_energy,
            q1_energy = QUINTILE1*TIV_energy,
            q2_energy = QUINTILE2*TIV_energy,
            q3_energy = QUINTILE3*TIV_energy,
            q4_energy = QUINTILE4*TIV_energy,
            q5_energy = QUINTILE5*TIV_energy,
            energy_total = q1_energy+q2_energy+q3_energy+q4_energy+q5_energy,
            TIV_energy_domestic,
            q1_energy_domestic = QUINTILE1*TIV_energy_domestic,
            q2_energy_domestic = QUINTILE2*TIV_energy_domestic,
            q3_energy_domestic = QUINTILE3*TIV_energy_domestic,
            q4_energy_domestic = QUINTILE4*TIV_energy_domestic,
            q5_energy_domestic = QUINTILE5*TIV_energy_domestic,
            energy_total_domestic = q1_energy_domestic+q2_energy_domestic+q3_energy_domestic+q4_energy_domestic+q5_energy_domestic,
            TIV_energy_europe,
            q1_energy_europe = QUINTILE1*(TIV_energy_europe - TIV_energy_domestic),
            q2_energy_europe = QUINTILE2*(TIV_energy_europe - TIV_energy_domestic),
            q3_energy_europe = QUINTILE3*(TIV_energy_europe - TIV_energy_domestic),
            q4_energy_europe = QUINTILE4*(TIV_energy_europe - TIV_energy_domestic),
            q5_energy_europe = QUINTILE5*(TIV_energy_europe - TIV_energy_domestic),
            energy_total_europe = q1_energy_europe+q2_energy_europe+q3_energy_europe+q4_energy_europe+q5_energy_europe)

results_with_direct_FD_fp = bind_rows(results,direct_FD_fp_wide)

### create compressed results_ixi rds file

dat_all = results_with_direct_FD_fp %>%
  clean_names()

# convert sector labels to IDs
sectors = dat_all %>%
  distinct(sector) %>%
  mutate(sector_id = row_number())

#write_csv(sectors, here("data/sector_labels.csv"))
write_csv(sectors, paste0(here("/analysis/data/derived/sectors_method1_ixi.csv"))) 

# convert aggregated sector labels to IDs
sectors_agg = dat_all %>%
  distinct(five_sectors) %>%
  mutate(sector_agg_id = row_number())

#write_csv(sectors_agg, here("data/sector_agg_labels.csv"))
write_csv(sectors_agg, paste0(here("/analysis/data/derived/sectors_agg_method1_ixi.csv"))) 

# convert COICOP labels to IDs
coicop = dat_all %>%
  distinct(coicop) %>%
  mutate(coicop_id = row_number()) 

#write_csv(sectors_agg, here("data/sector_agg_labels.csv"))
write_csv(coicop, paste0(here("/analysis/data/derived/coicop_method1_ixi.csv"))) 

# replace sector text labels with numerical IDs (save space)
dat_compressed = dat_all %>%
  left_join(sectors, by="sector") %>%
  left_join(sectors_agg, by="five_sectors") %>%
  left_join(coicop, by = "coicop") %>%
  select(-c(sector, five_sectors,coicop))

# extract sector aggregation
sector_mapping = dat_compressed %>%
  group_by(sector_id) %>%
  summarise(sector_agg_id = first(sector_agg_id),
            coicop_id = first(coicop_id))

# collapse country of origin
dat_results = dat_compressed %>%
  select(-sector_agg_id,-coicop_id) %>%
  group_by(year, geo, sector_id) %>%
  summarise_if(is.numeric, sum, na.rm = TRUE)

## extract final demand and pivot long
cols_final_demand = c("quintile1", "quintile2", "quintile3", "quintile4", "quintile5")
tmp_fd = dat_results %>%
  select(year, geo, sector_id, cols_final_demand) %>%
  pivot_longer(cols = cols_final_demand,
               names_to = "quintile",
               values_to = "fd_me") %>%
  mutate(quint = parse_number(quintile)) %>%
  select(-quintile)

## extract co2 and pivot long
cols_co2 = c("q1_co2", "q2_co2", "q3_co2", "q4_co2", "q5_co2")
tmp_co2 = dat_results %>%
  select(year, geo, sector_id, cols_co2) %>%
  pivot_longer(cols = cols_co2,
               names_to = "quintile",
               values_to = "co2_kg") %>%
  mutate(quint = parse_number(quintile)) %>%
  select(-quintile)

## extract co2 domestic and pivot long
cols_co2_domestic = c("q1_co2_domestic", "q2_co2_domestic", "q3_co2_domestic", "q4_co2_domestic", "q5_co2_domestic")
tmp_co2_domestic = dat_results %>%
  select(year, geo, sector_id, cols_co2_domestic) %>%
  pivot_longer(cols = cols_co2_domestic,
               names_to = "quintile",
               values_to = "co2_domestic_kg") %>%
  mutate(quint = parse_number(quintile)) %>%
  select(-quintile)

## extract co2 europe and pivot long
cols_co2_europe = c("q1_co2_europe", "q2_co2_europe", "q3_co2_europe", "q4_co2_europe", "q5_co2_europe")
tmp_co2_europe = dat_results %>%
  select(year, geo, sector_id, cols_co2_europe) %>%
  pivot_longer(cols = cols_co2_europe,
               names_to = "quintile",
               values_to = "co2_europe_kg") %>%
  mutate(quint = parse_number(quintile)) %>%
  select(-quintile)


## extract co2eq and pivot long
cols_co2eq = c("q1_co2eq", "q2_co2eq", "q3_co2eq", "q4_co2eq", "q5_co2eq")
tmp_co2eq = dat_results %>%
  select(year, geo, sector_id, cols_co2eq) %>%
  pivot_longer(cols = cols_co2eq,
               names_to = "quintile",
               values_to = "co2eq_kg") %>%
  mutate(quint = parse_number(quintile)) %>%
  select(-quintile)

## extract co2eq domestic and pivot long
cols_co2eq_domestic = c("q1_co2eq_domestic", "q2_co2eq_domestic", "q3_co2eq_domestic", "q4_co2eq_domestic", "q5_co2eq_domestic")
tmp_co2eq_domestic = dat_results %>%
  select(year, geo, sector_id, cols_co2eq_domestic) %>%
  pivot_longer(cols = cols_co2eq_domestic,
               names_to = "quintile",
               values_to = "co2eq_domestic_kg") %>%
  mutate(quint = parse_number(quintile)) %>%
  select(-quintile)

## extract co2eq europe and pivot long
cols_co2eq_europe = c("q1_co2eq_europe", "q2_co2eq_europe", "q3_co2eq_europe", "q4_co2eq_europe", "q5_co2eq_europe")
tmp_co2eq_europe = dat_results %>%
  select(year, geo, sector_id, cols_co2eq_europe) %>%
  pivot_longer(cols = cols_co2eq_europe,
               names_to = "quintile",
               values_to = "co2eq_europe_kg") %>%
  mutate(quint = parse_number(quintile)) %>%
  select(-quintile)

## extract energy use and pivot long
cols_energy = c("q1_energy","q2_energy","q3_energy","q4_energy","q5_energy")
tmp_energy = dat_results %>%
  select(year, geo, sector_id, cols_energy) %>%
  pivot_longer(cols = cols_energy,
               names_to = "quintile",
               values_to = "energy_use_TJ") %>%
  mutate(quint = parse_number(quintile)) %>%
  select(-quintile)

## extract energy domestic and pivot long
cols_energy_domestic = c("q1_energy_domestic","q2_energy_domestic","q3_energy_domestic","q4_energy_domestic","q5_energy_domestic")
tmp_energy_domestic = dat_results %>%
  select(year, geo, sector_id, cols_energy_domestic) %>%
  pivot_longer(cols = cols_energy_domestic,
               names_to = "quintile",
               values_to = "energy_use_domestic_TJ") %>%
  mutate(quint = parse_number(quintile)) %>%
  select(-quintile)

## extract energy europe and pivot long
cols_energy_europe = c("q1_energy_europe","q2_energy_europe","q3_energy_europe","q4_energy_europe","q5_energy_europe")
tmp_energy_europe = dat_results %>%
  select(year, geo, sector_id, cols_energy_europe) %>%
  pivot_longer(cols = cols_energy_europe,
               names_to = "quintile",
               values_to = "energy_use_europe_TJ") %>%
  mutate(quint = parse_number(quintile)) %>%
  select(-quintile)

### TODO: also convert to other indicators to this format (as blocks above)
### TODO: left join all indicators back to "results_formated" like her with co2
results_recombined = tmp_fd %>%
  left_join(tmp_co2, by=c("year", "geo", "sector_id", "quint")) %>%
  left_join(tmp_co2_domestic, by=c("year", "geo", "sector_id", "quint")) %>%
  left_join(tmp_co2_europe, by = c("year", "geo", "sector_id", "quint")) %>%
  left_join(tmp_co2eq, by=c("year", "geo", "sector_id", "quint")) %>%
  left_join(tmp_co2eq_domestic, by=c("year", "geo", "sector_id", "quint")) %>%
  left_join(tmp_co2eq_europe, by = c("year", "geo", "sector_id", "quint")) %>%
  left_join(tmp_energy, by=c("year", "geo", "sector_id", "quint")) %>%
  left_join(tmp_energy_domestic, by=c("year", "geo", "sector_id", "quint")) %>%
  left_join(tmp_energy_europe, by = c("year", "geo", "sector_id", "quint"))

# finally re-join aggregated sector IDs
results_formatted = results_recombined %>% 
  left_join(sector_mapping, by="sector_id") %>%
  ungroup() %>%
  select(-coicop_id)

write.csv(results_formatted, paste0(data_dir_income_stratified_footprints, "/results_formatted_method1_ixi.csv"))
write_rds(results_formatted, paste0(data_dir_income_stratified_footprints, "/results_formatted_method1_ixi.rds"))

################################################### !!!! method 1 - PXP version - PPS HH NO RENT !!!! ####################################################
##########################################################################################################################################################
##########################################################################################################################################################


# Exiobase - pxp version

years_exb_pxp = c(2005,2010)

disaggregated_final_demand = NULL

TIVs = NULL

domestic_TIVs = NULL

europe_TIVs = NULL

national_fp = NULL

national_territorial = NULL

for (i in years_exb_pxp){
  year_current = i
  
  Exiobase_FD =  read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/FD_",year_current,"_pxp.csv"))[,-1]
  
  # select household final demand vectors for relevant countries - figure out how to soft code this
  
  AT = Exiobase_FD[,1]
  BE = Exiobase_FD[,8]
  BG = Exiobase_FD[,15]
  CY = Exiobase_FD[,22]
  CZ = Exiobase_FD[,29]
  DE = Exiobase_FD[,36]
  DK = Exiobase_FD[,43]
  EE = Exiobase_FD[,50]
  EL = Exiobase_FD[,78]
  ES = Exiobase_FD[,57]
  FI = Exiobase_FD[,64]
  FR = Exiobase_FD[,71]
  HR = Exiobase_FD[,85]
  HU = Exiobase_FD[,92]
  IE = Exiobase_FD[,99]
  IT = Exiobase_FD[,106]
  LT = Exiobase_FD[,113]
  LU = Exiobase_FD[,120]
  LV = Exiobase_FD[,127]
  MT = Exiobase_FD[,134]
  NL = Exiobase_FD[,141]
  NO = Exiobase_FD[,288]
  PL = Exiobase_FD[,148]
  PT = Exiobase_FD[,155]
  RO = Exiobase_FD[,162]
  SE = Exiobase_FD[,169]
  SI = Exiobase_FD[,176]
  SK = Exiobase_FD[,183]
  TR = Exiobase_FD[,274]
  UK = Exiobase_FD[,190]
  
  Eurostat_countries = cbind(AT,BE,BG,CY,CZ,DE,DK,EE,EL,ES,FI,FR,HR,HU,IE,IT,LT,LU,LV,MT,NL,NO,PL,PT,RO,SE,SI,SK,TR,UK)
  
  # labels
  
  Exiobase_T_labels = read.csv(paste0(data_dir_income_stratified_footprints, "/data/Exiobase_T_labels_pxp_w_coicop_mapping_no_rent.csv")) %>%
    mutate(V1 = dplyr::recode(V1,"GR" = "EL","GB" = "UK")) 
  
  
  # hh fd with production sector labels
  
  hh_fd_with_production_sector_labels = cbind(Exiobase_T_labels,Eurostat_countries) %>% rename(geo = V1, sector = V2)
  
  # assumption of same purchase structure between quintiles of domestic and foreign final demand 
  
  # replicate each cell of each country's hh final demand as many times as there are income groups in the HBS data - in this preliminary case:5
  
  cells_repeat = data.frame(hh_fd_with_production_sector_labels %>% slice(rep(1:n(), each = 5))) 
  
  quintiles = data.frame(rep(c("QUINTILE1","QUINTILE2","QUINTILE3","QUINTILE4","QUINTILE5"),200)) %>% rename_at(1,~"quintile")
  
  replicated = cbind(cells_repeat,quintiles) %>% rename(country_of_production = geo)
  
  # make fd data long
  
  replicated_long = replicated %>% gather(geo, value,-sector,-coicop,-quintile,-five_sectors,-country_of_production)
  
  year = as.character(rep(year_current,nrow(replicated_long)))
  
  replicated_long = cbind(year,replicated_long)
  
  
  disaggregated_final_demand = rbind(disaggregated_final_demand, replicated_long)
  
  
  # TIVs
  
  # CO2 - combustion - air
  
  Exiobase_TIV_co2_combustion_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_co2_combustion_air_",year_current,"_pxp.csv"))[,-1]
  
  Exiobase_TIV_country_breakdown_co2_combustion_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_co2_combustion_air_", year_current,"_pxp.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    gather(country, TIV_CO2_combustion_domestic)
  
  Exiobase_TIV_europe_breakdown_co2_combustion_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_co2_combustion_air_", year_current,"_pxp.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    mutate_at(vars(AT:ZA), funs(as.numeric(as.character(.)))) %>%
    mutate(TIV_CO2_combustion_europe = AT +
             BE + BG + CY + CZ +
             DE + DK + EE + 
             ES + FI + FR + 
             GB + GR + HR +
             HU + IE + IT +
             LT + LU + LV +
             MT + NL + PL +
             PT + TR + SK + 
             SI + SE + RO +
             NO,
           TIV_CO2_combustion_not_europe = AU +
             BR + CA + CH + CN +
             ID + IN + JP + KR +
             MX + RU + TW + US + 
             WA + WE + WF + WL + WM +
             ZA) %>%
    select(TIV_CO2_combustion_europe,TIV_CO2_combustion_not_europe)
  
  # CO2 - noncombustion - cement - air
  
  Exiobase_TIV_co2_noncombustion_cement_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_co2_noncombustion_cement_air_",year_current,"_pxp.csv"))[,-1]
  
  Exiobase_TIV_country_breakdown_co2_noncombustion_cement_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_co2_noncombustion_cement_air_",year_current,"_pxp.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    gather(country, TIV_CO2_noncombustion_cement_domestic)
  
  Exiobase_TIV_europe_breakdown_co2_noncombustion_cement_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_co2_noncombustion_cement_air_",year_current,"_pxp.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    mutate_at(vars(AT:ZA), funs(as.numeric(as.character(.)))) %>%
    mutate(TIV_CO2_noncombustion_cement_europe = AT +
             BE + BG + CY + CZ +
             DE + DK + EE + 
             ES + FI + FR + 
             GB + GR + HR +
             HU + IE + IT +
             LT + LU + LV +
             MT + NL + PL +
             PT + TR + SK + 
             SI + SE + RO +
             NO,
           TIV_CO2_noncombustion_cement_not_europe = AU +
             BR + CA + CH + CN +
             ID + IN + JP + KR +
             MX + RU + TW + US + 
             WA + WE + WF + WL + WM +
             ZA) %>%
    select(TIV_CO2_noncombustion_cement_europe,TIV_CO2_noncombustion_cement_not_europe)
  
  # CO2 - noncombustion - lime - air
  
  Exiobase_TIV_co2_noncombustion_lime_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_co2_noncombustion_lime_air_",year_current,"_pxp.csv"))[,-1]
  
  Exiobase_TIV_country_breakdown_co2_noncombustion_lime_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_co2_noncombustion_lime_air_",year_current,"_pxp.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    gather(country, TIV_CO2_noncombustion_lime_domestic)
  
  Exiobase_TIV_europe_breakdown_co2_noncombustion_lime_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_co2_noncombustion_lime_air_",year_current,"_pxp.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    mutate_at(vars(AT:ZA), funs(as.numeric(as.character(.)))) %>%
    mutate(TIV_CO2_noncombustion_lime_europe = AT +
             BE + BG + CY + CZ +
             DE + DK + EE + 
             ES + FI + FR + 
             GB + GR + HR +
             HU + IE + IT +
             LT + LU + LV +
             MT + NL + PL +
             PT + TR + SK + 
             SI + SE + RO +
             NO,
           TIV_CO2_noncombustion_lime_not_europe = AU +
             BR + CA + CH + CN +
             ID + IN + JP + KR +
             MX + RU + TW + US + 
             WA + WE + WF + WL + WM +
             ZA) %>%
    select(TIV_CO2_noncombustion_lime_europe,TIV_CO2_noncombustion_lime_not_europe)
  
  # CO2 - agriculture - peat decay - air
  
  Exiobase_TIV_co2_agriculture_peatdecay_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_co2_agriculture_peatdecay_air_",year_current,"_pxp.csv"))[,-1]
  
  Exiobase_TIV_country_breakdown_co2_agriculture_peatdecay_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_co2_agriculture_peatdecay_air_",year_current,"_pxp.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    gather(country, TIV_CO2_agriculture_peatdecay_domestic)
  
  Exiobase_TIV_europe_breakdown_co2_agriculture_peatdecay_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_co2_agriculture_peatdecay_air_",year_current,"_pxp.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    mutate_at(vars(AT:ZA), funs(as.numeric(as.character(.)))) %>%
    mutate(TIV_CO2_agriculture_peatdecay_europe = AT +
             BE + BG + CY + CZ +
             DE + DK + EE + 
             ES + FI + FR + 
             GB + GR + HR +
             HU + IE + IT +
             LT + LU + LV +
             MT + NL + PL +
             PT + TR + SK + 
             SI + SE + RO +
             NO,
           TIV_CO2_agriculture_peatdecay_not_europe = AU +
             BR + CA + CH + CN +
             ID + IN + JP + KR +
             MX + RU + TW + US + 
             WA + WE + WF + WL + WM +
             ZA) %>%
    select(TIV_CO2_agriculture_peatdecay_europe,TIV_CO2_agriculture_peatdecay_not_europe)
  
  # CO2 - waste - biogenic - air
  
  Exiobase_TIV_co2_waste_biogenic_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_co2_biogenic_air_",year_current,"_pxp.csv"))[,-1]
  
  Exiobase_TIV_country_breakdown_co2_waste_biogenic_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_co2_biogenic_air_",year_current,"_pxp.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    gather(country, TIV_CO2_waste_biogenic_domestic)
  
  Exiobase_TIV_europe_breakdown_co2_waste_biogenic_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_co2_biogenic_air_",year_current,"_pxp.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    mutate_at(vars(AT:ZA), funs(as.numeric(as.character(.)))) %>%
    mutate(TIV_CO2_waste_biogenic_europe = AT +
             BE + BG + CY + CZ +
             DE + DK + EE + 
             ES + FI + FR + 
             GB + GR + HR +
             HU + IE + IT +
             LT + LU + LV +
             MT + NL + PL +
             PT + TR + SK + 
             SI + SE + RO +
             NO,
           TIV_CO2_waste_biogenic_not_europe = AU +
             BR + CA + CH + CN +
             ID + IN + JP + KR +
             MX + RU + TW + US + 
             WA + WE + WF + WL + WM +
             ZA) %>%
    select(TIV_CO2_waste_biogenic_europe,TIV_CO2_waste_biogenic_not_europe)
  
  # CO2 - waste - fossil - air
  
  Exiobase_TIV_co2_waste_fossil_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_co2_waste_fossil_air_",year_current,"_pxp.csv"))[,-1]
  
  Exiobase_TIV_country_breakdown_co2_waste_fossil_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_co2_waste_fossil_air_",year_current,"_pxp.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    gather(country, TIV_CO2_waste_fossil_domestic)
  
  Exiobase_TIV_europe_breakdown_co2_waste_fossil_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_co2_waste_fossil_air_",year_current,"_pxp.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    mutate_at(vars(AT:ZA), funs(as.numeric(as.character(.)))) %>%
    mutate(TIV_CO2_waste_fossil_europe = AT +
             BE + BG + CY + CZ +
             DE + DK + EE + 
             ES + FI + FR + 
             GB + GR + HR +
             HU + IE + IT +
             LT + LU + LV +
             MT + NL + PL +
             PT + TR + SK + 
             SI + SE + RO +
             NO,
           TIV_CO2_waste_fossil_not_europe = AU +
             BR + CA + CH + CN +
             ID + IN + JP + KR +
             MX + RU + TW + US + 
             WA + WE + WF + WL + WM +
             ZA) %>%
    select(TIV_CO2_waste_fossil_europe,TIV_CO2_waste_fossil_not_europe)
  
  
  
  # CH4 - combustion -air
  
  Exiobase_TIV_ch4_combustion_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_ch4_CO2eq_combustion_air_",year_current,"_pxp.csv"))[,-1]
  
  Exiobase_TIV_country_breakdown_ch4_combustion_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_ch4_CO2eq_combustion_air_", year_current, "_pxp.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    gather(country, TIV_CH4_combustion_domestic)
  
  Exiobase_TIV_europe_breakdown_ch4_combustion_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_ch4_CO2eq_combustion_air_", year_current, "_pxp.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    mutate_at(vars(AT:ZA), funs(as.numeric(as.character(.)))) %>%
    mutate(TIV_CH4_combustion_europe = AT +
             BE + BG + CY + CZ +
             DE + DK + EE + 
             ES + FI + FR + 
             GB + GR + HR +
             HU + IE + IT +
             LT + LU + LV +
             MT + NL + PL +
             PT + TR + SK + 
             SI + SE + RO +
             NO,
           TIV_CH4_combustion_not_europe = AU +
             BR + CA + CH + CN +
             ID + IN + JP + KR +
             MX + RU + TW + US + 
             WA + WE + WF + WL + WM +
             ZA) %>%
    select(TIV_CH4_combustion_europe,TIV_CH4_combustion_not_europe)
  
  # CH4 - noncombustion - gas - air
  
  Exiobase_TIV_ch4_noncombustion_gas_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_ch4_CO2eq_noncombustion_gas_air_",year_current,"_pxp.csv"))[,-1]
  
  Exiobase_TIV_country_breakdown_ch4_noncombustion_gas_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_ch4_CO2eq_noncombustion_gas_air_", year_current, "_pxp.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    gather(country, TIV_CH4_noncombustion_gas_domestic)
  
  Exiobase_TIV_europe_breakdown_ch4_noncombustion_gas_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_ch4_CO2eq_noncombustion_gas_air_", year_current, "_pxp.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    mutate_at(vars(AT:ZA), funs(as.numeric(as.character(.)))) %>%
    mutate(TIV_CH4_noncombustion_gas_europe = AT +
             BE + BG + CY + CZ +
             DE + DK + EE + 
             ES + FI + FR + 
             GB + GR + HR +
             HU + IE + IT +
             LT + LU + LV +
             MT + NL + PL +
             PT + TR + SK + 
             SI + SE + RO +
             NO,
           TIV_CH4_noncombustion_gas_not_europe = AU +
             BR + CA + CH + CN +
             ID + IN + JP + KR +
             MX + RU + TW + US + 
             WA + WE + WF + WL + WM +
             ZA) %>%
    select(TIV_CH4_noncombustion_gas_europe,TIV_CH4_noncombustion_gas_not_europe)
  
  # CH4 - noncombustion - oil - air
  
  Exiobase_TIV_ch4_noncombustion_oil_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_ch4_CO2eq_noncombustion_oil_air_",year_current,"_pxp.csv"))[,-1]
  
  Exiobase_TIV_country_breakdown_ch4_noncombustion_oil_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_ch4_CO2eq_noncombustion_oil_air_", year_current, "_pxp.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    gather(country, TIV_CH4_noncombustion_oil_domestic)
  
  Exiobase_TIV_europe_breakdown_ch4_noncombustion_oil_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_ch4_CO2eq_noncombustion_oil_air_", year_current, "_pxp.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    mutate_at(vars(AT:ZA), funs(as.numeric(as.character(.)))) %>%
    mutate(TIV_CH4_noncombustion_oil_europe = AT +
             BE + BG + CY + CZ +
             DE + DK + EE + 
             ES + FI + FR + 
             GB + GR + HR +
             HU + IE + IT +
             LT + LU + LV +
             MT + NL + PL +
             PT + TR + SK + 
             SI + SE + RO +
             NO,
           TIV_CH4_noncombustion_oil_not_europe = AU +
             BR + CA + CH + CN +
             ID + IN + JP + KR +
             MX + RU + TW + US + 
             WA + WE + WF + WL + WM +
             ZA) %>%
    select(TIV_CH4_noncombustion_oil_europe,TIV_CH4_noncombustion_oil_not_europe)
  
  # CH4 - noncombustion - anthracite - air
  
  Exiobase_TIV_ch4_noncombustion_anthracite_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_ch4_CO2eq_noncombustion_anthracite_air_",year_current,"_pxp.csv"))[,-1]
  
  Exiobase_TIV_country_breakdown_ch4_noncombustion_anthracite_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_ch4_CO2eq_noncombustion_anthracite_air_", year_current, "_pxp.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    gather(country, TIV_CH4_noncombustion_anthracite_domestic)
  
  Exiobase_TIV_europe_breakdown_ch4_noncombustion_anthracite_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_ch4_CO2eq_noncombustion_anthracite_air_", year_current, "_pxp.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    mutate_at(vars(AT:ZA), funs(as.numeric(as.character(.)))) %>%
    mutate(TIV_CH4_noncombustion_anthracite_europe = AT +
             BE + BG + CY + CZ +
             DE + DK + EE + 
             ES + FI + FR + 
             GB + GR + HR +
             HU + IE + IT +
             LT + LU + LV +
             MT + NL + PL +
             PT + TR + SK + 
             SI + SE + RO +
             NO,
           TIV_CH4_noncombustion_anthracite_not_europe = AU +
             BR + CA + CH + CN +
             ID + IN + JP + KR +
             MX + RU + TW + US + 
             WA + WE + WF + WL + WM +
             ZA) %>%
    select(TIV_CH4_noncombustion_anthracite_europe,TIV_CH4_noncombustion_anthracite_not_europe)
  
  # CH4 - noncombustion - bituminouscoal - air
  
  Exiobase_TIV_ch4_noncombustion_bituminouscoal_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_ch4_CO2eq_noncombustion_bituminouscoal_air_",year_current,"_pxp.csv"))[,-1]
  
  Exiobase_TIV_country_breakdown_ch4_noncombustion_bituminouscoal_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_ch4_CO2eq_noncombustion_bituminouscoal_air_", year_current, "_pxp.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    gather(country, TIV_CH4_noncombustion_bituminouscoal_domestic)
  
  Exiobase_TIV_europe_breakdown_ch4_noncombustion_bituminouscoal_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_ch4_CO2eq_noncombustion_bituminouscoal_air_", year_current, "_pxp.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    mutate_at(vars(AT:ZA), funs(as.numeric(as.character(.)))) %>%
    mutate(TIV_CH4_noncombustion_bituminouscoal_europe = AT +
             BE + BG + CY + CZ +
             DE + DK + EE + 
             ES + FI + FR + 
             GB + GR + HR +
             HU + IE + IT +
             LT + LU + LV +
             MT + NL + PL +
             PT + TR + SK + 
             SI + SE + RO +
             NO,
           TIV_CH4_noncombustion_bituminouscoal_not_europe = AU +
             BR + CA + CH + CN +
             ID + IN + JP + KR +
             MX + RU + TW + US + 
             WA + WE + WF + WL + WM +
             ZA) %>%
    select(TIV_CH4_noncombustion_bituminouscoal_europe,TIV_CH4_noncombustion_bituminouscoal_not_europe)
  
  # CH4 - noncombustion - cokingcoal - air
  
  Exiobase_TIV_ch4_noncombustion_cokingcoal_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_ch4_CO2eq_noncombustion_cokingcoal_air_",year_current,"_pxp.csv"))[,-1]
  
  Exiobase_TIV_country_breakdown_ch4_noncombustion_cokingcoal_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_ch4_CO2eq_noncombustion_cokingcoal_air_", year_current, "_pxp.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    gather(country, TIV_CH4_noncombustion_cokingcoal_domestic)
  
  Exiobase_TIV_europe_breakdown_ch4_noncombustion_cokingcoal_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_ch4_CO2eq_noncombustion_cokingcoal_air_", year_current, "_pxp.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    mutate_at(vars(AT:ZA), funs(as.numeric(as.character(.)))) %>%
    mutate(TIV_CH4_noncombustion_cokingcoal_europe = AT +
             BE + BG + CY + CZ +
             DE + DK + EE + 
             ES + FI + FR + 
             GB + GR + HR +
             HU + IE + IT +
             LT + LU + LV +
             MT + NL + PL +
             PT + TR + SK + 
             SI + SE + RO +
             NO,
           TIV_CH4_noncombustion_cokingcoal_not_europe = AU +
             BR + CA + CH + CN +
             ID + IN + JP + KR +
             MX + RU + TW + US + 
             WA + WE + WF + WL + WM +
             ZA) %>%
    select(TIV_CH4_noncombustion_cokingcoal_europe,TIV_CH4_noncombustion_cokingcoal_not_europe)
  
  # CH4 - noncombustion - lignite - air
  
  Exiobase_TIV_ch4_noncombustion_lignite_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_ch4_CO2eq_noncombustion_lignite_air_",year_current,"_pxp.csv"))[,-1]
  
  Exiobase_TIV_country_breakdown_ch4_noncombustion_lignite_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_ch4_CO2eq_noncombustion_lignite_air_", year_current, "_pxp.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    gather(country, TIV_CH4_noncombustion_lignite_domestic)
  
  Exiobase_TIV_europe_breakdown_ch4_noncombustion_lignite_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_ch4_CO2eq_noncombustion_lignite_air_", year_current, "_pxp.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    mutate_at(vars(AT:ZA), funs(as.numeric(as.character(.)))) %>%
    mutate(TIV_CH4_noncombustion_lignite_europe = AT +
             BE + BG + CY + CZ +
             DE + DK + EE + 
             ES + FI + FR + 
             GB + GR + HR +
             HU + IE + IT +
             LT + LU + LV +
             MT + NL + PL +
             PT + TR + SK + 
             SI + SE + RO +
             NO,
           TIV_CH4_noncombustion_lignite_not_europe = AU +
             BR + CA + CH + CN +
             ID + IN + JP + KR +
             MX + RU + TW + US + 
             WA + WE + WF + WL + WM +
             ZA) %>%
    select(TIV_CH4_noncombustion_lignite_europe,TIV_CH4_noncombustion_lignite_not_europe)
  
  # CH4 - noncombustion - subbituminouscoal - air
  
  Exiobase_TIV_ch4_noncombustion_subbituminouscoal_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_ch4_CO2eq_noncombustion_subbituminouscoal_air_",year_current,"_pxp.csv"))[,-1]
  
  Exiobase_TIV_country_breakdown_ch4_noncombustion_subbituminouscoal_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_ch4_CO2eq_noncombustion_subbituminouscoal_air_", year_current, "_pxp.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    gather(country, TIV_CH4_noncombustion_subbituminouscoal_domestic)
  
  Exiobase_TIV_europe_breakdown_ch4_noncombustion_subbituminouscoal_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_ch4_CO2eq_noncombustion_subbituminouscoal_air_", year_current, "_pxp.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    mutate_at(vars(AT:ZA), funs(as.numeric(as.character(.)))) %>%
    mutate(TIV_CH4_noncombustion_subbituminouscoal_europe = AT +
             BE + BG + CY + CZ +
             DE + DK + EE + 
             ES + FI + FR + 
             GB + GR + HR +
             HU + IE + IT +
             LT + LU + LV +
             MT + NL + PL +
             PT + TR + SK + 
             SI + SE + RO +
             NO,
           TIV_CH4_noncombustion_subbituminouscoal_not_europe = AU +
             BR + CA + CH + CN +
             ID + IN + JP + KR +
             MX + RU + TW + US + 
             WA + WE + WF + WL + WM +
             ZA) %>%
    select(TIV_CH4_noncombustion_subbituminouscoal_europe,TIV_CH4_noncombustion_subbituminouscoal_not_europe)
  
  # CH4 - noncombustion - oilrefinery - air
  
  Exiobase_TIV_ch4_noncombustion_oilrefinery_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_ch4_CO2eq_noncombustion_oilrefinery_air_",year_current,"_pxp.csv"))[,-1]
  
  Exiobase_TIV_country_breakdown_ch4_noncombustion_oilrefinery_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_ch4_CO2eq_noncombustion_oilrefinery_air_", year_current, "_pxp.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    gather(country, TIV_CH4_noncombustion_oilrefinery_domestic)
  
  Exiobase_TIV_europe_breakdown_ch4_noncombustion_oilrefinery_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_ch4_CO2eq_noncombustion_oilrefinery_air_", year_current, "_pxp.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    mutate_at(vars(AT:ZA), funs(as.numeric(as.character(.)))) %>%
    mutate(TIV_CH4_noncombustion_oilrefinery_europe = AT +
             BE + BG + CY + CZ +
             DE + DK + EE + 
             ES + FI + FR + 
             GB + GR + HR +
             HU + IE + IT +
             LT + LU + LV +
             MT + NL + PL +
             PT + TR + SK + 
             SI + SE + RO +
             NO,
           TIV_CH4_noncombustion_oilrefinery_not_europe = AU +
             BR + CA + CH + CN +
             ID + IN + JP + KR +
             MX + RU + TW + US + 
             WA + WE + WF + WL + WM +
             ZA) %>%
    select(TIV_CH4_noncombustion_oilrefinery_europe,TIV_CH4_noncombustion_oilrefinery_not_europe)
  
  # CH4 - agriculture - air
  
  Exiobase_TIV_ch4_agriculture_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_ch4_CO2eq_agriculture_air_",year_current,"_pxp.csv"))[,-1]
  
  Exiobase_TIV_country_breakdown_ch4_agriculture_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_ch4_CO2eq_agriculture_air_", year_current, "_pxp.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    gather(country, TIV_CH4_agriculture_domestic)
  
  Exiobase_TIV_europe_breakdown_ch4_agriculture_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_ch4_CO2eq_agriculture_air_", year_current, "_pxp.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    mutate_at(vars(AT:ZA), funs(as.numeric(as.character(.)))) %>%
    mutate(TIV_CH4_agriculture_europe = AT +
             BE + BG + CY + CZ +
             DE + DK + EE + 
             ES + FI + FR + 
             GB + GR + HR +
             HU + IE + IT +
             LT + LU + LV +
             MT + NL + PL +
             PT + TR + SK + 
             SI + SE + RO +
             NO,
           TIV_CH4_agriculture_not_europe = AU +
             BR + CA + CH + CN +
             ID + IN + JP + KR +
             MX + RU + TW + US + 
             WA + WE + WF + WL + WM +
             ZA) %>%
    select(TIV_CH4_agriculture_europe,TIV_CH4_agriculture_not_europe)
  
  # CH4 - waste - air
  
  Exiobase_TIV_ch4_waste_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_ch4_CO2eq_waste_air_",year_current,"_pxp.csv"))[,-1]
  
  Exiobase_TIV_country_breakdown_ch4_waste_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_ch4_CO2eq_waste_air_", year_current, "_pxp.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    gather(country, TIV_CH4_waste_domestic)
  
  Exiobase_TIV_europe_breakdown_ch4_waste_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_ch4_CO2eq_waste_air_", year_current, "_pxp.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    mutate_at(vars(AT:ZA), funs(as.numeric(as.character(.)))) %>%
    mutate(TIV_CH4_waste_europe = AT +
             BE + BG + CY + CZ +
             DE + DK + EE + 
             ES + FI + FR + 
             GB + GR + HR +
             HU + IE + IT +
             LT + LU + LV +
             MT + NL + PL +
             PT + TR + SK + 
             SI + SE + RO +
             NO,
           TIV_CH4_waste_not_europe = AU +
             BR + CA + CH + CN +
             ID + IN + JP + KR +
             MX + RU + TW + US + 
             WA + WE + WF + WL + WM +
             ZA) %>%
    select(TIV_CH4_waste_europe,TIV_CH4_waste_not_europe)
  
  
  
  # N2O - combustion - air
  
  Exiobase_TIV_n2o_combustion_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_n2o_CO2eq_combustion_air_",year_current,"_pxp.csv"))[,-1]
  
  Exiobase_TIV_country_breakdown_n2o_combustion_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_n2o_CO2eq_combustion_air_",year_current,"_pxp.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    gather(country, TIV_N2O_combustion_domestic)
  
  Exiobase_TIV_europe_breakdown_n2o_combustion_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_n2o_CO2eq_combustion_air_",year_current,"_pxp.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    mutate_at(vars(AT:ZA), funs(as.numeric(as.character(.)))) %>%
    mutate(TIV_N2O_combustion_europe = AT +
             BE + BG + CY + CZ +
             DE + DK + EE + 
             ES + FI + FR + 
             GB + GR + HR +
             HU + IE + IT +
             LT + LU + LV +
             MT + NL + PL +
             PT + TR + SK + 
             SI + SE + RO +
             NO,
           TIV_N2O_combustion_not_europe = AU +
             BR + CA + CH + CN +
             ID + IN + JP + KR +
             MX + RU + TW + US + 
             WA + WE + WF + WL + WM +
             ZA) %>%
    select(TIV_N2O_combustion_europe,TIV_N2O_combustion_not_europe)
  
  # N2O - agriculture - air
  
  Exiobase_TIV_n2o_agriculture_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_n2o_CO2eq_agriculture_air_",year_current,"_pxp.csv"))[,-1]
  
  Exiobase_TIV_country_breakdown_n2o_agriculture_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_n2o_CO2eq_agriculture_air_",year_current,"_pxp.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    gather(country, TIV_N2O_agriculture_domestic)
  
  Exiobase_TIV_europe_breakdown_n2o_agriculture_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_n2o_CO2eq_agriculture_air_",year_current,"_pxp.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    mutate_at(vars(AT:ZA), funs(as.numeric(as.character(.)))) %>%
    mutate(TIV_N2O_agriculture_europe = AT +
             BE + BG + CY + CZ +
             DE + DK + EE + 
             ES + FI + FR + 
             GB + GR + HR +
             HU + IE + IT +
             LT + LU + LV +
             MT + NL + PL +
             PT + TR + SK + 
             SI + SE + RO +
             NO,
           TIV_N2O_agriculture_not_europe = AU +
             BR + CA + CH + CN +
             ID + IN + JP + KR +
             MX + RU + TW + US + 
             WA + WE + WF + WL + WM +
             ZA) %>%
    select(TIV_N2O_agriculture_europe,TIV_N2O_agriculture_not_europe)
  
  # SF6 - air
  
  Exiobase_TIV_sf6_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_sf6_CO2eq_air_",year_current,"_pxp.csv"))[,-1]
  
  Exiobase_TIV_country_breakdown_sf6_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_sf6_CO2eq_air_",year_current,"_pxp.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    gather(country, TIV_SF6_domestic)
  
  Exiobase_TIV_europe_breakdown_sf6_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_sf6_CO2eq_air_",year_current,"_pxp.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    mutate_at(vars(AT:ZA), funs(as.numeric(as.character(.)))) %>%
    mutate(TIV_SF6_europe = AT +
             BE + BG + CY + CZ +
             DE + DK + EE + 
             ES + FI + FR + 
             GB + GR + HR +
             HU + IE + IT +
             LT + LU + LV +
             MT + NL + PL +
             PT + TR + SK + 
             SI + SE + RO +
             NO,
           TIV_SF6_not_europe = AU +
             BR + CA + CH + CN +
             ID + IN + JP + KR +
             MX + RU + TW + US + 
             WA + WE + WF + WL + WM +
             ZA) %>%
    select(TIV_SF6_europe,TIV_SF6_not_europe)
  
  # HFC - air
  
  Exiobase_TIV_hfc_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_hfc_CO2eq_air_",year_current,"_pxp.csv"))[,-1]
  
  Exiobase_TIV_country_breakdown_hfc_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_hfc_CO2eq_air_",year_current,"_pxp.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    gather(country, TIV_HFC_domestic)
  
  Exiobase_TIV_europe_breakdown_hfc_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_hfc_CO2eq_air_",year_current,"_pxp.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    mutate_at(vars(AT:ZA), funs(as.numeric(as.character(.)))) %>%
    mutate(TIV_HFC_europe = AT +
             BE + BG + CY + CZ +
             DE + DK + EE + 
             ES + FI + FR + 
             GB + GR + HR +
             HU + IE + IT +
             LT + LU + LV +
             MT + NL + PL +
             PT + TR + SK + 
             SI + SE + RO +
             NO,
           TIV_HFC_not_europe = AU +
             BR + CA + CH + CN +
             ID + IN + JP + KR +
             MX + RU + TW + US + 
             WA + WE + WF + WL + WM +
             ZA) %>%
    select(TIV_HFC_europe,TIV_HFC_not_europe)
  
  # PFC - air
  
  Exiobase_TIV_pfc_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_pfc_CO2eq_air_",year_current,"_pxp.csv"))[,-1]
  
  Exiobase_TIV_country_breakdown_pfc_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_pfc_CO2eq_air_",year_current,"_pxp.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    gather(country, TIV_PFC_domestic)
  
  Exiobase_TIV_europe_breakdown_pfc_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_pfc_CO2eq_air_",year_current,"_pxp.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    mutate_at(vars(AT:ZA), funs(as.numeric(as.character(.)))) %>%
    mutate(TIV_PFC_europe = AT +
             BE + BG + CY + CZ +
             DE + DK + EE + 
             ES + FI + FR + 
             GB + GR + HR +
             HU + IE + IT +
             LT + LU + LV +
             MT + NL + PL +
             PT + TR + SK + 
             SI + SE + RO +
             NO,
           TIV_PFC_not_europe = AU +
             BR + CA + CH + CN +
             ID + IN + JP + KR +
             MX + RU + TW + US + 
             WA + WE + WF + WL + WM +
             ZA) %>%
    select(TIV_PFC_europe,TIV_PFC_not_europe)
  
  # Energy use
  
  Exiobase_TIV_energy_use_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_energy_carrier_use_",year_current,"_pxp.csv"))[,-1]
  
  Exiobase_TIV_country_breakdown_energy_use_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_energy_carrier_use_",year_current,"_pxp.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    gather(country, TIV_energy_domestic)
  
  Exiobase_TIV_europe_breakdown_energy_use_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_pxp/TIV_country_breakdown_energy_carrier_use_",year_current,"_pxp.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    mutate_at(vars(AT:ZA), funs(as.numeric(as.character(.)))) %>%
    mutate(TIV_energy_europe = AT +
             BE + BG + CY + CZ +
             DE + DK + EE + 
             ES + FI + FR + 
             GB + GR + HR +
             HU + IE + IT +
             LT + LU + LV +
             MT + NL + PL +
             PT + TR + SK + 
             SI + SE + RO +
             NO,
           TIV_energy_not_europe = AU +
             BR + CA + CH + CN +
             ID + IN + JP + KR +
             MX + RU + TW + US + 
             WA + WE + WF + WL + WM +
             ZA) %>%
    select(TIV_energy_europe,TIV_energy_not_europe)
  
  
  # join with labels
  
  TIV_with_labels = cbind(Exiobase_T_labels,
                          t(Exiobase_TIV_co2_combustion_bp),
                          t(Exiobase_TIV_co2_noncombustion_cement_bp),
                          t(Exiobase_TIV_co2_noncombustion_lime_bp),
                          t(Exiobase_TIV_co2_agriculture_peatdecay_bp),
                          t(Exiobase_TIV_co2_waste_biogenic_bp),
                          t(Exiobase_TIV_co2_waste_fossil_bp),
                          t(Exiobase_TIV_ch4_combustion_bp),
                          t(Exiobase_TIV_ch4_noncombustion_gas_bp),
                          t(Exiobase_TIV_ch4_noncombustion_oil_bp),
                          t(Exiobase_TIV_ch4_noncombustion_anthracite_bp),
                          t(Exiobase_TIV_ch4_noncombustion_bituminouscoal_bp),
                          t(Exiobase_TIV_ch4_noncombustion_cokingcoal_bp),
                          t(Exiobase_TIV_ch4_noncombustion_lignite_bp),
                          t(Exiobase_TIV_ch4_noncombustion_subbituminouscoal_bp),
                          t(Exiobase_TIV_ch4_noncombustion_oilrefinery_bp),
                          t(Exiobase_TIV_ch4_agriculture_bp),
                          t(Exiobase_TIV_ch4_waste_bp),
                          t(Exiobase_TIV_n2o_combustion_bp),
                          t(Exiobase_TIV_n2o_agriculture_bp),
                          t(Exiobase_TIV_sf6_bp),
                          t(Exiobase_TIV_hfc_bp),
                          t(Exiobase_TIV_pfc_bp),
                          t(Exiobase_TIV_energy_use_bp)) %>% 
    rename(TIV_CO2_combustion = "t(Exiobase_TIV_co2_combustion_bp)",
           TIV_CO2_noncombustion_cement = "t(Exiobase_TIV_co2_noncombustion_cement_bp)",
           TIV_CO2_noncombustion_lime = "t(Exiobase_TIV_co2_noncombustion_lime_bp)",
           TIV_CO2_agriculture_peatdecay = "t(Exiobase_TIV_co2_agriculture_peatdecay_bp)",
           TIV_CO2_waste_biogenic = "t(Exiobase_TIV_co2_waste_biogenic_bp)",
           TIV_CO2_waste_fossil = "t(Exiobase_TIV_co2_waste_fossil_bp)",
           TIV_CH4_combustion = "t(Exiobase_TIV_ch4_combustion_bp)",
           TIV_CH4_noncombustion_gas = "t(Exiobase_TIV_ch4_noncombustion_gas_bp)",
           TIV_CH4_noncombustion_oil = "t(Exiobase_TIV_ch4_noncombustion_oil_bp)",
           TIV_CH4_noncombustion_anthracite = "t(Exiobase_TIV_ch4_noncombustion_anthracite_bp)",
           TIV_CH4_noncombustion_bituminouscoal = "t(Exiobase_TIV_ch4_noncombustion_bituminouscoal_bp)",
           TIV_CH4_noncombustion_cokingcoal = "t(Exiobase_TIV_ch4_noncombustion_cokingcoal_bp)",
           TIV_CH4_noncombustion_lignite = "t(Exiobase_TIV_ch4_noncombustion_lignite_bp)",
           TIV_CH4_noncombustion_subbituminouscoal = "t(Exiobase_TIV_ch4_noncombustion_subbituminouscoal_bp)",
           TIV_CH4_noncombustion_oilrefinery = "t(Exiobase_TIV_ch4_noncombustion_oilrefinery_bp)",
           TIV_CH4_agriculture = "t(Exiobase_TIV_ch4_agriculture_bp)",
           TIV_CH4_waste = "t(Exiobase_TIV_ch4_waste_bp)",
           TIV_N2O_combustion = "t(Exiobase_TIV_n2o_combustion_bp)",
           TIV_N2O_agriculture = "t(Exiobase_TIV_n2o_agriculture_bp)",
           TIV_SF6 = "t(Exiobase_TIV_sf6_bp)",
           TIV_HFC = "t(Exiobase_TIV_hfc_bp)",
           TIV_PFC = "t(Exiobase_TIV_pfc_bp)",
           TIV_energy = "t(Exiobase_TIV_energy_use_bp)") %>% 
    mutate(V1 = dplyr::recode(V1,"GR" = "EL","GB" = "UK"))  
  
  year = as.character(rep(year_current,nrow(TIV_with_labels)))
  
  look = cbind(year,TIV_with_labels) %>% 
    rename(country_of_production = V1, sector = V2)
  
  
  TIVs = rbind(TIVs,look)
  
  
  # join domestic_TIVs with labels
  
  domestic_TIV_with_labels = cbind(Exiobase_T_labels,
                                   Exiobase_TIV_country_breakdown_co2_combustion_bp,
                                   Exiobase_TIV_country_breakdown_co2_noncombustion_cement_bp %>% select(-country),
                                   Exiobase_TIV_country_breakdown_co2_noncombustion_lime_bp %>% select(-country),
                                   Exiobase_TIV_country_breakdown_co2_agriculture_peatdecay_bp %>% select(-country),
                                   Exiobase_TIV_country_breakdown_co2_waste_biogenic_bp %>% select(-country),
                                   Exiobase_TIV_country_breakdown_co2_waste_fossil_bp %>% select(-country),
                                   Exiobase_TIV_country_breakdown_ch4_combustion_bp %>% select(-country),
                                   Exiobase_TIV_country_breakdown_ch4_noncombustion_gas_bp %>% select(-country),
                                   Exiobase_TIV_country_breakdown_ch4_noncombustion_oil_bp %>% select(-country),
                                   Exiobase_TIV_country_breakdown_ch4_noncombustion_anthracite_bp %>% select(-country),
                                   Exiobase_TIV_country_breakdown_ch4_noncombustion_bituminouscoal_bp %>% select(-country),
                                   Exiobase_TIV_country_breakdown_ch4_noncombustion_cokingcoal_bp %>% select(-country),
                                   Exiobase_TIV_country_breakdown_ch4_noncombustion_lignite_bp %>% select(-country),
                                   Exiobase_TIV_country_breakdown_ch4_noncombustion_subbituminouscoal_bp %>% select(-country),
                                   Exiobase_TIV_country_breakdown_ch4_noncombustion_oilrefinery_bp %>% select(-country),
                                   Exiobase_TIV_country_breakdown_ch4_agriculture_bp %>% select(-country),
                                   Exiobase_TIV_country_breakdown_ch4_waste_bp %>% select(-country),
                                   Exiobase_TIV_country_breakdown_n2o_combustion_bp %>% select(-country),
                                   Exiobase_TIV_country_breakdown_n2o_agriculture_bp %>% select(-country),
                                   Exiobase_TIV_country_breakdown_sf6_bp %>% select(-country),
                                   Exiobase_TIV_country_breakdown_hfc_bp %>% select(-country),
                                   Exiobase_TIV_country_breakdown_pfc_bp %>% select(-country),
                                   Exiobase_TIV_country_breakdown_energy_use_bp %>% select(-country))  %>% 
    mutate(V1 = dplyr::recode(V1,"GR" = "EL","GB" = "UK"),
           country = dplyr::recode(country, "GR" = "EL", "GB" = "UK"))
  
  year_domestic = as.character(rep(year_current,nrow(domestic_TIV_with_labels)))
  
  look_domestic = cbind(year_domestic,domestic_TIV_with_labels) %>% 
    rename(country_of_production = V1, sector = V2, geo = country, year = year_domestic) %>%
    mutate(TIV_CO2_combustion_domestic = as.numeric(TIV_CO2_combustion_domestic),
           TIV_CO2_noncombustion_cement_domestic = as.numeric(TIV_CO2_noncombustion_cement_domestic),
           TIV_CO2_noncombustion_lime_domestic = as.numeric(TIV_CO2_noncombustion_lime_domestic),
           TIV_CO2_agriculture_peatdecay_domestic = as.numeric(TIV_CO2_agriculture_peatdecay_domestic),
           TIV_CO2_waste_biogenic_domestic = as.numeric(TIV_CO2_waste_biogenic_domestic),
           TIV_CO2_waste_fossil_domestic = as.numeric(TIV_CO2_waste_fossil_domestic),
           TIV_CH4_combustion_domestic = as.numeric(TIV_CH4_combustion_domestic),
           TIV_CH4_noncombustion_gas_domestic = as.numeric(TIV_CH4_noncombustion_gas_domestic),
           TIV_CH4_noncombustion_oil_domestic = as.numeric(TIV_CH4_noncombustion_oil_domestic),
           TIV_CH4_noncombustion_anthracite_domestic = as.numeric(TIV_CH4_noncombustion_anthracite_domestic),
           TIV_CH4_noncombustion_bituminouscoal_domestic = as.numeric(TIV_CH4_noncombustion_bituminouscoal_domestic),
           TIV_CH4_noncombustion_cokingcoal_domestic = as.numeric(TIV_CH4_noncombustion_cokingcoal_domestic),
           TIV_CH4_noncombustion_lignite_domestic = as.numeric(TIV_CH4_noncombustion_lignite_domestic),
           TIV_CH4_noncombustion_subbituminouscoal_domestic = as.numeric(TIV_CH4_noncombustion_subbituminouscoal_domestic),
           TIV_CH4_noncombustion_oilrefinery_domestic = as.numeric(TIV_CH4_noncombustion_oilrefinery_domestic),
           TIV_CH4_agriculture_domestic = as.numeric(TIV_CH4_agriculture_domestic),
           TIV_CH4_waste_domestic = as.numeric(TIV_CH4_waste_domestic),
           TIV_N2O_combustion_domestic = as.numeric(TIV_N2O_combustion_domestic),
           TIV_N2O_agriculture_domestic = as.numeric(TIV_N2O_agriculture_domestic),
           TIV_SF6_domestic = as.numeric(TIV_SF6_domestic),
           TIV_HFC_domestic = as.numeric(TIV_HFC_domestic),
           TIV_PFC_domestic = as.numeric(TIV_PFC_domestic),
           TIV_energy_domestic = as.numeric(TIV_energy_domestic))
  
  domestic_TIVs = rbind(domestic_TIVs, look_domestic)
  
  # europe TIVs with labels 
  
  europe_TIV_with_labels = cbind(Exiobase_T_labels,
                                 Exiobase_TIV_europe_breakdown_co2_combustion-bp,
                                 Exiobase_TIV_europe_breakdown_co2_noncombustion_cement_bp,
                                 Exiobase_TIV_europe_breakdown_co2_noncombustion_lime_bp,
                                 Exiobase_TIV_europe_breakdown_co2_agriculture_peatdecay_bp,
                                 Exiobase_TIV_europe_breakdown_co2_waste_biogenic_bp,
                                 Exiobase_TIV_europe_breakdown_co2_waste_fossil_bp,
                                 Exiobase_TIV_europe_breakdown_ch4_combustion_bp,
                                 Exiobase_TIV_europe_breakdown_ch4_noncombustion_gas_bp,
                                 Exiobase_TIV_europe_breakdown_ch4_noncombustion_oil_bp,
                                 Exiobase_TIV_europe_breakdown_ch4_noncombustion_anthracite_bp,
                                 Exiobase_TIV_europe_breakdown_ch4_noncombustion_bituminouscoal_bp,
                                 Exiobase_TIV_europe_breakdown_ch4_noncombustion_cokingcoal_bp,
                                 Exiobase_TIV_europe_breakdown_ch4_noncombustion_lignite_bp,
                                 Exiobase_TIV_europe_breakdown_ch4_noncombustion_subbituminouscoal_bp,
                                 Exiobase_TIV_europe_breakdown_ch4_noncombustion_oilrefinery_bp,
                                 Exiobase_TIV_europe_breakdown_ch4_agriculture_bp,
                                 Exiobase_TIV_europe_breakdown_ch4_waste_bp,
                                 Exiobase_TIV_europe_breakdown_n2o_combustion_bp,
                                 Exiobase_TIV_europe_breakdown_n2o_agriculture_bp,
                                 Exiobase_TIV_europe_breakdown_sf6_bp,
                                 Exiobase_TIV_europe_breakdown_hfc_bp,
                                 Exiobase_TIV_europe_breakdown_pfc_bp,
                                 Exiobase_TIV_europe_breakdown_energy_use_bp) %>% 
    mutate(V1 = dplyr::recode(V1,"GR" = "EL","GB" = "UK")) 
  
  year_europe = as.character(rep(year_current,nrow(europe_TIV_with_labels)))
  
  look_europe = cbind(year_europe,europe_TIV_with_labels) %>% 
    rename(country_of_production = V1, sector = V2, year = year_europe) %>%
    mutate(TIV_CO2_combustion_europe = as.numeric(TIV_CO2_combustion_europe),
           TIV_CO2_noncombustion_cement_europe = as.numeric(TIV_CO2_noncombustion_cement_europe),
           TIV_CO2_noncombustion_lime_europe = as.numeric(TIV_CO2_noncombustion_lime_europe),
           TIV_CO2_agriculture_peatdecay_europe = as.numeric(TIV_CO2_agriculture_peatdecay_europe),
           TIV_CO2_waste_biogenic_europe = as.numeric(TIV_CO2_waste_biogenic_europe),
           TIV_CO2_waste_fossil_europe = as.numeric(TIV_CO2_waste_fossil_europe),
           TIV_CH4_combustion_europe = as.numeric(TIV_CH4_combustion_europe),
           TIV_CH4_noncombustion_gas_europe = as.numeric(TIV_CH4_noncombustion_gas_europe),
           TIV_CH4_noncombustion_oil_europe = as.numeric(TIV_CH4_noncombustion_oil_europe),
           TIV_CH4_noncombustion_anthracite_europe = as.numeric(TIV_CH4_noncombustion_anthracite_europe),
           TIV_CH4_noncombustion_bituminouscoal_europe = as.numeric(TIV_CH4_noncombustion_bituminouscoal_europe),
           TIV_CH4_noncombustion_cokingcoal_europe = as.numeric(TIV_CH4_noncombustion_cokingcoal_europe),
           TIV_CH4_noncombustion_lignite_europe = as.numeric(TIV_CH4_noncombustion_lignite_europe),
           TIV_CH4_noncombustion_subbituminouscoal_europe = as.numeric(TIV_CH4_noncombustion_subbituminouscoal_europe),
           TIV_CH4_noncombustion_oilrefinery_europe = as.numeric(TIV_CH4_noncombustion_oilrefinery_europe),
           TIV_CH4_agriculture_europe = as.numeric(TIV_CH4_agriculture_europe),
           TIV_CH4_waste_europe = as.numeric(TIV_CH4_waste_europe),
           TIV_N2O_combustion_europe = as.numeric(TIV_N2O_combustion_europe),
           TIV_N2O_agriculture_europe = as.numeric(TIV_N2O_agriculture_europe),
           TIV_SF6_europe = as.numeric(TIV_SF6_europe),
           TIV_HFC_europe = as.numeric(TIV_HFC_europe),
           TIV_PFC_europe = as.numeric(TIV_PFC_europe),
           TIV_energy_europe = as.numeric(TIV_energy_europe))
  
  europe_TIVs = rbind(europe_TIVs, look_europe)
  
  
  # total national footprints
  
  # FD labels
  
  Exiobase_FD_labels = as.data.frame(t(read.csv(paste0(data_dir_exiobase, "/Exiobase_FD_labels_pxp.csv")))[-1,-3]) %>%
    mutate(V1 = dplyr::recode(V1,"GR" = "EL","GB" = "UK")) 
  
  national_CO2_combustion_footprints = Exiobase_FD * t(Exiobase_TIV_co2_combustion_bp)
  
  national_CO2_noncombustion_cement_footprints = Exiobase_FD * t(Exiobase_TIV_co2_noncombustion_cement_bp)
  
  national_CO2_noncombustion_lime_footprints = Exiobase_FD * t(Exiobase_TIV_co2_noncombustion_lime_bp)
  
  national_CO2_agriculture_peatdecay_footprints = Exiobase_FD * t(Exiobase_TIV_co2_agriculture_peatdecay_bp)
  
  national_CO2_waste_biogenic_footprints = Exiobase_FD * t(Exiobase_TIV_co2_waste_biogenic_bp)
  
  national_CO2_waste_fossil_footprints = Exiobase_FD * t(Exiobase_TIV_co2_waste_fossil_bp)

  national_CH4_combustion_footprints = Exiobase_FD * t(Exiobase_TIV_ch4_combustion_bp)
  
  national_CH4_noncombustion_gas_footprints = Exiobase_FD * t(Exiobase_TIV_ch4_noncombustion_gas_bp)
  
  national_CH4_noncombustion_oil_footprints = Exiobase_FD * t(Exiobase_TIV_ch4_noncombustion_oil_bp)
  
  national_CH4_noncombustion_anthracite_footprints = Exiobase_FD * t(Exiobase_TIV_ch4_noncombustion_anthracite_bp)
  
  national_CH4_noncombustion_bituminouscoal_footprints = Exiobase_FD * t(Exiobase_TIV_ch4_noncombustion_bituminouscoal_bp)
  
  national_CH4_noncombustion_cokingcoal_footprints = Exiobase_FD * t(Exiobase_TIV_ch4_noncombustion_cokingcoal_bp)
  
  national_CH4_noncombustion_lignite_footprints = Exiobase_FD * t(Exiobase_TIV_ch4_noncombustion_lignite_bp)
  
  national_CH4_noncombustion_subbituminouscoal_footprints = Exiobase_FD * t(Exiobase_TIV_ch4_noncombustion_subbituminouscoal_bp)
  
  national_CH4_noncombustion_oilrefinery_footprints = Exiobase_FD * t(Exiobase_TIV_ch4_noncombustion_oilrefinery_bp)
  
  national_CH4_agriculture_footprints = Exiobase_FD * t(Exiobase_TIV_ch4_agriculture_bp)
  
  national_CH4_waste_footprints = Exiobase_FD * t(Exiobase_TIV_ch4_waste_bp)
  
  national_N2O_combustion_footprints = Exiobase_FD * t(Exiobase_TIV_n2o_combustion_bp)
  
  national_N2O_agriculture_footprints = Exiobase_FD * t(Exiobase_TIV_n2o_agriculture_bp)
  
  national_SF6_footprints = Exiobase_FD * t(Exiobase_TIV_sf6_bp)
  
  national_HFC_footprints = Exiobase_FD * t(Exiobase_TIV_hfc_bp)
  
  national_PFC_footprints = Exiobase_FD * t(Exiobase_TIV_pfc_bp)
  
  national_energy_footprints = Exiobase_FD * t(Exiobase_TIV_energy_use_bp)
  
  
  # together
  
  national_footprints_w_labels = cbind(Exiobase_FD_labels, 
                                       rowSums(t(national_CO2_combustion_footprints)),
                                       rowSums(t(national_CO2_noncombustion_cement_footprints)), 
                                       rowSums(t(national_CO2_noncombustion_lime_footprints)), 
                                       rowSums(t(national_CO2_agriculture_peatdecay_footprints)), 
                                       rowSums(t(national_CO2_waste_biogenic_footprints)), 
                                       rowSums(t(national_CO2_waste_fossil_footprints)),
                                       rowSums(t(national_CH4_combustion_footprints)),
                                       rowSums(t(national_CH4_noncombustion_gas_footprints)),
                                       rowSums(t(national_CH4_noncombustion_oil_footprints)),
                                       rowSums(t(national_CH4_noncombustion_anthracite_footprints)), 
                                       rowSums(t(national_CH4_noncombustion_bituminouscoal_footprints)), 
                                       rowSums(t(national_CH4_noncombustion_cokingcoal_footprints)),
                                       rowSums(t(national_CH4_noncombustion_lignite_footprints)),
                                       rowSums(t(national_CH4_noncombustion_subbituminouscoal_footprints)), 
                                       rowSums(t(national_CH4_noncombustion_oilrefinery_footprints)), 
                                       rowSums(t(national_CH4_agriculture_footprints)),
                                       rowSums(t(national_CH4_waste_footprints)),
                                       rowSums(t(national_N2O_combustion_footprints)),
                                       rowSums(t(national_N2O_agriculture_footprints)),
                                       rowSums(t(national_SF6_footprints)),
                                       rowSums(t(national_HFC_footprints)),
                                       rowSums(t(national_PFC_footprints)),
                                       rowSums(t(national_energy_footprints))) %>%
    mutate(V1 = dplyr::recode(V1,"GR" = "EL","GB" = "UK")) 
  
  year_national_fp = as.character(rep(year_current,nrow(national_footprints_w_labels)))
  
  
  # direct FD emissions
  
  direct_FD_extensions = read.csv(paste0(data_dir_exiobase, "/IOT_", year_current, "_pxp/satellite/F_hh.csv", sep = ""),row.names=NULL,as.is=TRUE)[3:1106,3:345]
  direct_FD_extensions[is.na(direct_FD_extensions)]=0
  direct_FD_extensions = mapply(direct_FD_extensions, FUN = as.numeric)
  direct_FD_extensions = matrix(data=direct_FD_extensions,ncol=343,nrow=1104)
  
  direct_FD_co2_combustion = direct_FD_extensions[24,]
  direct_FD_co2_noncombustion_cement = direct_FD_extensions[93,]
  direct_FD_co2_noncombustion_lime = direct_FD_extensions[94,]
  direct_FD_co2_agriculture_peatdecay = direct_FD_extensions[428,]
  direct_FD_co2_waste_biogenic = direct_FD_extensions[438,]
  direct_FD_co2_waste_fossil = direct_FD_extensions[439,]
  direct_FD_ch4_combustion = direct_FD_extensions[25,]*28
  direct_FD_ch4_noncombustion_gas = direct_FD_extensions[68,]*28
  direct_FD_ch4_noncombustion_oil = direct_FD_extensions[69,]*28
  direct_FD_ch4_noncombustion_anthracite = direct_FD_extensions[70,]*28
  direct_FD_ch4_noncombustion_bituminouscoal = direct_FD_extensions[71,]*28
  direct_FD_ch4_noncombustion_cokingcoal = direct_FD_extensions[72,]*28
  direct_FD_ch4_noncombustion_lignite = direct_FD_extensions[73,]*28
  direct_FD_ch4_noncombustion_subbituminouscoal = direct_FD_extensions[74,]*28
  direct_FD_ch4_noncombustion_oilrefinery = direct_FD_extensions[75,]*28
  direct_FD_ch4_agriculture = direct_FD_extensions[427,]*28
  direct_FD_ch4_waste = direct_FD_extensions[436,]*28
  direct_FD_n2o_combustion = direct_FD_extensions[26,]*265
  direct_FD_n2o_agriculture = direct_FD_extensions[430,]*265
  direct_FD_sf6 = direct_FD_extensions[424,]*23500
  direct_FD_hfc = direct_FD_extensions[425,]
  direct_FD_pfc = direct_FD_extensions[426,]
  direct_FD_energy = direct_FD_extensions[470,]
  
  
  direct_FD_fp = data.frame(direct_FD_co2_combustion,
                            direct_FD_co2_noncombustion_cement,
                            direct_FD_co2_noncombustion_lime,
                            direct_FD_co2_agriculture_peatdecay,
                            direct_FD_co2_waste_biogenic,
                            direct_FD_co2_waste_fossil,
                            direct_FD_ch4_combustion,
                            direct_FD_ch4_noncombustion_gas,
                            direct_FD_ch4_noncombustion_oil,
                            direct_FD_ch4_noncombustion_anthracite,
                            direct_FD_ch4_noncombustion_bituminouscoal,
                            direct_FD_ch4_noncombustion_cokingcoal,
                            direct_FD_ch4_noncombustion_lignite,
                            direct_FD_ch4_noncombustion_subbituminouscoal,
                            direct_FD_ch4_noncombustion_oilrefinery,
                            direct_FD_ch4_agriculture,
                            direct_FD_ch4_waste,
                            direct_FD_n2o_combustion,
                            direct_FD_n2o_agriculture,
                            direct_FD_sf6,
                            direct_FD_hfc,
                            direct_FD_pfc,
                            direct_FD_energy)
  
  look_national_fp = as.data.frame(cbind(year_national_fp,
                                         national_footprints_w_labels,
                                         direct_FD_fp)) %>% 
    rename(year = year_national_fp,
           geo = V1, 
           fd_category = V2, 
           co2_combustion = "rowSums(t(national_CO2_combustion_footprints))",
           co2_noncombustion_cement = "rowSums(t(national_CO2_noncombustion_cement_footprints))",
           co2_noncombustion_lime = "rowSums(t(national_CO2_noncombustion_lime_footprints))",
           co2_agriculture_peatdecay = "rowSums(t(national_CO2_agriculture_peatdecay_footprints))",
           co2_waste_biogenic = "rowSums(t(national_CO2_waste_biogenic_footprints))",
           co2_waste_fossil = "rowSums(t(national_CO2_waste_fossil_footprints))",
           ch4_combustion = "rowSums(t(national_CH4_combustion_footprints))",
           ch4_noncombustion_gas = "rowSums(t(national_CH4_noncombustion_gas_footprints))",
           ch4_noncombustion_oil = "rowSums(t(national_CH4_noncombustion_oil_footprints))",
           ch4_noncombustion_anthracite = "rowSums(t(national_CH4_noncombustion_anthracite_footprints))",
           ch4_noncombustion_bituminouscoal = "rowSums(t(national_CH4_noncombustion_bituminouscoal_footprints))",
           ch4_noncombustion_cokingcoal = "rowSums(t(national_CH4_noncombustion_cokingcoal_footprints))",
           ch4_noncombustion_lignite = "rowSums(t(national_CH4_noncombustion_lignite_footprints))",
           ch4_noncombustion_subbituminouscoal = "rowSums(t(national_CH4_noncombustion_subbituminouscoal_footprints))",
           ch4_noncombustion_oilrefinery = "rowSums(t(national_CH4_noncombustion_oilrefinery_footprints))",
           ch4_agriculture = "rowSums(t(national_CH4_agriculture_footprints))",
           ch4_waste = "rowSums(t(national_CH4_waste_footprints))",
           n2o_combustion = "rowSums(t(national_N2O_combustion_footprints))",
           n2o_agriculture = "rowSums(t(national_N2O_agriculture_footprints))",
           sf6 = "rowSums(t(national_SF6_footprints))",
           hfc = "rowSums(t(national_HFC_footprints))",
           pfc = "rowSums(t(national_PFC_footprints))",
           energy = "rowSums(t(national_energy_footprints))") %>%
    select(year,
           geo,
           fd_category,
           co2_combustion,
           direct_FD_co2_combustion,
           co2_noncombustion_cement,
           direct_FD_co2_noncombustion_cement,
           co2_noncombustion_lime,
           direct_FD_co2_noncombustion_lime,
           co2_agriculture_peatdecay,
           direct_FD_co2_agriculture_peatdecay,
           co2_waste_biogenic,
           direct_FD_co2_waste_biogenic,
           co2_waste_fossil,
           direct_FD_co2_waste_fossil,
           ch4_combustion,
           direct_FD_ch4_combustion,
           ch4_noncombustion_gas,
           direct_FD_ch4_noncombustion_gas,
           ch4_noncombustion_oil,
           direct_FD_ch4_noncombustion_oil,
           ch4_noncombustion_anthracite,
           direct_FD_ch4_noncombustion_anthracite,
           ch4_noncombustion_bituminouscoal,
           direct_FD_ch4_noncombustion_bituminouscoal,
           ch4_noncombustion_cokingcoal,
           direct_FD_ch4_noncombustion_cokingcoal,
           ch4_noncombustion_lignite,
           direct_FD_ch4_noncombustion_lignite,
           ch4_noncombustion_subbituminouscoal,
           direct_FD_ch4_noncombustion_subbituminouscoal,
           ch4_noncombustion_oilrefinery,
           direct_FD_ch4_noncombustion_oilrefinery,
           ch4_agriculture,
           direct_FD_ch4_agriculture,
           ch4_waste,
           direct_FD_ch4_waste,
           n2o_combustion,
           direct_FD_n2o_combustion,
           n2o_agriculture,
           direct_FD_n2o_agriculture,
           sf6,
           direct_FD_sf6,
           hfc,
           direct_FD_hfc,
           pfc,
           direct_FD_pfc,
           energy,
           direct_FD_energy)
  
  
  national_fp = rbind(national_fp, look_national_fp)
  
  # national territorial
  
  satellite = read.csv(paste0(data_dir_exiobase, "/IOT_", year_current, "_pxp/satellite/satellite_",year_current,"_pxp.csv"))[,-1]
  
  
  CO2_combustion_air = satellite[24,]
  
  CO2_noncombustion_cement_air = satellite[93,]
  
  CO2_noncombustion_lime_air = satellite[94,]
  
  CO2_agriculture_peatdecay_air = satellite[428,]
  
  CO2_waste_biogenic_air = satellite[438,]
  
  CO2_waste_fossil_air = satellite[439,]
  
  CH4_combustion_air = satellite[25,]
  CH4_combustion_air = CH4_combustion_air*28
  
  CH4_noncombustion_gas_air = satellite[68,]
  CH4_noncombustion_gas_air = CH4_noncombustion_gas_air*28
  
  CH4_noncombustion_oil_air = satellite[69,]
  CH4_noncombustion_oil_air = CH4_noncombustion_oil_air*28
  
  CH4_noncombustion_anthracite_air = satellite[70,]
  CH4_noncombustion_anthracite_air = CH4_noncombustion_anthracite_air*28
  
  CH4_noncombustion_bituminouscoal_air = satellite[71,]
  CH4_noncombustion_bituminouscoal_air = CH4_noncombustion_bituminouscoal_air*28
  
  CH4_noncombustion_cokingcoal_air = satellite[72,]
  CH4_noncombustion_cokingcoal_air = CH4_noncombustion_cokingcoal_air*28
  
  CH4_noncombustion_lignite_air = satellite[73,]
  CH4_noncombustion_lignite_air = CH4_noncombustion_lignite_air*28
  
  CH4_noncombustion_subbituminouscoal_air = satellite[74,]
  CH4_noncombustion_subbituminouscoal_air = CH4_noncombustion_subbituminouscoal_air*28
  
  CH4_noncombustion_oilrefinery_air = satellite[75,]
  CH4_noncombustion_oilrefinery_air = CH4_noncombustion_oilrefinery_air*28
  
  CH4_agriculture_air = satellite[427,]
  CH4_agriculture_air = CH4_agriculture_air*28
  
  CH4_waste_air = satellite[436,]
  CH4_waste_air = CH4_waste_air*28
  
  N2O_combustion_air = satellite[26,]
  N2O_combustion_air = N2O_combustion_air*265
  
  N2O_agriculture_air = satellite[430,]
  N2O_agriculture_air = N2O_agriculture_air*265
  
  SF6_air = satellite[424,]
  SF6_air = SF6_air*23500
  
  HFC_air = satellite[425,]
  
  PFC_air = satellite[426,]
  
  energy_carrier_use = satellite[470,]
  
  
  territorial = data.frame(t(CO2_combustion_air),
                           t(CO2_noncombustion_cement_air),
                           t(CO2_noncombustion_lime_air),
                           t(CO2_agriculture_peatdecay_air),
                           t(CO2_waste_biogenic_air),
                           t(CO2_waste_fossil_air),
                           t(CH4_combustion_air),
                           t(CH4_noncombustion_gas_air),
                           t(CH4_noncombustion_oil_air),
                           t(CH4_noncombustion_anthracite_air),
                           t(CH4_noncombustion_bituminouscoal_air),
                           t(CH4_noncombustion_cokingcoal_air),
                           t(CH4_noncombustion_lignite_air),
                           t(CH4_noncombustion_subbituminouscoal_air),
                           t(CH4_noncombustion_oilrefinery_air),
                           t(CH4_agriculture_air),
                           t(CH4_waste_air),
                           t(N2O_combustion_air),
                           t(N2O_agriculture_air),
                           t(SF6_air),
                           t(HFC_air),
                           t(PFC_air),
                           t(energy_carrier_use)) %>%
    rename(CO2_combustion = 1, 
           CO2_noncombustion_cement = 2,
           CO2_noncombustion_lime = 3,
           CO2_agriculture_peatdecay = 4,
           CO2_waste_biogenic = 5,
           CO2_waste_fossil = 6,
           CH4_combustion = 7, 
           CH4_noncombustion_gas = 8,
           CH4_noncombustion_oil = 9,
           CH4_noncombustion_anthracite = 10,
           CH4_noncombustion_bituminouscoal = 11,
           CH4_noncombustion_cokingcoal = 12,
           CH4_noncombustion_lignite = 13,
           CH4_noncombustion_subbituminouscoal = 14,
           CH4_noncombustion_oilrefinery = 15,
           CH4_agriculture = 16,
           CH4_waste = 17,
           N2O_combustion = 18, 
           N2O_agriculture = 19,
           SF6 = 20,
           HFC = 21, PFC = 22, energy = 23)
  
  year_territorial = as.character(rep(year_current,nrow(territorial)))
  
  look_territorial = as.data.frame(cbind(year_territorial,
                                         Exiobase_T_labels,
                                         territorial)) %>%
    rename(year = year_territorial,
           geo = V1,
           sector = V2) %>%
    select(-coicop,-five_sectors)
  
  national_territorial = rbind(national_territorial, look_territorial)
  
  
}

write.csv(national_territorial, paste0(data_dir_income_stratified_footprints, "/national_territorial_pxp.csv"))
write_rds(national_territorial, paste0(data_dir_income_stratified_footprints, "/national_territorial_pxp.rds"))


write.csv(national_fp, paste0(data_dir_income_stratified_footprints, "/national_fp_pxp.csv"))
write_rds(national_fp, paste0(data_dir_income_stratified_footprints, "/national_fp_pxp.rds"))

# calculate quintile shares within each sector
shares = join_expenditures %>%
  group_by(coicop,geo,year) %>%
  mutate(share = pps_coicop/sum(pps_coicop))

# pre-processing

fd_exiobase = disaggregated_final_demand %>% 
  left_join(shares, by = c("year","geo","coicop","quintile")) %>%
  mutate(disaggregated_fd = value*share) %>%
  select(year,geo,quintile,country_of_production,sector,coicop,disaggregated_fd) %>%
  spread(quintile,disaggregated_fd)

# direct from FD - to go back to results without direct FD fp, do not run this next chunk and do not bind_rows with 'results'

env_ac_pefasu_no_TR = read_csv(paste0(data_dir_income_stratified_footprints, "/env_ac_pefasu_1_Data.csv")) %>%
  filter(TIME == 2015) %>%
  mutate(geo = dplyr::recode(GEO,"Austria" = "AT", 
                             "Belgium" = "BE",
                             "Cyprus" = "CY",
                             "Czechia" = "CZ",
                             "Denmark" = "DK",
                             "Estonia" = "EE",
                             "Finland" = "FI",
                             "France" = "FR",
                             "Germany (until 1990 former territory of the FRG)" = "DE",
                             "Greece" = "EL",
                             "Hungary" = "HU",
                             "Ireland" = "IE",
                             "Italy" = "IT",
                             "Latvia" = "LV",
                             "Lithuania" = "LT",
                             "Luxembourg" = "LU",
                             "Malta" = "MT",
                             "Netherlands" = "NL",
                             "Norway" = "NO",
                             "Poland" = "PL",
                             "Portugal" = "PT",
                             "Romania" = "RO",
                             "Slovakia" = "SK",
                             "Slovenia" = "SI",
                             "Spain" = "ES",
                             "Sweden" = "SE",
                             "United Kingdom" = "UK",
                             "Bulgaria" = "BG",
                             "Croatia" = "HR")) %>%
  select(NACE_R2,geo,Value) %>%
  mutate(Value = parse_number(Value),
         Value = as.numeric(Value)) %>%
  spread(NACE_R2,Value) %>%
  clean_names() %>%
  mutate(HH_HEAT = heating_cooling_activities_by_households/total_activities_by_households,
         HH_TRA = transport_activities_by_households/total_activities_by_households,
         HH_OTH = other_activities_by_households/total_activities_by_households) %>%
  select(geo,HH_HEAT,HH_TRA,HH_OTH) 


env_ac_pefasu_TR = env_ac_pefasu_no_TR %>%
  filter(geo == "BG") %>%
  mutate(geo = dplyr::recode(geo,
                             "BG" = "TR"))

env_ac_pefasu = rbind(env_ac_pefasu_no_TR,env_ac_pefasu_TR) %>%
  gather(sector,share_of_total_energy,-geo)

env_ac_ainah_r2 = read_csv(paste0(data_dir_income_stratified_footprints, "/env_ac_ainah_r2_1_Data.csv")) %>%
  filter(TIME == 2015) %>%
  mutate(geo = dplyr::recode(GEO,"Austria" = "AT", 
                             "Belgium" = "BE",
                             "Cyprus" = "CY",
                             "Czechia" = "CZ",
                             "Denmark" = "DK",
                             "Estonia" = "EE",
                             "Finland" = "FI",
                             "France" = "FR",
                             "Germany (until 1990 former territory of the FRG)" = "DE",
                             "Greece" = "EL",
                             "Hungary" = "HU",
                             "Ireland" = "IE",
                             "Italy" = "IT",
                             "Latvia" = "LV",
                             "Lithuania" = "LT",
                             "Luxembourg" = "LU",
                             "Malta" = "MT",
                             "Netherlands" = "NL",
                             "Norway" = "NO",
                             "Poland" = "PL",
                             "Portugal" = "PT",
                             "Romania" = "RO",
                             "Slovakia" = "SK",
                             "Slovenia" = "SI",
                             "Spain" = "ES",
                             "Sweden" = "SE",
                             "Turkey" = "TR",
                             "United Kingdom" = "UK",
                             "Bulgaria" = "BG",
                             "Croatia" = "HR")) %>%
  select(NACE_R2,AIRPOL,geo,Value) %>%
  mutate(Value = parse_number(Value),
         Value = as.numeric(Value)) %>%
  spread(NACE_R2,Value) %>%
  clean_names() %>%
  mutate(HH_HEAT = heating_cooling_activities_by_households/total_activities_by_households,
         HH_TRA = transport_activities_by_households/total_activities_by_households,
         HH_OTH = other_activities_by_households/total_activities_by_households) %>%
  select(geo,airpol,HH_HEAT,HH_TRA,HH_OTH) 


env_ac_ainah_r2_co2 = env_ac_ainah_r2 %>%
  filter(airpol == "Carbon dioxide") %>%
  select(-airpol) %>%
  gather(sector,share_of_total_co2,-geo)

env_ac_ainah_r2_ch4 = env_ac_ainah_r2 %>%
  filter(airpol == "Methane") %>%
  select(-airpol) %>%
  gather(sector,share_of_total_ch4,-geo)

env_ac_ainah_r2_n2o = env_ac_ainah_r2 %>%
  filter(airpol == "Nitrous oxide") %>%
  select(-airpol) %>%
  gather(sector,share_of_total_n2o,-geo)

direct_FD_fp_long = national_fp %>%
  filter(fd_category == "Final consumption expenditure by households",
         geo %in% c("AT",
                    "BE", "BG", "CY", "CZ",
                    "DE" , "DK" , "EE" , 
                    "ES" , "FI" , "FR" , 
                    "UK", "EL", "HR" ,
                    "HU" , "IE" , "IT" ,
                    "LT" , "LU" , "LV" ,
                    "MT" , "NL" , "PL" ,
                    "PT" , "TR" , "SK" ,
                    "SI" , "SE" , "RO" ,
                    "NO")) %>%
  select(year,geo,fd_category,direct_FD_co2_combustion,
         direct_FD_co2_noncombustion_cement,
         direct_FD_co2_noncombustion_lime,
         direct_FD_co2_agriculture_peatdecay,
         direct_FD_co2_waste_biogenic,
         direct_FD_co2_waste_fossil,
         direct_FD_ch4_combustion,
         direct_FD_ch4_noncombustion_gas,
         direct_FD_ch4_noncombustion_oil,
         direct_FD_ch4_noncombustion_anthracite,
         direct_FD_ch4_noncombustion_bituminouscoal,
         direct_FD_ch4_noncombustion_cokingcoal,
         direct_FD_ch4_noncombustion_lignite,
         direct_FD_ch4_noncombustion_subbituminouscoal,
         direct_FD_ch4_noncombustion_oilrefinery,
         direct_FD_ch4_agriculture,
         direct_FD_ch4_waste,
         direct_FD_n2o_combustion,
         direct_FD_n2o_agriculture,
         direct_FD_sf6,
         direct_FD_hfc,
         direct_FD_pfc,
         direct_FD_energy) %>%   
  slice(rep(1:n(), each = 3)) 

sector = rep(c("HH_HEAT","HH_TRA","HH_OTH"), nrow(direct_FD_fp_long)/3) 

direct_FD_fp_long_disagg = cbind(sector,direct_FD_fp_long) %>%
  mutate(coicop = ifelse(sector == "HH_TRA","CP072",
                         ifelse(sector == "HH_HEAT","CP045","CP05")), 
         five_sectors = ifelse(sector == "HH_TRA", "transport",
                               ifelse(sector == "HH_HEAT", "shelter", "manufactured goods"))) %>%
  left_join(env_ac_ainah_r2_co2, by = c("geo","sector")) %>%
  left_join(env_ac_ainah_r2_ch4, by = c("geo","sector")) %>%
  left_join(env_ac_ainah_r2_n2o, by = c("geo","sector")) %>%
  left_join(env_ac_pefasu, by = c("geo","sector")) %>%
  mutate(direct_FD_co2 = (direct_FD_co2_combustion +
                            direct_FD_co2_noncombustion_cement +
                            direct_FD_co2_noncombustion_lime +
                            direct_FD_co2_agriculture_peatdecay +
                            direct_FD_co2_waste_biogenic +
                            direct_FD_co2_waste_fossil)*share_of_total_co2,
         direct_FD_ch4 = (direct_FD_ch4_combustion +
                            direct_FD_ch4_noncombustion_gas +
                            direct_FD_ch4_noncombustion_oil +
                            direct_FD_ch4_noncombustion_anthracite +
                            direct_FD_ch4_noncombustion_bituminouscoal +
                            direct_FD_ch4_noncombustion_cokingcoal +
                            direct_FD_ch4_noncombustion_lignite +
                            direct_FD_ch4_noncombustion_subbituminouscoal +
                            direct_FD_ch4_noncombustion_oilrefinery +
                            direct_FD_ch4_agriculture +
                            direct_FD_ch4_waste)*share_of_total_ch4,
         direct_FD_n2o = (direct_FD_n2o_combustion +
                            direct_FD_n2o_agriculture)*share_of_total_n2o,
         direct_FD_energy = direct_FD_energy*share_of_total_energy) %>%
  left_join(shares, by = c("year","geo","coicop")) %>%
  mutate(disaggregated_direct_FD_co2 = direct_FD_co2*share,
         disaggregated_direct_FD_ch4 = direct_FD_ch4*share,
         disaggregated_direct_FD_n2o = direct_FD_n2o*share,
         disaggregated_direct_FD_energy = direct_FD_energy*share) %>%
  select(year,geo,sector, quintile,
         coicop, five_sectors,
         disaggregated_direct_FD_co2,
         disaggregated_direct_FD_ch4,
         disaggregated_direct_FD_n2o,
         disaggregated_direct_FD_energy) 

direct_FD_co2 = direct_FD_fp_long_disagg %>%
  select(year,geo,sector,quintile,coicop,five_sectors,disaggregated_direct_FD_co2) %>%
  spread(quintile,disaggregated_direct_FD_co2) %>%
  rename(q1_co2 = QUINTILE1,
         q2_co2 = QUINTILE2,
         q3_co2 = QUINTILE3,
         q4_co2 = QUINTILE4,
         q5_co2 = QUINTILE5) %>%
  mutate(q1_co2_domestic = q1_co2,
         q2_co2_domestic = q2_co2,
         q3_co2_domestic = q3_co2,
         q4_co2_domestic = q4_co2,
         q5_co2_domestic = q5_co2,
         co2_total = q1_co2+q2_co2+q3_co2+q4_co2+q5_co2,
         co2_total_domestic = q1_co2_domestic+
           q2_co2_domestic+q3_co2_domestic+
           q4_co2_domestic+q5_co2_domestic)

direct_FD_ch4 = direct_FD_fp_long_disagg %>%
  select(year,geo,sector,quintile,coicop,five_sectors,disaggregated_direct_FD_ch4) %>%
  spread(quintile,disaggregated_direct_FD_ch4) %>%
  rename(q1_ch4 = QUINTILE1,
         q2_ch4 = QUINTILE2,
         q3_ch4 = QUINTILE3,
         q4_ch4 = QUINTILE4,
         q5_ch4 = QUINTILE5) %>%
  mutate(q1_ch4_domestic = q1_ch4,
         q2_ch4_domestic = q2_ch4,
         q3_ch4_domestic = q3_ch4,
         q4_ch4_domestic = q4_ch4,
         q5_ch4_domestic = q5_ch4,
         ch4_total = q1_ch4+q2_ch4+q3_ch4+q4_ch4+q5_ch4,
         ch4_total_domestic = q1_ch4_domestic+
           q2_ch4_domestic+q3_ch4_domestic+
           q4_ch4_domestic+q5_ch4_domestic)


direct_FD_n2o = direct_FD_fp_long_disagg %>%
  select(year,geo,sector,quintile,coicop,five_sectors,disaggregated_direct_FD_n2o) %>%
  spread(quintile,disaggregated_direct_FD_n2o) %>%
  rename(q1_n2o = QUINTILE1,
         q2_n2o = QUINTILE2,
         q3_n2o = QUINTILE3,
         q4_n2o = QUINTILE4,
         q5_n2o = QUINTILE5) %>%
  mutate(q1_n2o_domestic = q1_n2o,
         q2_n2o_domestic = q2_n2o,
         q3_n2o_domestic = q3_n2o,
         q4_n2o_domestic = q4_n2o,
         q5_n2o_domestic = q5_n2o,
         n2o_total = q1_n2o+q2_n2o+q3_n2o+q4_n2o+q5_n2o,
         n2o_total_domestic = q1_n2o_domestic+
           q2_n2o_domestic+q3_n2o_domestic+
           q4_n2o_domestic+q5_n2o_domestic)

direct_FD_energy = direct_FD_fp_long_disagg %>%
  select(year,geo,sector,quintile,coicop,five_sectors,disaggregated_direct_FD_energy) %>%
  spread(quintile,disaggregated_direct_FD_energy) %>%
  rename(q1_energy = QUINTILE1,
         q2_energy = QUINTILE2,
         q3_energy = QUINTILE3,
         q4_energy = QUINTILE4,
         q5_energy = QUINTILE5) %>%
  mutate(q1_energy_domestic = q1_energy,
         q2_energy_domestic = q2_energy,
         q3_energy_domestic = q3_energy,
         q4_energy_domestic = q4_energy,
         q5_energy_domestic = q5_energy,
         energy_total = q1_energy+q2_energy+q3_energy+q4_energy+q5_energy,
         energy_total_domestic = q1_energy_domestic+
           q2_energy_domestic+q3_energy_domestic+
           q4_energy_domestic+q5_energy_domestic)


direct_FD_fp_wide = direct_FD_co2 %>%
  left_join(direct_FD_ch4, by = c("year","geo",
                                  "sector","coicop",
                                  "five_sectors")) %>%
  left_join(direct_FD_n2o, by = c("year","geo",
                                  "sector","coicop",
                                  "five_sectors")) %>%
  left_join(direct_FD_energy, by = c("year","geo",
                                     "sector","coicop",
                                     "five_sectors")) %>%
  mutate(country_of_production = geo) %>%
  mutate(q1_co2eq = q1_co2 + q1_ch4 + q1_n2o,
         q2_co2eq = q2_co2 + q2_ch4 + q2_n2o,
         q3_co2eq = q3_co2 + q3_ch4 + q3_n2o,
         q4_co2eq = q4_co2 + q4_ch4 + q4_n2o,
         q5_co2eq = q5_co2 + q5_ch4 + q5_n2o,
         co2eq_total = q1_co2eq +
           q2_co2eq + q3_co2eq +
           q4_co2eq + q5_co2eq,
         q1_co2eq_domestic = q1_co2_domestic + q1_ch4_domestic + q1_n2o_domestic,
         q2_co2eq_domestic = q2_co2_domestic + q2_ch4_domestic + q2_n2o_domestic,
         q3_co2eq_domestic = q3_co2_domestic + q3_ch4_domestic + q3_n2o_domestic,
         q4_co2eq_domestic = q4_co2_domestic + q4_ch4_domestic + q4_n2o_domestic,
         q5_co2eq_domestic = q5_co2_domestic + q5_ch4_domestic + q5_n2o_domestic,
         co2eq_total_domestic = q1_co2eq_domestic +
           q2_co2eq_domestic + q3_co2eq_domestic +
           q4_co2eq_domestic + q5_co2eq_domestic) %>%
  select(-q1_ch4,
         -q2_ch4,
         -q3_ch4,
         -q4_ch4,
         -q5_ch4,
         -ch4_total,
         -q1_ch4_domestic,
         -q2_ch4_domestic,
         -q3_ch4_domestic,
         -q4_ch4_domestic,
         -q5_ch4_domestic,
         -ch4_total_domestic,
         -q1_n2o,
         -q2_n2o,
         -q3_n2o,
         -q4_n2o,
         -q5_n2o,
         -n2o_total,
         -q1_n2o_domestic,
         -q2_n2o_domestic,
         -q3_n2o_domestic,
         -q4_n2o_domestic,
         -q5_n2o_domestic,
         -n2o_total_domestic)



results = fd_exiobase %>%
  left_join(TIVs, by = c("year", "country_of_production", "coicop", "sector")) %>%
  left_join(europe_TIVs, by = c("year", "country_of_production", "coicop", "sector", "five_sectors")) %>%
  left_join(domestic_TIVs, by = c("year", "geo", "country_of_production", "coicop", "sector", "five_sectors")) %>%
  transmute(year,geo,country_of_production,sector,coicop,five_sectors,
            QUINTILE1,
            QUINTILE2,
            QUINTILE3,
            QUINTILE4,
            QUINTILE5,
            fd_total = QUINTILE1+QUINTILE2+QUINTILE3+QUINTILE4+QUINTILE5,
            TIV_CO2 = TIV_CO2_combustion + 
              TIV_CO2_noncombustion_cement + 
              TIV_CO2_noncombustion_lime +
              TIV_CO2_agriculture_peatdecay +
              TIV_CO2_waste_biogenic + 
              TIV_CO2_waste_fossil,
            q1_co2 = QUINTILE1*TIV_CO2,
            q2_co2 = QUINTILE2*TIV_CO2,
            q3_co2 = QUINTILE3*TIV_CO2,
            q4_co2 = QUINTILE4*TIV_CO2,
            q5_co2 = QUINTILE5*TIV_CO2,
            co2_total = q1_co2+q2_co2+q3_co2+q4_co2+q5_co2,
            TIV_CO2_domestic = TIV_CO2_combustion_domestic +
              TIV_CO2_noncombustion_cement_domestic +
              TIV_CO2_noncombustion_lime_domestic +
              TIV_CO2_agriculture_peatdecay_domestic +
              TIV_CO2_waste_biogenic_domestic +
              TIV_CO2_waste_fossil_domestic,
            q1_co2_domestic = QUINTILE1*TIV_CO2_domestic,
            q2_co2_domestic = QUINTILE2*TIV_CO2_domestic,
            q3_co2_domestic = QUINTILE3*TIV_CO2_domestic,
            q4_co2_domestic = QUINTILE4*TIV_CO2_domestic,
            q5_co2_domestic = QUINTILE5*TIV_CO2_domestic,
            co2_total_domestic = q1_co2_domestic+q2_co2_domestic+q3_co2_domestic+q4_co2_domestic+q5_co2_domestic,
            TIV_CO2_europe = TIV_CO2_combustion_europe +
              TIV_CO2_noncombustion_cement_europe +
              TIV_CO2_noncombustion_lime_europe +
              TIV_CO2_agriculture_peatdecay_europe +
              TIV_CO2_waste_biogenic_europe +
              TIV_CO2_waste_fossil_europe,
            q1_co2_europe = QUINTILE1*(TIV_CO2_europe - TIV_CO2_domestic),
            q2_co2_europe = QUINTILE2*(TIV_CO2_europe - TIV_CO2_domestic),
            q3_co2_europe = QUINTILE3*(TIV_CO2_europe - TIV_CO2_domestic),
            q4_co2_europe = QUINTILE4*(TIV_CO2_europe - TIV_CO2_domestic),
            q5_co2_europe = QUINTILE5*(TIV_CO2_europe - TIV_CO2_domestic),
            co2_total_europe = q1_co2_europe+q2_co2_europe+q3_co2_europe+q4_co2_europe+q5_co2_europe,
            TIV_CO2eq = TIV_CO2 + 
              TIV_CH4_combustion + 
              TIV_CH4_noncombustion_gas +
              TIV_CH4_noncombustion_oil +
              TIV_CH4_noncombustion_anthracite +
              TIV_CH4_noncombustion_bituminouscoal +
              TIV_CH4_noncombustion_cokingcoal +
              TIV_CH4_noncombustion_lignite +
              TIV_CH4_noncombustion_subbituminouscoal +
              TIV_CH4_noncombustion_oilrefinery +
              TIV_CH4_agriculture +
              TIV_CH4_waste +
              TIV_N2O_combustion + 
              TIV_N2O_agriculture +
              TIV_SF6 + TIV_HFC + TIV_PFC,
            q1_co2eq = QUINTILE1*TIV_CO2eq,
            q2_co2eq = QUINTILE2*TIV_CO2eq,
            q3_co2eq = QUINTILE3*TIV_CO2eq,
            q4_co2eq = QUINTILE4*TIV_CO2eq,
            q5_co2eq = QUINTILE5*TIV_CO2eq,
            co2eq_total = q1_co2eq + q2_co2eq + q3_co2eq + q4_co2eq + q5_co2eq,
            TIV_CO2eq_domestic = TIV_CO2_domestic + 
              TIV_CH4_combustion_domestic + 
              TIV_CH4_noncombustion_gas_domestic +
              TIV_CH4_noncombustion_oil_domestic +
              TIV_CH4_noncombustion_anthracite_domestic +
              TIV_CH4_noncombustion_bituminouscoal_domestic +
              TIV_CH4_noncombustion_cokingcoal_domestic +
              TIV_CH4_noncombustion_lignite_domestic +
              TIV_CH4_noncombustion_subbituminouscoal_domestic +
              TIV_CH4_noncombustion_oilrefinery_domestic +
              TIV_CH4_agriculture_domestic +
              TIV_CH4_waste_domestic +
              TIV_N2O_combustion_domestic + 
              TIV_N2O_agriculture_domestic +
              TIV_SF6_domestic + TIV_HFC_domestic + TIV_PFC_domestic,
            q1_co2eq_domestic = QUINTILE1*TIV_CO2eq_domestic,
            q2_co2eq_domestic = QUINTILE2*TIV_CO2eq_domestic,
            q3_co2eq_domestic = QUINTILE3*TIV_CO2eq_domestic,
            q4_co2eq_domestic = QUINTILE4*TIV_CO2eq_domestic,
            q5_co2eq_domestic = QUINTILE5*TIV_CO2eq_domestic,
            co2eq_total_domestic = q1_co2eq_domestic + q2_co2eq_domestic + q3_co2eq_domestic + q4_co2eq_domestic + q5_co2eq_domestic,
            TIV_CO2eq_europe = TIV_CO2_europe + 
              TIV_CH4_combustion_europe + 
              TIV_CH4_noncombustion_gas_europe +
              TIV_CH4_noncombustion_oil_europe +
              TIV_CH4_noncombustion_anthracite_europe +
              TIV_CH4_noncombustion_bituminouscoal_europe +
              TIV_CH4_noncombustion_cokingcoal_europe +
              TIV_CH4_noncombustion_lignite_europe +
              TIV_CH4_noncombustion_subbituminouscoal_europe +
              TIV_CH4_noncombustion_oilrefinery_europe +
              TIV_CH4_agriculture_europe +
              TIV_CH4_waste_europe +
              TIV_N2O_combustion_europe + 
              TIV_N2O_agriculture_europe +
              TIV_SF6_europe + TIV_HFC_europe + TIV_PFC_europe,
            q1_co2eq_europe = QUINTILE1*(TIV_CO2eq_europe - TIV_CO2eq_domestic),
            q2_co2eq_europe = QUINTILE2*(TIV_CO2eq_europe - TIV_CO2eq_domestic),
            q3_co2eq_europe = QUINTILE3*(TIV_CO2eq_europe - TIV_CO2eq_domestic),
            q4_co2eq_europe = QUINTILE4*(TIV_CO2eq_europe - TIV_CO2eq_domestic),
            q5_co2eq_europe = QUINTILE5*(TIV_CO2eq_europe - TIV_CO2eq_domestic),
            co2eq_total_europe = q1_co2eq_europe + q2_co2eq_europe + q3_co2eq_europe + q4_co2eq_europe + q5_co2eq_europe,
            TIV_energy,
            q1_energy = QUINTILE1*TIV_energy,
            q2_energy = QUINTILE2*TIV_energy,
            q3_energy = QUINTILE3*TIV_energy,
            q4_energy = QUINTILE4*TIV_energy,
            q5_energy = QUINTILE5*TIV_energy,
            energy_total = q1_energy+q2_energy+q3_energy+q4_energy+q5_energy,
            TIV_energy_domestic,
            q1_energy_domestic = QUINTILE1*TIV_energy_domestic,
            q2_energy_domestic = QUINTILE2*TIV_energy_domestic,
            q3_energy_domestic = QUINTILE3*TIV_energy_domestic,
            q4_energy_domestic = QUINTILE4*TIV_energy_domestic,
            q5_energy_domestic = QUINTILE5*TIV_energy_domestic,
            energy_total_domestic = q1_energy_domestic+q2_energy_domestic+q3_energy_domestic+q4_energy_domestic+q5_energy_domestic,
            TIV_energy_europe,
            q1_energy_europe = QUINTILE1*(TIV_energy_europe - TIV_energy_domestic),
            q2_energy_europe = QUINTILE2*(TIV_energy_europe - TIV_energy_domestic),
            q3_energy_europe = QUINTILE3*(TIV_energy_europe - TIV_energy_domestic),
            q4_energy_europe = QUINTILE4*(TIV_energy_europe - TIV_energy_domestic),
            q5_energy_europe = QUINTILE5*(TIV_energy_europe - TIV_energy_domestic),
            energy_total_europe = q1_energy_europe+q2_energy_europe+q3_energy_europe+q4_energy_europe+q5_energy_europe)

results_with_direct_FD_fp = bind_rows(results,direct_FD_fp_wide)

### create compressed results_pxp rds file

dat_all = results_with_direct_FD_fp %>%
  clean_names()

# convert sector labels to IDs
sectors = dat_all %>%
  distinct(sector) %>%
  mutate(sector_id = row_number())

# if interested in looking at a sectoral breakdown of the product-by-product version results, un-comment line below
#write_csv(sectors, paste0(here("/analysis/data/derived/si/sectors_method1_pxp.csv")))

# convert aggregated sector labels to IDs
sectors_agg = dat_all %>%
  distinct(five_sectors) %>%
  mutate(sector_agg_id = row_number())

#write_csv(sectors_agg, paste0(here("analysis/data/derived/si/sectors_agg_method1_pxp.csv")))

# convert COICOP labels to IDs
coicop = dat_all %>%
  distinct(coicop) %>%
  mutate(coicop_id = row_number()) 

#write_csv(coicop, paste0(here("analysis/data/derived/si/coicop_method1_pxp.csv")))

# replace sector text labels with numerical IDs (save space)
dat_compressed = dat_all %>%
  left_join(sectors, by="sector") %>%
  left_join(sectors_agg, by="five_sectors") %>%
  left_join(coicop, by = "coicop") %>%
  select(-c(sector, five_sectors,coicop))

# extract sector aggregation
sector_mapping = dat_compressed %>%
  group_by(sector_id) %>%
  summarise(sector_agg_id = first(sector_agg_id),
            coicop_id = first(coicop_id))

# collapse country of origin
dat_results = dat_compressed %>%
  select(-sector_agg_id,-coicop_id) %>%
  group_by(year, geo, sector_id) %>%
  summarise_if(is.numeric, sum, na.rm = TRUE)

## extract final demand and pivot long
cols_final_demand = c("quintile1", "quintile2", "quintile3", "quintile4", "quintile5")
tmp_fd = dat_results %>%
  select(year, geo, sector_id, cols_final_demand) %>%
  pivot_longer(cols = cols_final_demand,
               names_to = "quintile",
               values_to = "fd_me") %>%
  mutate(quint = parse_number(quintile)) %>%
  select(-quintile)

## extract co2 and pivot long
cols_co2 = c("q1_co2", "q2_co2", "q3_co2", "q4_co2", "q5_co2")
tmp_co2 = dat_results %>%
  select(year, geo, sector_id, cols_co2) %>%
  pivot_longer(cols = cols_co2,
               names_to = "quintile",
               values_to = "co2_kg") %>%
  mutate(quint = parse_number(quintile)) %>%
  select(-quintile)

## extract co2 domestic and pivot long
cols_co2_domestic = c("q1_co2_domestic", "q2_co2_domestic", "q3_co2_domestic", "q4_co2_domestic", "q5_co2_domestic")
tmp_co2_domestic = dat_results %>%
  select(year, geo, sector_id, cols_co2_domestic) %>%
  pivot_longer(cols = cols_co2_domestic,
               names_to = "quintile",
               values_to = "co2_domestic_kg") %>%
  mutate(quint = parse_number(quintile)) %>%
  select(-quintile)

## extract co2 europe and pivot long
cols_co2_europe = c("q1_co2_europe", "q2_co2_europe", "q3_co2_europe", "q4_co2_europe", "q5_co2_europe")
tmp_co2_europe = dat_results %>%
  select(year, geo, sector_id, cols_co2_europe) %>%
  pivot_longer(cols = cols_co2_europe,
               names_to = "quintile",
               values_to = "co2_europe_kg") %>%
  mutate(quint = parse_number(quintile)) %>%
  select(-quintile)


## extract co2eq and pivot long
cols_co2eq = c("q1_co2eq", "q2_co2eq", "q3_co2eq", "q4_co2eq", "q5_co2eq")
tmp_co2eq = dat_results %>%
  select(year, geo, sector_id, cols_co2eq) %>%
  pivot_longer(cols = cols_co2eq,
               names_to = "quintile",
               values_to = "co2eq_kg") %>%
  mutate(quint = parse_number(quintile)) %>%
  select(-quintile)

## extract co2eq domestic and pivot long
cols_co2eq_domestic = c("q1_co2eq_domestic", "q2_co2eq_domestic", "q3_co2eq_domestic", "q4_co2eq_domestic", "q5_co2eq_domestic")
tmp_co2eq_domestic = dat_results %>%
  select(year, geo, sector_id, cols_co2eq_domestic) %>%
  pivot_longer(cols = cols_co2eq_domestic,
               names_to = "quintile",
               values_to = "co2eq_domestic_kg") %>%
  mutate(quint = parse_number(quintile)) %>%
  select(-quintile)

## extract co2eq europe and pivot long
cols_co2eq_europe = c("q1_co2eq_europe", "q2_co2eq_europe", "q3_co2eq_europe", "q4_co2eq_europe", "q5_co2eq_europe")
tmp_co2eq_europe = dat_results %>%
  select(year, geo, sector_id, cols_co2eq_europe) %>%
  pivot_longer(cols = cols_co2eq_europe,
               names_to = "quintile",
               values_to = "co2eq_europe_kg") %>%
  mutate(quint = parse_number(quintile)) %>%
  select(-quintile)

## extract energy use and pivot long
cols_energy = c("q1_energy","q2_energy","q3_energy","q4_energy","q5_energy")
tmp_energy = dat_results %>%
  select(year, geo, sector_id, cols_energy) %>%
  pivot_longer(cols = cols_energy,
               names_to = "quintile",
               values_to = "energy_use_TJ") %>%
  mutate(quint = parse_number(quintile)) %>%
  select(-quintile)

## extract energy domestic and pivot long
cols_energy_domestic = c("q1_energy_domestic","q2_energy_domestic","q3_energy_domestic","q4_energy_domestic","q5_energy_domestic")
tmp_energy_domestic = dat_results %>%
  select(year, geo, sector_id, cols_energy_domestic) %>%
  pivot_longer(cols = cols_energy_domestic,
               names_to = "quintile",
               values_to = "energy_use_domestic_TJ") %>%
  mutate(quint = parse_number(quintile)) %>%
  select(-quintile)

## extract energy europe and pivot long
cols_energy_europe = c("q1_energy_europe","q2_energy_europe","q3_energy_europe","q4_energy_europe","q5_energy_europe")
tmp_energy_europe = dat_results %>%
  select(year, geo, sector_id, cols_energy_europe) %>%
  pivot_longer(cols = cols_energy_europe,
               names_to = "quintile",
               values_to = "energy_use_europe_TJ") %>%
  mutate(quint = parse_number(quintile)) %>%
  select(-quintile)

### TODO: also convert to other indicators to this format (as blocks above)
### TODO: left join all indicators back to "results_formated" like her with co2
results_recombined = tmp_fd %>%
  left_join(tmp_co2, by=c("year", "geo", "sector_id", "quint")) %>%
  left_join(tmp_co2_domestic, by=c("year", "geo", "sector_id", "quint")) %>%
  left_join(tmp_co2_europe, by = c("year", "geo", "sector_id", "quint")) %>%
  left_join(tmp_co2eq, by=c("year", "geo", "sector_id", "quint")) %>%
  left_join(tmp_co2eq_domestic, by=c("year", "geo", "sector_id", "quint")) %>%
  left_join(tmp_co2eq_europe, by = c("year", "geo", "sector_id", "quint")) %>%
  left_join(tmp_energy, by=c("year", "geo", "sector_id", "quint")) %>%
  left_join(tmp_energy_domestic, by=c("year", "geo", "sector_id", "quint")) %>%
  left_join(tmp_energy_europe, by = c("year", "geo", "sector_id", "quint"))



# finally re-join aggregated sector IDs
results_formatted = results_recombined %>% 
  left_join(sector_mapping, by="sector_id") %>%
  ungroup() %>%
  select(-coicop_id)

write.csv(results_formatted, paste0(data_dir_income_stratified_footprints, "/results_formatted_method1_pxp.csv"))
write_rds(results_formatted, paste0(data_dir_income_stratified_footprints, "/results_formatted_method1_pxp.rds"))


################################################### !!!! method 2 !!!! - IXI version #############################
###############################################################################################################################################################
###############################################################################################################################################################


# 'results' data frame the second way

# aggregate - playing around trying to go the other way

# load 'mean expenditure by quintile' data
hbs_exp_t133 = read_csv(paste0(data_dir_income_stratified_footprints, "/hbs_exp_t133.csv"))
# rename and arrange by country
mean_expenditure_by_quintile = hbs_exp_t133 %>% 
  rename(geo = 3, quintile = "quantile") %>%
  arrange(geo)

# load 'mean expenditure by quintile and coicop' data
hbs_str_t223 = read_csv(paste0(data_dir_income_stratified_footprints, "/hbs_str_t223.csv"))
# rename and arrange by country
mean_expenditure_by_coicop_sector = hbs_str_t223 %>% 
  rename(geo = 4, quintile = "quantile") %>%
  arrange(geo) 

# create long data sets for both

mean_expenditure_by_quintile_long = mean_expenditure_by_quintile %>%
  filter(unit == "PPS_HH") %>%
  filter(!(quintile %in% c("UNK","TOTAL"))) %>%
  select(-unit) %>%
  gather(year,euro_pps,-quintile,-geo) 

mean_expenditure_by_coicop_sector_long = mean_expenditure_by_coicop_sector %>% 
  filter(!(quintile %in% c("UNK","TOTAL"))) %>%
  select(-unit) %>%
  gather(year,pm,-quintile,-coicop,-geo) %>%
  mutate(coicop = dplyr::recode(coicop, "CP041" = "rent",        
                                "CP042" = "rent")) %>%           
  group_by(geo,quintile,coicop,year) %>%                               
  mutate(pm = parse_number(pm),
         pm = as.numeric(pm)) %>%
  summarise(pm = sum(pm, na.rm = TRUE)) %>%
  ungroup() %>%
  mutate(pm = ifelse(geo == "DE" & year == 2005 & quintile == "QUINTILE1" & 
                       coicop == "CP072", 92-21-14,pm)) %>%
  mutate(pm = ifelse(geo == "DE" & year == 2005 & quintile == "QUINTILE2" & 
                       coicop == "CP072", 108-22-12,pm)) %>%
  mutate(pm = ifelse(geo == "DE" & year == 2005 & quintile == "QUINTILE3" & 
                       coicop == "CP072", 124-32-11,pm)) %>%
  mutate(pm = ifelse(geo == "DE" & year == 2005 & quintile == "QUINTILE4" & 
                       coicop == "CP072", 133-43-10,pm)) %>%
  mutate(pm = ifelse(geo == "DE" & year == 2005 & quintile == "QUINTILE5" & 
                       coicop == "CP072", 162-81-11,pm)) %>%
  mutate(pm = ifelse(geo == "DE" & year == 2010 & quintile == "QUINTILE1" & 
                       coicop == "CP044", 412-4-78-322,pm)) %>%
  mutate(pm = ifelse(geo == "DE" & year == 2010 & quintile == "QUINTILE2" & 
                       coicop == "CP044", 355-5-68-265,pm)) %>%
  mutate(pm = ifelse(geo == "DE" & year == 2010 & quintile == "QUINTILE3" & 
                       coicop == "CP044", 325-8-64-229,pm)) %>%
  mutate(pm = ifelse(geo == "DE" & year == 2010 & quintile == "QUINTILE4" & 
                       coicop == "CP044", 300-9-58-204,pm)) %>%
  mutate(pm = ifelse(geo == "DE" & year == 2010 & quintile == "QUINTILE5" & 
                       coicop == "CP044", 249-10-46-167,pm)) %>%
  mutate(pm = ifelse(geo == "DE" & year == 2015 & quintile == "QUINTILE1" & 
                       coicop == "CP044", 433-3-82-340,pm)) %>%
  mutate(pm = ifelse(geo == "DE" & year == 2015 & quintile == "QUINTILE2" & 
                       coicop == "CP044", 376-6-70-284,pm)) %>%
  mutate(pm = ifelse(geo == "DE" & year == 2015 & quintile == "QUINTILE3" & 
                       coicop == "CP044", 351-9-67-251,pm)) %>%
  mutate(pm = ifelse(geo == "DE" & year == 2015 & quintile == "QUINTILE4" & 
                       coicop == "CP044", 326-10-61-228,pm)) %>%
  mutate(pm = ifelse(geo == "DE" & year == 2015 & quintile == "QUINTILE5" & 
                       coicop == "CP044", 280-9-49-195,pm))

join_expenditures = mean_expenditure_by_coicop_sector_long %>% 
  left_join(mean_expenditure_by_quintile_long, by = c("geo","quintile","year")) %>%
  mutate(euro_pps = as.numeric(euro_pps),
         pm = as.numeric(pm),
         euro_pps_coicop = pm*(euro_pps/1000))


# load margin tables

trade_and_transport = read.csv(paste0(data_dir_income_stratified_footprints, "/SNA_TABLE45_20042020103737298.csv")) %>%
  select(LOCATION, PRODUCT, Product, Year, Value) %>% 
  mutate(geo = dplyr::recode(LOCATION,"AUT" = "AT", 
                             "BEL" = "BE",
                             "CYP" = "CY",
                             "CZE" = "CZ",
                             "DNK" = "DK",
                             "EST" = "EE",
                             "FIN" = "FI",
                             "FRA" = "FR",
                             "DEU" = "DE",
                             "GRC" = "EL",
                             "HUN" = "HU",
                             "IRL" = "IE",
                             "ITA" = "IT",
                             "LVA" = "LV",
                             "LTU" = "LT",
                             "LUX" = "LU",
                             "MLT" = "MT",
                             "MNE" = "ME",
                             "NLD" = "NL",
                             "NOR" = "NO",
                             "POL" = "PL",
                             "PRT" = "PT",
                             "ROU" = "RO",
                             "SRB" = "RS",
                             "SVK" = "SK",
                             "SVN" = "SI",
                             "ESP" = "ES",
                             "SWE" = "SE",
                             "CHE" = "CH",
                             "MKD" = "MK",
                             "TUR" = "TR",
                             "GBR" = "UK",
                             "BGR" = "BG",
                             "HRV" = "HR")) %>%
  select(geo, Year, PRODUCT, Value) %>%
  rename(year = Year,
         trade_and_transport = Value) %>%
  mutate(trade_and_transport = trade_and_transport/100) %>%
  rename(geo_join = geo)



taxes_less_subsidies = read.csv(paste0(data_dir_income_stratified_footprints, "/SNA_TABLE45_20042020104120395.csv")) %>%
  select(LOCATION, PRODUCT, Product, Year, Value) %>%
  mutate(geo = dplyr::recode(LOCATION,"AUT" = "AT", 
                             "BEL" = "BE",
                             "CYP" = "CY",
                             "CZE" = "CZ",
                             "DNK" = "DK",
                             "EST" = "EE",
                             "FIN" = "FI",
                             "FRA" = "FR",
                             "DEU" = "DE",
                             "GRC" = "EL",
                             "HUN" = "HU",
                             "IRL" = "IE",
                             "ITA" = "IT",
                             "LVA" = "LV",
                             "LTU" = "LT",
                             "LUX" = "LU",
                             "MLT" = "MT",
                             "MNE" = "ME",
                             "NLD" = "NL",
                             "NOR" = "NO",
                             "POL" = "PL",
                             "PRT" = "PT",
                             "ROU" = "RO",
                             "SRB" = "RS",
                             "SVK" = "SK",
                             "SVN" = "SI",
                             "ESP" = "ES",
                             "SWE" = "SE",
                             "CHE" = "CH",
                             "MKD" = "MK",
                             "TUR" = "TR",
                             "GBR" = "UK",
                             "BGR" = "BG",
                             "HRV" = "HR")) %>%
  select(geo, Year, PRODUCT, Value) %>%
  rename(year = Year,
         taxes_less_subsidies = Value) %>%
  mutate(taxes_less_subsidies = taxes_less_subsidies/100) %>%
  rename(geo_join = geo)

# create margins dataframe

geo_real = rep(c("AT", 
                 "BE",
                 "CY",
                 "CZ",
                 "DK",
                 "EE",
                 "FI",
                 "FR",
                 "DE",
                 "EL",
                 "HU",
                 "IE",
                 "IT",
                 "LV",
                 "LT",
                 "LU",
                 "MT",
                 "ME",
                 "NL",
                 "NO",
                 "PL",
                 "PT",
                 "RO",
                 "RS",
                 "SK",
                 "SI",
                 "ES",
                 "SE",
                 "MK",
                 "TR",
                 "UK",
                 "BG",
                 "HR"),each = 16)

geo_join = rep(c("AT", 
                 "BE",
                 "CY",
                 "CZ",
                 "DK",
                 "LV",
                 "FI",
                 "FR",
                 "AT",
                 "EL",
                 "HU",
                 "UK",
                 "IT",
                 "LV",
                 "LV",
                 "LU",
                 "MT",
                 "ME",
                 "NL",
                 "FI",
                 "PL",
                 "PT",
                 "RO",
                 "RS",
                 "SK",
                 "SI",
                 "PT",
                 "FI",
                 "MK",
                 "BG",
                 "UK",
                 "BG",
                 "HR"),each = 16)

year = rep(2010,length(geo_real))

PRODUCT = c("P10_12",
            "P13_15",
            "P68A",
            "PF",
            "PE",
            "PD",
            "PC",
            "PQ",
            "P29",
            "P19",
            "P30",
            "P61",
            "PR",
            "PP",
            "PI",
            "PS")

margin_sectors = data.frame(geo_real,geo_join,year,PRODUCT)

# join everything - and impute

margins = margin_sectors %>%
  left_join(taxes_less_subsidies, by = c("geo_join","year","PRODUCT")) %>%
  left_join(trade_and_transport, by = c("geo_join","year","PRODUCT")) %>%
  select(-geo_join) %>%
  rename(geo = geo_real) %>%
  mutate(taxes_less_subsidies = ifelse(geo == "CZ" & PRODUCT == "P68A", 0, taxes_less_subsidies)) %>%
  mutate(trade_and_transport = ifelse(geo == "CZ" & PRODUCT == "P68A", 0, trade_and_transport)) %>%
  mutate(taxes_less_subsidies = ifelse(geo == "SK" & PRODUCT == "P68A", 0, taxes_less_subsidies)) %>%
  mutate(trade_and_transport = ifelse(geo == "SK" & PRODUCT == "P68A", 0, trade_and_transport)) %>%
  select(-year)


# join margin data to join_expenditures 

with_margins = join_expenditures %>%
  mutate(year = as.numeric(year),
         PRODUCT = dplyr::recode(coicop,
                                 "CP011" =  "P10_12",
                                 "CP012" =  "P10_12",
                                 "CP02" = "P10_12",
                                 "CP03" = "P13_15",
                                 "rent" = "P68A",
                                 "CP043" = "PF",
                                 "CP044" = "PE",
                                 "CP045" = "PD",
                                 "CP05" = "PC",
                                 "CP06" = "PQ",
                                 "CP071" = "P29",
                                 "CP072" = "P19",
                                 "CP073" = "P30",
                                 "CP08" = "P61",
                                 "CP09" = "PR",
                                 "CP10" = "PP",
                                 "CP11" = "PI",
                                 "CP12" = "PS")) %>%
  left_join(margins, by = c("geo","PRODUCT")) %>%
  mutate(euro_pps_coicop_bp = euro_pps_coicop*(1 - (trade_and_transport + taxes_less_subsidies))) 


# re-create expenditure 

mean_expenditure_by_quintile_long_bp = with_margins %>%
  group_by(quintile,geo,year) %>%
  summarise(euro_pps_bp = sum(euro_pps_coicop_bp, na.rm = TRUE))


mean_expenditure_by_coicop_sector_long_bp = with_margins %>%
  left_join(mean_expenditure_by_quintile_long_bp, by = c("quintile","geo","year")) %>%
  mutate(pm_bp = (euro_pps_coicop_bp/euro_pps_bp)*1000) %>%
  select(quintile,coicop,geo,year,pm_bp)


###

shares = join_expenditures %>%
  group_by(coicop,geo,year) %>%
  mutate(share = euro_pps_coicop/sum(euro_pps_coicop))


################################################### !!!! method 2 - IXI version - PPS HH NO RENT !!!! ####################################################
##########################################################################################################################################################
##########################################################################################################################################################

# Exiobase - ixi version

years_exb_ixi = c(2005,2010,2015)


Eurostat_countries_hh_fd = NULL

total_fd = NULL

TIVs = NULL

domestic_TIVs = NULL

europe_TIVs = NULL

national_fp = NULL

for (i in years_exb_ixi){
  year_current = i
  
  Exiobase_FD =  read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/FD_",year_current,"_ixi.csv"))[,-1]
  
  # select household final demand vectors for relevant countries - figure out how to soft code this
  
  
  AT = Exiobase_FD[,1]
  BE = Exiobase_FD[,8]
  BG = Exiobase_FD[,15]
  CY = Exiobase_FD[,22]
  CZ = Exiobase_FD[,29]
  DE = Exiobase_FD[,36]
  DK = Exiobase_FD[,43]
  EE = Exiobase_FD[,50]
  EL = Exiobase_FD[,78]
  ES = Exiobase_FD[,57]
  FI = Exiobase_FD[,64]
  FR = Exiobase_FD[,71]
  HR = Exiobase_FD[,85]
  HU = Exiobase_FD[,92]
  IE = Exiobase_FD[,99]
  IT = Exiobase_FD[,106]
  LT = Exiobase_FD[,113]
  LU = Exiobase_FD[,120]
  LV = Exiobase_FD[,127]
  MT = Exiobase_FD[,134]
  NL = Exiobase_FD[,141]
  NO = Exiobase_FD[,288]
  PL = Exiobase_FD[,148]
  PT = Exiobase_FD[,155]
  RO = Exiobase_FD[,162]
  SE = Exiobase_FD[,169]
  SI = Exiobase_FD[,176]
  SK = Exiobase_FD[,183]
  TR = Exiobase_FD[,274]
  UK = Exiobase_FD[,190]
  
  Eurostat_countries = cbind(AT,BE,BG,CY,CZ,DE,DK,EE,EL,ES,FI,FR,HR,HU,IE,IT,LT,LU,LV,MT,NL,NO,PL,PT,RO,SE,SI,SK,TR,UK)
  
  year = as.character(rep(year_current,nrow(Eurostat_countries)))
  look_Eurostat_countries = cbind(year,Eurostat_countries) 
  
  Eurostat_countries_hh_fd = rbind(Eurostat_countries_hh_fd,look_Eurostat_countries)
  
  
  eurostat_countries_colsums = colSums(Eurostat_countries)
  
  geo = data.frame(c("AT","BE","BG","CY","CZ","DE","DK","EE","EL","ES","FI",
                     "FR","HR","HU","IE","IT","LT","LU","LV","MT","NL","NO",
                     "PL","PT","RO","SE","SI","SK","TR","UK")) %>% rename_at(1,~"geo")
  
  year = rep(year_current, 30)
  
  fds = cbind(geo,year,eurostat_countries_colsums) %>% slice(rep(1:n(), each = 5))
  
  quintiles = data.frame(rep(c("QUINTILE1","QUINTILE2","QUINTILE3","QUINTILE4","QUINTILE5"),30)) %>% rename_at(1,~"quintile")
  
  total_fd_year_current = cbind(fds,quintiles)
  
  total_fd = rbind(total_fd, total_fd_year_current)
  
  # labels
  
  Exiobase_T_labels = read.csv(paste0(data_dir_income_stratified_footprints, "/Exiobase_T_labels_ixi_w_coicop_mapping.csv")) %>%
    mutate(V1 = dplyr::recode(V1,"GR" = "EL","GB" = "UK")) 
  
  # TIVs
  
  # CO2 - combustion - air
  
  Exiobase_TIV_co2_combustion_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_co2_combustion_air_",year_current,"_ixi.csv"))[,-1]
  
  Exiobase_TIV_country_breakdown_co2_combustion_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_co2_combustion_air_", year_current,"_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    gather(country, TIV_CO2_combustion_domestic)
  
  Exiobase_TIV_europe_breakdown_co2_combustion_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_co2_combustion_air_", year_current,"_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    mutate_at(vars(AT:ZA), funs(as.numeric(as.character(.)))) %>%
    mutate(TIV_CO2_combustion_europe = AT +
             BE + BG + CY + CZ +
             DE + DK + EE + 
             ES + FI + FR + 
             GB + GR + HR +
             HU + IE + IT +
             LT + LU + LV +
             MT + NL + PL +
             PT + TR + SK + 
             SI + SE + RO +
             NO,
           TIV_CO2_combustion_not_europe = AU +
             BR + CA + CH + CN +
             ID + IN + JP + KR +
             MX + RU + TW + US + 
             WA + WE + WF + WL + WM +
             ZA) %>%
    select(TIV_CO2_combustion_europe,TIV_CO2_combustion_not_europe)
  
  # CO2 - noncombustion - cement - air
  
  Exiobase_TIV_co2_noncombustion_cement_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_co2_noncombustion_cement_air_",year_current,"_ixi.csv"))[,-1]
  
  Exiobase_TIV_country_breakdown_co2_noncombustion_cement_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_co2_noncombustion_cement_air_",year_current,"_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    gather(country, TIV_CO2_noncombustion_cement_domestic)
  
  Exiobase_TIV_europe_breakdown_co2_noncombustion_cement_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_co2_noncombustion_cement_air_",year_current,"_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    mutate_at(vars(AT:ZA), funs(as.numeric(as.character(.)))) %>%
    mutate(TIV_CO2_noncombustion_cement_europe = AT +
             BE + BG + CY + CZ +
             DE + DK + EE + 
             ES + FI + FR + 
             GB + GR + HR +
             HU + IE + IT +
             LT + LU + LV +
             MT + NL + PL +
             PT + TR + SK + 
             SI + SE + RO +
             NO,
           TIV_CO2_noncombustion_cement_not_europe = AU +
             BR + CA + CH + CN +
             ID + IN + JP + KR +
             MX + RU + TW + US + 
             WA + WE + WF + WL + WM +
             ZA) %>%
    select(TIV_CO2_noncombustion_cement_europe,TIV_CO2_noncombustion_cement_not_europe)
  
  # CO2 - noncombustion - lime - air
  
  Exiobase_TIV_co2_noncombustion_lime_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_co2_noncombustion_lime_air_",year_current,"_ixi.csv"))[,-1]
  
  Exiobase_TIV_country_breakdown_co2_noncombustion_lime_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_co2_noncombustion_lime_air_",year_current,"_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    gather(country, TIV_CO2_noncombustion_lime_domestic)
  
  Exiobase_TIV_europe_breakdown_co2_noncombustion_lime_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_co2_noncombustion_lime_air_",year_current,"_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    mutate_at(vars(AT:ZA), funs(as.numeric(as.character(.)))) %>%
    mutate(TIV_CO2_noncombustion_lime_europe = AT +
             BE + BG + CY + CZ +
             DE + DK + EE + 
             ES + FI + FR + 
             GB + GR + HR +
             HU + IE + IT +
             LT + LU + LV +
             MT + NL + PL +
             PT + TR + SK + 
             SI + SE + RO +
             NO,
           TIV_CO2_noncombustion_lime_not_europe = AU +
             BR + CA + CH + CN +
             ID + IN + JP + KR +
             MX + RU + TW + US + 
             WA + WE + WF + WL + WM +
             ZA) %>%
    select(TIV_CO2_noncombustion_lime_europe,TIV_CO2_noncombustion_lime_not_europe)
  
  # CO2 - agriculture - peat decay - air
  
  Exiobase_TIV_co2_agriculture_peatdecay_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_co2_agriculture_peatdecay_air_",year_current,"_ixi.csv"))[,-1]
  
  Exiobase_TIV_country_breakdown_co2_agriculture_peatdecay_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_co2_agriculture_peatdecay_air_",year_current,"_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    gather(country, TIV_CO2_agriculture_peatdecay_domestic)
  
  Exiobase_TIV_europe_breakdown_co2_agriculture_peatdecay_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_co2_agriculture_peatdecay_air_",year_current,"_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    mutate_at(vars(AT:ZA), funs(as.numeric(as.character(.)))) %>%
    mutate(TIV_CO2_agriculture_peatdecay_europe = AT +
             BE + BG + CY + CZ +
             DE + DK + EE + 
             ES + FI + FR + 
             GB + GR + HR +
             HU + IE + IT +
             LT + LU + LV +
             MT + NL + PL +
             PT + TR + SK + 
             SI + SE + RO +
             NO,
           TIV_CO2_agriculture_peatdecay_not_europe = AU +
             BR + CA + CH + CN +
             ID + IN + JP + KR +
             MX + RU + TW + US + 
             WA + WE + WF + WL + WM +
             ZA) %>%
    select(TIV_CO2_agriculture_peatdecay_europe,TIV_CO2_agriculture_peatdecay_not_europe)
  
  # CO2 - waste - biogenic - air
  
  Exiobase_TIV_co2_waste_biogenic_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_co2_biogenic_air_",year_current,"_ixi.csv"))[,-1]
  
  Exiobase_TIV_country_breakdown_co2_waste_biogenic_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_co2_biogenic_air_",year_current,"_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    gather(country, TIV_CO2_waste_biogenic_domestic)
  
  Exiobase_TIV_europe_breakdown_co2_waste_biogenic_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_co2_biogenic_air_",year_current,"_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    mutate_at(vars(AT:ZA), funs(as.numeric(as.character(.)))) %>%
    mutate(TIV_CO2_waste_biogenic_europe = AT +
             BE + BG + CY + CZ +
             DE + DK + EE + 
             ES + FI + FR + 
             GB + GR + HR +
             HU + IE + IT +
             LT + LU + LV +
             MT + NL + PL +
             PT + TR + SK + 
             SI + SE + RO +
             NO,
           TIV_CO2_waste_biogenic_not_europe = AU +
             BR + CA + CH + CN +
             ID + IN + JP + KR +
             MX + RU + TW + US + 
             WA + WE + WF + WL + WM +
             ZA) %>%
    select(TIV_CO2_waste_biogenic_europe,TIV_CO2_waste_biogenic_not_europe)
  
  # CO2 - waste - fossil - air
  
  Exiobase_TIV_co2_waste_fossil_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_co2_waste_fossil_air_",year_current,"_ixi.csv"))[,-1]
  
  Exiobase_TIV_country_breakdown_co2_waste_fossil_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_co2_waste_fossil_air_",year_current,"_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    gather(country, TIV_CO2_waste_fossil_domestic)
  
  Exiobase_TIV_europe_breakdown_co2_waste_fossil_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_co2_waste_fossil_air_",year_current,"_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    mutate_at(vars(AT:ZA), funs(as.numeric(as.character(.)))) %>%
    mutate(TIV_CO2_waste_fossil_europe = AT +
             BE + BG + CY + CZ +
             DE + DK + EE + 
             ES + FI + FR + 
             GB + GR + HR +
             HU + IE + IT +
             LT + LU + LV +
             MT + NL + PL +
             PT + TR + SK + 
             SI + SE + RO +
             NO,
           TIV_CO2_waste_fossil_not_europe = AU +
             BR + CA + CH + CN +
             ID + IN + JP + KR +
             MX + RU + TW + US + 
             WA + WE + WF + WL + WM +
             ZA) %>%
    select(TIV_CO2_waste_fossil_europe,TIV_CO2_waste_fossil_not_europe)
  

  # CH4 - combustion -air
  
  Exiobase_TIV_ch4_combustion_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_ch4_CO2eq_combustion_air_",year_current,"_ixi.csv"))[,-1]
  
  Exiobase_TIV_country_breakdown_ch4_combustion_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_ch4_CO2eq_combustion_air_", year_current, "_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    gather(country, TIV_CH4_combustion_domestic)
  
  Exiobase_TIV_europe_breakdown_ch4_combustion_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_ch4_CO2eq_combustion_air_", year_current, "_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    mutate_at(vars(AT:ZA), funs(as.numeric(as.character(.)))) %>%
    mutate(TIV_CH4_combustion_europe = AT +
             BE + BG + CY + CZ +
             DE + DK + EE + 
             ES + FI + FR + 
             GB + GR + HR +
             HU + IE + IT +
             LT + LU + LV +
             MT + NL + PL +
             PT + TR + SK + 
             SI + SE + RO +
             NO,
           TIV_CH4_combustion_not_europe = AU +
             BR + CA + CH + CN +
             ID + IN + JP + KR +
             MX + RU + TW + US + 
             WA + WE + WF + WL + WM +
             ZA) %>%
    select(TIV_CH4_combustion_europe,TIV_CH4_combustion_not_europe)
  
  # CH4 - noncombustion - gas - air
  
  Exiobase_TIV_ch4_noncombustion_gas_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_ch4_CO2eq_noncombustion_gas_air_",year_current,"_ixi.csv"))[,-1]
  
  Exiobase_TIV_country_breakdown_ch4_noncombustion_gas_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_ch4_CO2eq_noncombustion_gas_air_", year_current, "_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    gather(country, TIV_CH4_noncombustion_gas_domestic)
  
  Exiobase_TIV_europe_breakdown_ch4_noncombustion_gas_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_ch4_CO2eq_noncombustion_gas_air_", year_current, "_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    mutate_at(vars(AT:ZA), funs(as.numeric(as.character(.)))) %>%
    mutate(TIV_CH4_noncombustion_gas_europe = AT +
             BE + BG + CY + CZ +
             DE + DK + EE + 
             ES + FI + FR + 
             GB + GR + HR +
             HU + IE + IT +
             LT + LU + LV +
             MT + NL + PL +
             PT + TR + SK + 
             SI + SE + RO +
             NO,
           TIV_CH4_noncombustion_gas_not_europe = AU +
             BR + CA + CH + CN +
             ID + IN + JP + KR +
             MX + RU + TW + US + 
             WA + WE + WF + WL + WM +
             ZA) %>%
    select(TIV_CH4_noncombustion_gas_europe,TIV_CH4_noncombustion_gas_not_europe)
  
  # CH4 - noncombustion - oil - air
  
  Exiobase_TIV_ch4_noncombustion_oil_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_ch4_CO2eq_noncombustion_oil_air_",year_current,"_ixi.csv"))[,-1]
  
  Exiobase_TIV_country_breakdown_ch4_noncombustion_oil_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_ch4_CO2eq_noncombustion_oil_air_", year_current, "_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    gather(country, TIV_CH4_noncombustion_oil_domestic)
  
  Exiobase_TIV_europe_breakdown_ch4_noncombustion_oil_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_ch4_CO2eq_noncombustion_oil_air_", year_current, "_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    mutate_at(vars(AT:ZA), funs(as.numeric(as.character(.)))) %>%
    mutate(TIV_CH4_noncombustion_oil_europe = AT +
             BE + BG + CY + CZ +
             DE + DK + EE + 
             ES + FI + FR + 
             GB + GR + HR +
             HU + IE + IT +
             LT + LU + LV +
             MT + NL + PL +
             PT + TR + SK + 
             SI + SE + RO +
             NO,
           TIV_CH4_noncombustion_oil_not_europe = AU +
             BR + CA + CH + CN +
             ID + IN + JP + KR +
             MX + RU + TW + US + 
             WA + WE + WF + WL + WM +
             ZA) %>%
    select(TIV_CH4_noncombustion_oil_europe,TIV_CH4_noncombustion_oil_not_europe)
  
  # CH4 - noncombustion - anthracite - air
  
  Exiobase_TIV_ch4_noncombustion_anthracite_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_ch4_CO2eq_noncombustion_anthracite_air_",year_current,"_ixi.csv"))[,-1]
  
  Exiobase_TIV_country_breakdown_ch4_noncombustion_anthracite_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_ch4_CO2eq_noncombustion_anthracite_air_", year_current, "_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    gather(country, TIV_CH4_noncombustion_anthracite_domestic)
  
  Exiobase_TIV_europe_breakdown_ch4_noncombustion_anthracite_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_ch4_CO2eq_noncombustion_anthracite_air_", year_current, "_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    mutate_at(vars(AT:ZA), funs(as.numeric(as.character(.)))) %>%
    mutate(TIV_CH4_noncombustion_anthracite_europe = AT +
             BE + BG + CY + CZ +
             DE + DK + EE + 
             ES + FI + FR + 
             GB + GR + HR +
             HU + IE + IT +
             LT + LU + LV +
             MT + NL + PL +
             PT + TR + SK + 
             SI + SE + RO +
             NO,
           TIV_CH4_noncombustion_anthracite_not_europe = AU +
             BR + CA + CH + CN +
             ID + IN + JP + KR +
             MX + RU + TW + US + 
             WA + WE + WF + WL + WM +
             ZA) %>%
    select(TIV_CH4_noncombustion_anthracite_europe,TIV_CH4_noncombustion_anthracite_not_europe)
  
  # CH4 - noncombustion - bituminouscoal - air
  
  Exiobase_TIV_ch4_noncombustion_bituminouscoal_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_ch4_CO2eq_noncombustion_bituminouscoal_air_",year_current,"_ixi.csv"))[,-1]
  
  Exiobase_TIV_country_breakdown_ch4_noncombustion_bituminouscoal_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_ch4_CO2eq_noncombustion_bituminouscoal_air_", year_current, "_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    gather(country, TIV_CH4_noncombustion_bituminouscoal_domestic)
  
  Exiobase_TIV_europe_breakdown_ch4_noncombustion_bituminouscoal_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_ch4_CO2eq_noncombustion_bituminouscoal_air_", year_current, "_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    mutate_at(vars(AT:ZA), funs(as.numeric(as.character(.)))) %>%
    mutate(TIV_CH4_noncombustion_bituminouscoal_europe = AT +
             BE + BG + CY + CZ +
             DE + DK + EE + 
             ES + FI + FR + 
             GB + GR + HR +
             HU + IE + IT +
             LT + LU + LV +
             MT + NL + PL +
             PT + TR + SK + 
             SI + SE + RO +
             NO,
           TIV_CH4_noncombustion_bituminouscoal_not_europe = AU +
             BR + CA + CH + CN +
             ID + IN + JP + KR +
             MX + RU + TW + US + 
             WA + WE + WF + WL + WM +
             ZA) %>%
    select(TIV_CH4_noncombustion_bituminouscoal_europe,TIV_CH4_noncombustion_bituminouscoal_not_europe)
  
  # CH4 - noncombustion - cokingcoal - air
  
  Exiobase_TIV_ch4_noncombustion_cokingcoal_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_ch4_CO2eq_noncombustion_cokingcoal_air_",year_current,"_ixi.csv"))[,-1]
  
  Exiobase_TIV_country_breakdown_ch4_noncombustion_cokingcoal_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_ch4_CO2eq_noncombustion_cokingcoal_air_", year_current, "_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    gather(country, TIV_CH4_noncombustion_cokingcoal_domestic)
  
  Exiobase_TIV_europe_breakdown_ch4_noncombustion_cokingcoal_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_ch4_CO2eq_noncombustion_cokingcoal_air_", year_current, "_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    mutate_at(vars(AT:ZA), funs(as.numeric(as.character(.)))) %>%
    mutate(TIV_CH4_noncombustion_cokingcoal_europe = AT +
             BE + BG + CY + CZ +
             DE + DK + EE + 
             ES + FI + FR + 
             GB + GR + HR +
             HU + IE + IT +
             LT + LU + LV +
             MT + NL + PL +
             PT + TR + SK + 
             SI + SE + RO +
             NO,
           TIV_CH4_noncombustion_cokingcoal_not_europe = AU +
             BR + CA + CH + CN +
             ID + IN + JP + KR +
             MX + RU + TW + US + 
             WA + WE + WF + WL + WM +
             ZA) %>%
    select(TIV_CH4_noncombustion_cokingcoal_europe,TIV_CH4_noncombustion_cokingcoal_not_europe)
  
  # CH4 - noncombustion - lignite - air
  
  Exiobase_TIV_ch4_noncombustion_lignite_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_ch4_CO2eq_noncombustion_lignite_air_",year_current,"_ixi.csv"))[,-1]
  
  Exiobase_TIV_country_breakdown_ch4_noncombustion_lignite_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_ch4_CO2eq_noncombustion_lignite_air_", year_current, "_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    gather(country, TIV_CH4_noncombustion_lignite_domestic)
  
  Exiobase_TIV_europe_breakdown_ch4_noncombustion_lignite_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_ch4_CO2eq_noncombustion_lignite_air_", year_current, "_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    mutate_at(vars(AT:ZA), funs(as.numeric(as.character(.)))) %>%
    mutate(TIV_CH4_noncombustion_lignite_europe = AT +
             BE + BG + CY + CZ +
             DE + DK + EE + 
             ES + FI + FR + 
             GB + GR + HR +
             HU + IE + IT +
             LT + LU + LV +
             MT + NL + PL +
             PT + TR + SK + 
             SI + SE + RO +
             NO,
           TIV_CH4_noncombustion_lignite_not_europe = AU +
             BR + CA + CH + CN +
             ID + IN + JP + KR +
             MX + RU + TW + US + 
             WA + WE + WF + WL + WM +
             ZA) %>%
    select(TIV_CH4_noncombustion_lignite_europe,TIV_CH4_noncombustion_lignite_not_europe)
  
  # CH4 - noncombustion - subbituminouscoal - air
  
  Exiobase_TIV_ch4_noncombustion_subbituminouscoal_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_ch4_CO2eq_noncombustion_subbituminouscoal_air_",year_current,"_ixi.csv"))[,-1]
  
  Exiobase_TIV_country_breakdown_ch4_noncombustion_subbituminouscoal_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_ch4_CO2eq_noncombustion_subbituminouscoal_air_", year_current, "_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    gather(country, TIV_CH4_noncombustion_subbituminouscoal_domestic)
  
  Exiobase_TIV_europe_breakdown_ch4_noncombustion_subbituminouscoal_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_ch4_CO2eq_noncombustion_subbituminouscoal_air_", year_current, "_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    mutate_at(vars(AT:ZA), funs(as.numeric(as.character(.)))) %>%
    mutate(TIV_CH4_noncombustion_subbituminouscoal_europe = AT +
             BE + BG + CY + CZ +
             DE + DK + EE + 
             ES + FI + FR + 
             GB + GR + HR +
             HU + IE + IT +
             LT + LU + LV +
             MT + NL + PL +
             PT + TR + SK + 
             SI + SE + RO +
             NO,
           TIV_CH4_noncombustion_subbituminouscoal_not_europe = AU +
             BR + CA + CH + CN +
             ID + IN + JP + KR +
             MX + RU + TW + US + 
             WA + WE + WF + WL + WM +
             ZA) %>%
    select(TIV_CH4_noncombustion_subbituminouscoal_europe,TIV_CH4_noncombustion_subbituminouscoal_not_europe)
  
  # CH4 - noncombustion - oilrefinery - air
  
  Exiobase_TIV_ch4_noncombustion_oilrefinery_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_ch4_CO2eq_noncombustion_oilrefinery_air_",year_current,"_ixi.csv"))[,-1]
  
  Exiobase_TIV_country_breakdown_ch4_noncombustion_oilrefinery_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_ch4_CO2eq_noncombustion_oilrefinery_air_", year_current, "_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    gather(country, TIV_CH4_noncombustion_oilrefinery_domestic)
  
  Exiobase_TIV_europe_breakdown_ch4_noncombustion_oilrefinery_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_ch4_CO2eq_noncombustion_oilrefinery_air_", year_current, "_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    mutate_at(vars(AT:ZA), funs(as.numeric(as.character(.)))) %>%
    mutate(TIV_CH4_noncombustion_oilrefinery_europe = AT +
             BE + BG + CY + CZ +
             DE + DK + EE + 
             ES + FI + FR + 
             GB + GR + HR +
             HU + IE + IT +
             LT + LU + LV +
             MT + NL + PL +
             PT + TR + SK + 
             SI + SE + RO +
             NO,
           TIV_CH4_noncombustion_oilrefinery_not_europe = AU +
             BR + CA + CH + CN +
             ID + IN + JP + KR +
             MX + RU + TW + US + 
             WA + WE + WF + WL + WM +
             ZA) %>%
    select(TIV_CH4_noncombustion_oilrefinery_europe,TIV_CH4_noncombustion_oilrefinery_not_europe)
  
  # CH4 - agriculture - air
  
  Exiobase_TIV_ch4_agriculture_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_ch4_CO2eq_agriculture_air_",year_current,"_ixi.csv"))[,-1]
  
  Exiobase_TIV_country_breakdown_ch4_agriculture_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_ch4_CO2eq_agriculture_air_", year_current, "_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    gather(country, TIV_CH4_agriculture_domestic)
  
  Exiobase_TIV_europe_breakdown_ch4_agriculture_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_ch4_CO2eq_agriculture_air_", year_current, "_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    mutate_at(vars(AT:ZA), funs(as.numeric(as.character(.)))) %>%
    mutate(TIV_CH4_agriculture_europe = AT +
             BE + BG + CY + CZ +
             DE + DK + EE + 
             ES + FI + FR + 
             GB + GR + HR +
             HU + IE + IT +
             LT + LU + LV +
             MT + NL + PL +
             PT + TR + SK + 
             SI + SE + RO +
             NO,
           TIV_CH4_agriculture_not_europe = AU +
             BR + CA + CH + CN +
             ID + IN + JP + KR +
             MX + RU + TW + US + 
             WA + WE + WF + WL + WM +
             ZA) %>%
    select(TIV_CH4_agriculture_europe,TIV_CH4_agriculture_not_europe)
  
  # CH4 - waste - air
  
  Exiobase_TIV_ch4_waste_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_ch4_CO2eq_waste_air_",year_current,"_ixi.csv"))[,-1]
  
  Exiobase_TIV_country_breakdown_ch4_waste_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_ch4_CO2eq_waste_air_", year_current, "_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    gather(country, TIV_CH4_waste_domestic)
  
  Exiobase_TIV_europe_breakdown_ch4_waste_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_ch4_CO2eq_waste_air_", year_current, "_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    mutate_at(vars(AT:ZA), funs(as.numeric(as.character(.)))) %>%
    mutate(TIV_CH4_waste_europe = AT +
             BE + BG + CY + CZ +
             DE + DK + EE + 
             ES + FI + FR + 
             GB + GR + HR +
             HU + IE + IT +
             LT + LU + LV +
             MT + NL + PL +
             PT + TR + SK + 
             SI + SE + RO +
             NO,
           TIV_CH4_waste_not_europe = AU +
             BR + CA + CH + CN +
             ID + IN + JP + KR +
             MX + RU + TW + US + 
             WA + WE + WF + WL + WM +
             ZA) %>%
    select(TIV_CH4_waste_europe,TIV_CH4_waste_not_europe)
  
  
  # N2O - combustion - air
  
  Exiobase_TIV_n2o_combustion_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_n2o_CO2eq_combustion_air_",year_current,"_ixi.csv"))[,-1]
  
  Exiobase_TIV_country_breakdown_n2o_combustion_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_n2o_CO2eq_combustion_air_",year_current,"_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    gather(country, TIV_N2O_combustion_domestic)
  
  Exiobase_TIV_europe_breakdown_n2o_combustion_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_n2o_CO2eq_combustion_air_",year_current,"_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    mutate_at(vars(AT:ZA), funs(as.numeric(as.character(.)))) %>%
    mutate(TIV_N2O_combustion_europe = AT +
             BE + BG + CY + CZ +
             DE + DK + EE + 
             ES + FI + FR + 
             GB + GR + HR +
             HU + IE + IT +
             LT + LU + LV +
             MT + NL + PL +
             PT + TR + SK + 
             SI + SE + RO +
             NO,
           TIV_N2O_combustion_not_europe = AU +
             BR + CA + CH + CN +
             ID + IN + JP + KR +
             MX + RU + TW + US + 
             WA + WE + WF + WL + WM +
             ZA) %>%
    select(TIV_N2O_combustion_europe,TIV_N2O_combustion_not_europe)
  
  # N2O - agriculture - air
  
  Exiobase_TIV_n2o_agriculture_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_n2o_CO2eq_agriculture_air_",year_current,"_ixi.csv"))[,-1]
  
  Exiobase_TIV_country_breakdown_n2o_agriculture_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_n2o_CO2eq_agriculture_air_",year_current,"_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    gather(country, TIV_N2O_agriculture_domestic)
  
  Exiobase_TIV_europe_breakdown_n2o_agriculture_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_n2o_CO2eq_agriculture_air_",year_current,"_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    mutate_at(vars(AT:ZA), funs(as.numeric(as.character(.)))) %>%
    mutate(TIV_N2O_agriculture_europe = AT +
             BE + BG + CY + CZ +
             DE + DK + EE + 
             ES + FI + FR + 
             GB + GR + HR +
             HU + IE + IT +
             LT + LU + LV +
             MT + NL + PL +
             PT + TR + SK + 
             SI + SE + RO +
             NO,
           TIV_N2O_agriculture_not_europe = AU +
             BR + CA + CH + CN +
             ID + IN + JP + KR +
             MX + RU + TW + US + 
             WA + WE + WF + WL + WM +
             ZA) %>%
    select(TIV_N2O_agriculture_europe,TIV_N2O_agriculture_not_europe)
  
  # SF6 - air
  
  Exiobase_TIV_sf6_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_sf6_CO2eq_air_",year_current,"_ixi.csv"))[,-1]
  
  Exiobase_TIV_country_breakdown_sf6_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_sf6_CO2eq_air_",year_current,"_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    gather(country, TIV_SF6_domestic)
  
  Exiobase_TIV_europe_breakdown_sf6_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_sf6_CO2eq_air_",year_current,"_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    mutate_at(vars(AT:ZA), funs(as.numeric(as.character(.)))) %>%
    mutate(TIV_SF6_europe = AT +
             BE + BG + CY + CZ +
             DE + DK + EE + 
             ES + FI + FR + 
             GB + GR + HR +
             HU + IE + IT +
             LT + LU + LV +
             MT + NL + PL +
             PT + TR + SK + 
             SI + SE + RO +
             NO,
           TIV_SF6_not_europe = AU +
             BR + CA + CH + CN +
             ID + IN + JP + KR +
             MX + RU + TW + US + 
             WA + WE + WF + WL + WM +
             ZA) %>%
    select(TIV_SF6_europe,TIV_SF6_not_europe)
  
  # HFC - air
  
  Exiobase_TIV_hfc_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_hfc_CO2eq_air_",year_current,"_ixi.csv"))[,-1]
  
  Exiobase_TIV_country_breakdown_hfc_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_hfc_CO2eq_air_",year_current,"_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    gather(country, TIV_HFC_domestic)
  
  Exiobase_TIV_europe_breakdown_hfc_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_hfc_CO2eq_air_",year_current,"_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    mutate_at(vars(AT:ZA), funs(as.numeric(as.character(.)))) %>%
    mutate(TIV_HFC_europe = AT +
             BE + BG + CY + CZ +
             DE + DK + EE + 
             ES + FI + FR + 
             GB + GR + HR +
             HU + IE + IT +
             LT + LU + LV +
             MT + NL + PL +
             PT + TR + SK + 
             SI + SE + RO +
             NO,
           TIV_HFC_not_europe = AU +
             BR + CA + CH + CN +
             ID + IN + JP + KR +
             MX + RU + TW + US + 
             WA + WE + WF + WL + WM +
             ZA) %>%
    select(TIV_HFC_europe,TIV_HFC_not_europe)
  
  # PFC - air
  
  Exiobase_TIV_pfc_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_pfc_CO2eq_air_",year_current,"_ixi.csv"))[,-1]
  
  Exiobase_TIV_country_breakdown_pfc_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_pfc_CO2eq_air_",year_current,"_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    gather(country, TIV_PFC_domestic)
  
  Exiobase_TIV_europe_breakdown_pfc_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_pfc_CO2eq_air_",year_current,"_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    mutate_at(vars(AT:ZA), funs(as.numeric(as.character(.)))) %>%
    mutate(TIV_PFC_europe = AT +
             BE + BG + CY + CZ +
             DE + DK + EE + 
             ES + FI + FR + 
             GB + GR + HR +
             HU + IE + IT +
             LT + LU + LV +
             MT + NL + PL +
             PT + TR + SK + 
             SI + SE + RO +
             NO,
           TIV_PFC_not_europe = AU +
             BR + CA + CH + CN +
             ID + IN + JP + KR +
             MX + RU + TW + US + 
             WA + WE + WF + WL + WM +
             ZA) %>%
    select(TIV_PFC_europe,TIV_PFC_not_europe)
  
  # Energy use
  
  Exiobase_TIV_energy_use_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_energy_carrier_use_",year_current,"_ixi.csv"))[,-1]
  
  Exiobase_TIV_country_breakdown_energy_use_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_energy_carrier_use_",year_current,"_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    gather(country, TIV_energy_domestic)
  
  Exiobase_TIV_europe_breakdown_energy_use_bp = read.csv(paste0(data_dir_exiobase, "/IOT_",year_current,"_ixi/TIV_country_breakdown_energy_carrier_use_",year_current,"_ixi.csv"))[,-1] %>%
    row_to_names(row_number = 1) %>%
    mutate_at(vars(AT:ZA), funs(as.numeric(as.character(.)))) %>%
    mutate(TIV_energy_europe = AT +
             BE + BG + CY + CZ +
             DE + DK + EE + 
             ES + FI + FR + 
             GB + GR + HR +
             HU + IE + IT +
             LT + LU + LV +
             MT + NL + PL +
             PT + TR + SK + 
             SI + SE + RO +
             NO,
           TIV_energy_not_europe = AU +
             BR + CA + CH + CN +
             ID + IN + JP + KR +
             MX + RU + TW + US + 
             WA + WE + WF + WL + WM +
             ZA) %>%
    select(TIV_energy_europe,TIV_energy_not_europe)
  
  # join with labels
  
  TIV_with_labels = cbind(Exiobase_T_labels,
                          t(Exiobase_TIV_co2_combustion_bp),
                          t(Exiobase_TIV_co2_noncombustion_cement_bp),
                          t(Exiobase_TIV_co2_noncombustion_lime_bp),
                          t(Exiobase_TIV_co2_agriculture_peatdecay_bp),
                          t(Exiobase_TIV_co2_waste_biogenic_bp),
                          t(Exiobase_TIV_co2_waste_fossil_bp),
                          t(Exiobase_TIV_ch4_combustion_bp),
                          t(Exiobase_TIV_ch4_noncombustion_gas_bp),
                          t(Exiobase_TIV_ch4_noncombustion_oil_bp),
                          t(Exiobase_TIV_ch4_noncombustion_anthracite_bp),
                          t(Exiobase_TIV_ch4_noncombustion_bituminouscoal_bp),
                          t(Exiobase_TIV_ch4_noncombustion_cokingcoal_bp),
                          t(Exiobase_TIV_ch4_noncombustion_lignite_bp),
                          t(Exiobase_TIV_ch4_noncombustion_subbituminouscoal_bp),
                          t(Exiobase_TIV_ch4_noncombustion_oilrefinery_bp),
                          t(Exiobase_TIV_ch4_agriculture_bp),
                          t(Exiobase_TIV_ch4_waste_bp),
                          t(Exiobase_TIV_n2o_combustion_bp),
                          t(Exiobase_TIV_n2o_agriculture_bp),
                          t(Exiobase_TIV_sf6_bp),
                          t(Exiobase_TIV_hfc_bp),
                          t(Exiobase_TIV_pfc_bp),
                          t(Exiobase_TIV_energy_use_bp)) %>% 
    rename(TIV_CO2_combustion = "t(Exiobase_TIV_co2_combustion_bp)",
           TIV_CO2_noncombustion_cement = "t(Exiobase_TIV_co2_noncombustion_cement_bp)",
           TIV_CO2_noncombustion_lime = "t(Exiobase_TIV_co2_noncombustion_lime_bp)",
           TIV_CO2_agriculture_peatdecay = "t(Exiobase_TIV_co2_agriculture_peatdecay_bp)",
           TIV_CO2_waste_biogenic = "t(Exiobase_TIV_co2_waste_biogenic_bp)",
           TIV_CO2_waste_fossil = "t(Exiobase_TIV_co2_waste_fossil_bp)",
           TIV_CH4_combustion = "t(Exiobase_TIV_ch4_combustion_bp)",
           TIV_CH4_noncombustion_gas = "t(Exiobase_TIV_ch4_noncombustion_gas_bp)",
           TIV_CH4_noncombustion_oil = "t(Exiobase_TIV_ch4_noncombustion_oil_bp)",
           TIV_CH4_noncombustion_anthracite = "t(Exiobase_TIV_ch4_noncombustion_anthracite_bp)",
           TIV_CH4_noncombustion_bituminouscoal = "t(Exiobase_TIV_ch4_noncombustion_bituminouscoal_bp)",
           TIV_CH4_noncombustion_cokingcoal = "t(Exiobase_TIV_ch4_noncombustion_cokingcoal_bp)",
           TIV_CH4_noncombustion_lignite = "t(Exiobase_TIV_ch4_noncombustion_lignite_bp)",
           TIV_CH4_noncombustion_subbituminouscoal = "t(Exiobase_TIV_ch4_noncombustion_subbituminouscoal_bp)",
           TIV_CH4_noncombustion_oilrefinery = "t(Exiobase_TIV_ch4_noncombustion_oilrefinery_bp)",
           TIV_CH4_agriculture = "t(Exiobase_TIV_ch4_agriculture_bp)",
           TIV_CH4_waste = "t(Exiobase_TIV_ch4_waste_bp)",
           TIV_N2O_combustion = "t(Exiobase_TIV_n2o_combustion_bp)",
           TIV_N2O_agriculture = "t(Exiobase_TIV_n2o_agriculture_bp)",
           TIV_SF6 = "t(Exiobase_TIV_sf6_bp)",
           TIV_HFC = "t(Exiobase_TIV_hfc_bp)",
           TIV_PFC = "t(Exiobase_TIV_pfc_bp)",
           TIV_energy = "t(Exiobase_TIV_energy_use_bp)") %>% 
    mutate(V1 = dplyr::recode(V1,"GR" = "EL","GB" = "UK"))  
  
  year = as.character(rep(year_current,nrow(TIV_with_labels)))
  
  look = cbind(year,TIV_with_labels) %>%
    rename(country_of_production = V1, sector = V2)
  
  TIVs = rbind(TIVs,look)
  
  # domestic TIVs
  
  domestic_TIV_with_labels = cbind(Exiobase_T_labels,
                                   Exiobase_TIV_country_breakdown_co2_combustion_bp,
                                   Exiobase_TIV_country_breakdown_co2_noncombustion_cement_bp %>% select(-country),
                                   Exiobase_TIV_country_breakdown_co2_noncombustion_lime_bp %>% select(-country),
                                   Exiobase_TIV_country_breakdown_co2_agriculture_peatdecay_bp %>% select(-country),
                                   Exiobase_TIV_country_breakdown_co2_waste_biogenic_bp %>% select(-country),
                                   Exiobase_TIV_country_breakdown_co2_waste_fossil_bp %>% select(-country),
                                   Exiobase_TIV_country_breakdown_ch4_combustion_bp %>% select(-country),
                                   Exiobase_TIV_country_breakdown_ch4_noncombustion_gas_bp %>% select(-country),
                                   Exiobase_TIV_country_breakdown_ch4_noncombustion_oil_bp %>% select(-country),
                                   Exiobase_TIV_country_breakdown_ch4_noncombustion_anthracite_bp %>% select(-country),
                                   Exiobase_TIV_country_breakdown_ch4_noncombustion_bituminouscoal_bp %>% select(-country),
                                   Exiobase_TIV_country_breakdown_ch4_noncombustion_cokingcoal_bp %>% select(-country),
                                   Exiobase_TIV_country_breakdown_ch4_noncombustion_lignite_bp %>% select(-country),
                                   Exiobase_TIV_country_breakdown_ch4_noncombustion_subbituminouscoal_bp %>% select(-country),
                                   Exiobase_TIV_country_breakdown_ch4_noncombustion_oilrefinery_bp %>% select(-country),
                                   Exiobase_TIV_country_breakdown_ch4_agriculture_bp %>% select(-country),
                                   Exiobase_TIV_country_breakdown_ch4_waste_bp %>% select(-country),
                                   Exiobase_TIV_country_breakdown_n2o_combustion_bp %>% select(-country),
                                   Exiobase_TIV_country_breakdown_n2o_agriculture_bp %>% select(-country),
                                   Exiobase_TIV_country_breakdown_sf6_bp %>% select(-country),
                                   Exiobase_TIV_country_breakdown_hfc_bp %>% select(-country),
                                   Exiobase_TIV_country_breakdown_pfc_bp %>% select(-country),
                                   Exiobase_TIV_country_breakdown_energy_use_bp %>% select(-country))  %>% 
    mutate(V1 = dplyr::recode(V1,"GR" = "EL","GB" = "UK"),
           country = dplyr::recode(country, "GR" = "EL", "GB" = "UK"))  
  
  year_domestic = as.character(rep(year_current,nrow(domestic_TIV_with_labels)))
  
  look_domestic = cbind(year_domestic,domestic_TIV_with_labels) %>% 
    rename(country_of_production = V1, sector = V2, geo = country, year = year_domestic) %>%
    mutate(TIV_CO2_combustion_domestic = as.numeric(TIV_CO2_combustion_domestic),
           TIV_CO2_noncombustion_cement_domestic = as.numeric(TIV_CO2_noncombustion_cement_domestic),
           TIV_CO2_noncombustion_lime_domestic = as.numeric(TIV_CO2_noncombustion_lime_domestic),
           TIV_CO2_agriculture_peatdecay_domestic = as.numeric(TIV_CO2_agriculture_peatdecay_domestic),
           TIV_CO2_waste_biogenic_domestic = as.numeric(TIV_CO2_waste_biogenic_domestic),
           TIV_CO2_waste_fossil_domestic = as.numeric(TIV_CO2_waste_fossil_domestic),
           TIV_CH4_combustion_domestic = as.numeric(TIV_CH4_combustion_domestic),
           TIV_CH4_noncombustion_gas_domestic = as.numeric(TIV_CH4_noncombustion_gas_domestic),
           TIV_CH4_noncombustion_oil_domestic = as.numeric(TIV_CH4_noncombustion_oil_domestic),
           TIV_CH4_noncombustion_anthracite_domestic = as.numeric(TIV_CH4_noncombustion_anthracite_domestic),
           TIV_CH4_noncombustion_bituminouscoal_domestic = as.numeric(TIV_CH4_noncombustion_bituminouscoal_domestic),
           TIV_CH4_noncombustion_cokingcoal_domestic = as.numeric(TIV_CH4_noncombustion_cokingcoal_domestic),
           TIV_CH4_noncombustion_lignite_domestic = as.numeric(TIV_CH4_noncombustion_lignite_domestic),
           TIV_CH4_noncombustion_subbituminouscoal_domestic = as.numeric(TIV_CH4_noncombustion_subbituminouscoal_domestic),
           TIV_CH4_noncombustion_oilrefinery_domestic = as.numeric(TIV_CH4_noncombustion_oilrefinery_domestic),
           TIV_CH4_agriculture_domestic = as.numeric(TIV_CH4_agriculture_domestic),
           TIV_CH4_waste_domestic = as.numeric(TIV_CH4_waste_domestic),
           TIV_N2O_combustion_domestic = as.numeric(TIV_N2O_combustion_domestic),
           TIV_N2O_agriculture_domestic = as.numeric(TIV_N2O_agriculture_domestic),
           TIV_SF6_domestic = as.numeric(TIV_SF6_domestic),
           TIV_HFC_domestic = as.numeric(TIV_HFC_domestic),
           TIV_PFC_domestic = as.numeric(TIV_PFC_domestic),
           TIV_energy_domestic = as.numeric(TIV_energy_domestic))
  
  domestic_TIVs = rbind(domestic_TIVs, look_domestic)
  
  # europe TIVs with labels 
  
  europe_TIV_with_labels = cbind(Exiobase_T_labels,
                                 Exiobase_TIV_europe_breakdown_co2_combustion_bp,
                                 Exiobase_TIV_europe_breakdown_co2_noncombustion_cement_bp,
                                 Exiobase_TIV_europe_breakdown_co2_noncombustion_lime_bp,
                                 Exiobase_TIV_europe_breakdown_co2_agriculture_peatdecay_bp,
                                 Exiobase_TIV_europe_breakdown_co2_waste_biogenic_bp,
                                 Exiobase_TIV_europe_breakdown_co2_waste_fossil_bp,
                                 Exiobase_TIV_europe_breakdown_ch4_combustion_bp,
                                 Exiobase_TIV_europe_breakdown_ch4_noncombustion_gas_bp,
                                 Exiobase_TIV_europe_breakdown_ch4_noncombustion_oil_bp,
                                 Exiobase_TIV_europe_breakdown_ch4_noncombustion_anthracite_bp,
                                 Exiobase_TIV_europe_breakdown_ch4_noncombustion_bituminouscoal_bp,
                                 Exiobase_TIV_europe_breakdown_ch4_noncombustion_cokingcoal_bp,
                                 Exiobase_TIV_europe_breakdown_ch4_noncombustion_lignite_bp,
                                 Exiobase_TIV_europe_breakdown_ch4_noncombustion_subbituminouscoal_bp,
                                 Exiobase_TIV_europe_breakdown_ch4_noncombustion_oilrefinery_bp,
                                 Exiobase_TIV_europe_breakdown_ch4_agriculture_bp,
                                 Exiobase_TIV_europe_breakdown_ch4_waste_bp,
                                 Exiobase_TIV_europe_breakdown_n2o_combustion_bp,
                                 Exiobase_TIV_europe_breakdown_n2o_agriculture_bp,
                                 Exiobase_TIV_europe_breakdown_sf6_bp,
                                 Exiobase_TIV_europe_breakdown_hfc_bp,
                                 Exiobase_TIV_europe_breakdown_pfc_bp,
                                 Exiobase_TIV_europe_breakdown_energy_use_bp) %>% 
    mutate(V1 = dplyr::recode(V1,"GR" = "EL","GB" = "UK")) 
  
  year_europe = as.character(rep(year_current,nrow(europe_TIV_with_labels)))
  
  look_europe = cbind(year_europe,europe_TIV_with_labels) %>% 
    rename(country_of_production = V1, sector = V2, year = year_europe) %>%
    mutate(TIV_CO2_combustion_europe = as.numeric(TIV_CO2_combustion_europe),
           TIV_CO2_noncombustion_cement_europe = as.numeric(TIV_CO2_noncombustion_cement_europe),
           TIV_CO2_noncombustion_lime_europe = as.numeric(TIV_CO2_noncombustion_lime_europe),
           TIV_CO2_agriculture_peatdecay_europe = as.numeric(TIV_CO2_agriculture_peatdecay_europe),
           TIV_CO2_waste_biogenic_europe = as.numeric(TIV_CO2_waste_biogenic_europe),
           TIV_CO2_waste_fossil_europe = as.numeric(TIV_CO2_waste_fossil_europe),
           TIV_CH4_combustion_europe = as.numeric(TIV_CH4_combustion_europe),
           TIV_CH4_noncombustion_gas_europe = as.numeric(TIV_CH4_noncombustion_gas_europe),
           TIV_CH4_noncombustion_oil_europe = as.numeric(TIV_CH4_noncombustion_oil_europe),
           TIV_CH4_noncombustion_anthracite_europe = as.numeric(TIV_CH4_noncombustion_anthracite_europe),
           TIV_CH4_noncombustion_bituminouscoal_europe = as.numeric(TIV_CH4_noncombustion_bituminouscoal_europe),
           TIV_CH4_noncombustion_cokingcoal_europe = as.numeric(TIV_CH4_noncombustion_cokingcoal_europe),
           TIV_CH4_noncombustion_lignite_europe = as.numeric(TIV_CH4_noncombustion_lignite_europe),
           TIV_CH4_noncombustion_subbituminouscoal_europe = as.numeric(TIV_CH4_noncombustion_subbituminouscoal_europe),
           TIV_CH4_noncombustion_oilrefinery_europe = as.numeric(TIV_CH4_noncombustion_oilrefinery_europe),
           TIV_CH4_agriculture_europe = as.numeric(TIV_CH4_agriculture_europe),
           TIV_CH4_waste_europe = as.numeric(TIV_CH4_waste_europe),
           TIV_N2O_combustion_europe = as.numeric(TIV_N2O_combustion_europe),
           TIV_N2O_agriculture_europe = as.numeric(TIV_N2O_agriculture_europe),
           TIV_SF6_europe = as.numeric(TIV_SF6_europe),
           TIV_HFC_europe = as.numeric(TIV_HFC_europe),
           TIV_PFC_europe = as.numeric(TIV_PFC_europe),
           TIV_energy_europe = as.numeric(TIV_energy_europe))
  
  europe_TIVs = rbind(europe_TIVs, look_europe)
  
  # total national footprints
  
  # FD labels
  
  Exiobase_FD_labels = as.data.frame(t(read.csv(paste0(data_dir_exiobase, "/Exiobase_FD_labels_ixi.csv")))[-1,-3]) %>%
    mutate(V1 = dplyr::recode(V1,"GR" = "EL","GB" = "UK")) 
  
  national_CO2_combustion_footprints = Exiobase_FD * t(Exiobase_TIV_co2_combustion_bp)
  
  national_CO2_noncombustion_cement_footprints = Exiobase_FD * t(Exiobase_TIV_co2_noncombustion_cement_bp)
  
  national_CO2_noncombustion_lime_footprints = Exiobase_FD * t(Exiobase_TIV_co2_noncombustion_lime_bp)
  
  national_CO2_agriculture_peatdecay_footprints = Exiobase_FD * t(Exiobase_TIV_co2_agriculture_peatdecay_bp)
  
  national_CO2_waste_biogenic_footprints = Exiobase_FD * t(Exiobase_TIV_co2_waste_biogenic_bp)
  
  national_CO2_waste_fossil_footprints = Exiobase_FD * t(Exiobase_TIV_co2_waste_fossil_bp)
  
  national_CH4_combustion_footprints = Exiobase_FD * t(Exiobase_TIV_ch4_combustion_bp)
  
  national_CH4_noncombustion_gas_footprints = Exiobase_FD * t(Exiobase_TIV_ch4_noncombustion_gas_bp)
  
  national_CH4_noncombustion_oil_footprints = Exiobase_FD * t(Exiobase_TIV_ch4_noncombustion_oil_bp)
  
  national_CH4_noncombustion_anthracite_footprints = Exiobase_FD * t(Exiobase_TIV_ch4_noncombustion_anthracite_bp)
  
  national_CH4_noncombustion_bituminouscoal_footprints = Exiobase_FD * t(Exiobase_TIV_ch4_noncombustion_bituminouscoal_bp)
  
  national_CH4_noncombustion_cokingcoal_footprints = Exiobase_FD * t(Exiobase_TIV_ch4_noncombustion_cokingcoal_bp)
  
  national_CH4_noncombustion_lignite_footprints = Exiobase_FD * t(Exiobase_TIV_ch4_noncombustion_lignite_bp)
  
  national_CH4_noncombustion_subbituminouscoal_footprints = Exiobase_FD * t(Exiobase_TIV_ch4_noncombustion_subbituminouscoal_bp)
  
  national_CH4_noncombustion_oilrefinery_footprints = Exiobase_FD * t(Exiobase_TIV_ch4_noncombustion_oilrefinery_bp)
  
  national_CH4_agriculture_footprints = Exiobase_FD * t(Exiobase_TIV_ch4_agriculture_bp)
  
  national_CH4_waste_footprints = Exiobase_FD * t(Exiobase_TIV_ch4_waste_bp)
  
  national_N2O_combustion_footprints = Exiobase_FD * t(Exiobase_TIV_n2o_combustion_bp)
  
  national_N2O_agriculture_footprints = Exiobase_FD * t(Exiobase_TIV_n2o_agriculture_bp)
  
  national_SF6_footprints = Exiobase_FD * t(Exiobase_TIV_sf6_bp)
  
  national_HFC_footprints = Exiobase_FD * t(Exiobase_TIV_hfc_bp)
  
  national_PFC_footprints = Exiobase_FD * t(Exiobase_TIV_pfc_bp)
  
  national_energy_footprints = Exiobase_FD * t(Exiobase_TIV_energy_use_bp)
  
  
  # together
  
  national_footprints_w_labels = cbind(Exiobase_FD_labels, 
                                       rowSums(t(national_CO2_combustion_footprints)),
                                       rowSums(t(national_CO2_noncombustion_cement_footprints)), 
                                       rowSums(t(national_CO2_noncombustion_lime_footprints)), 
                                       rowSums(t(national_CO2_agriculture_peatdecay_footprints)), 
                                       rowSums(t(national_CO2_waste_biogenic_footprints)), 
                                       rowSums(t(national_CO2_waste_fossil_footprints)),
                                       rowSums(t(national_CH4_combustion_footprints)),
                                       rowSums(t(national_CH4_noncombustion_gas_footprints)),
                                       rowSums(t(national_CH4_noncombustion_oil_footprints)),
                                       rowSums(t(national_CH4_noncombustion_anthracite_footprints)), 
                                       rowSums(t(national_CH4_noncombustion_bituminouscoal_footprints)), 
                                       rowSums(t(national_CH4_noncombustion_cokingcoal_footprints)),
                                       rowSums(t(national_CH4_noncombustion_lignite_footprints)),
                                       rowSums(t(national_CH4_noncombustion_subbituminouscoal_footprints)), 
                                       rowSums(t(national_CH4_noncombustion_oilrefinery_footprints)), 
                                       rowSums(t(national_CH4_agriculture_footprints)),
                                       rowSums(t(national_CH4_waste_footprints)),
                                       rowSums(t(national_N2O_combustion_footprints)),
                                       rowSums(t(national_N2O_agriculture_footprints)),
                                       rowSums(t(national_SF6_footprints)),
                                       rowSums(t(national_HFC_footprints)),
                                       rowSums(t(national_PFC_footprints)),
                                       rowSums(t(national_energy_footprints))) %>%
    mutate(V1 = dplyr::recode(V1,"GR" = "EL","GB" = "UK")) 
  
  year_national_fp = as.character(rep(year_current,nrow(national_footprints_w_labels)))
  
  # direct FD emissions
  
  direct_FD_extensions = read.csv(paste0(data_dir_exiobase, "/IOT_", year_current, "_ixi/satellite/F_hh.csv", sep = ""),row.names=NULL,as.is=TRUE)[3:1115,3:345]
  direct_FD_extensions[is.na(direct_FD_extensions)]=0
  direct_FD_extensions = mapply(direct_FD_extensions, FUN = as.numeric)
  direct_FD_extensions = matrix(data=direct_FD_extensions,ncol=343,nrow=1113)
  
  direct_FD_co2_combustion = direct_FD_extensions[24,]
  direct_FD_co2_noncombustion_cement = direct_FD_extensions[93,]
  direct_FD_co2_noncombustion_lime = direct_FD_extensions[94,]
  direct_FD_co2_agriculture_peatdecay = direct_FD_extensions[428,]
  direct_FD_co2_waste_biogenic = direct_FD_extensions[438,]
  direct_FD_co2_waste_fossil = direct_FD_extensions[439,]
  direct_FD_ch4_combustion = direct_FD_extensions[25,]*28
  direct_FD_ch4_noncombustion_gas = direct_FD_extensions[68,]*28
  direct_FD_ch4_noncombustion_oil = direct_FD_extensions[69,]*28
  direct_FD_ch4_noncombustion_anthracite = direct_FD_extensions[70,]*28
  direct_FD_ch4_noncombustion_bituminouscoal = direct_FD_extensions[71,]*28
  direct_FD_ch4_noncombustion_cokingcoal = direct_FD_extensions[72,]*28
  direct_FD_ch4_noncombustion_lignite = direct_FD_extensions[73,]*28
  direct_FD_ch4_noncombustion_subbituminouscoal = direct_FD_extensions[74,]*28
  direct_FD_ch4_noncombustion_oilrefinery = direct_FD_extensions[75,]*28
  direct_FD_ch4_agriculture = direct_FD_extensions[427,]*28
  direct_FD_ch4_waste = direct_FD_extensions[436,]*28
  direct_FD_n2o_combustion = direct_FD_extensions[26,]*265
  direct_FD_n2o_agriculture = direct_FD_extensions[430,]*265
  direct_FD_sf6 = direct_FD_extensions[424,]*23500
  direct_FD_hfc = direct_FD_extensions[425,]
  direct_FD_pfc = direct_FD_extensions[426,]
  direct_FD_energy = direct_FD_extensions[470,]
  
  
  direct_FD_fp = data.frame(direct_FD_co2_combustion,
                            direct_FD_co2_noncombustion_cement,
                            direct_FD_co2_noncombustion_lime,
                            direct_FD_co2_agriculture_peatdecay,
                            direct_FD_co2_waste_biogenic,
                            direct_FD_co2_waste_fossil,
                            direct_FD_ch4_combustion,
                            direct_FD_ch4_noncombustion_gas,
                            direct_FD_ch4_noncombustion_oil,
                            direct_FD_ch4_noncombustion_anthracite,
                            direct_FD_ch4_noncombustion_bituminouscoal,
                            direct_FD_ch4_noncombustion_cokingcoal,
                            direct_FD_ch4_noncombustion_lignite,
                            direct_FD_ch4_noncombustion_subbituminouscoal,
                            direct_FD_ch4_noncombustion_oilrefinery,
                            direct_FD_ch4_agriculture,
                            direct_FD_ch4_waste,
                            direct_FD_n2o-combustion,
                            direct_FD_n2o_agriculture,
                            direct_FD_sf6,
                            direct_FD_hfc,
                            direct_FD_pfc,
                            direct_FD_energy)
  
  look_national_fp = as.data.frame(cbind(year_national_fp,
                                         national_footprints_w_labels,
                                         direct_FD_fp)) %>% 
    rename(year = year_national_fp,
           geo = V1, 
           fd_category = V2, 
           co2_combustion = "rowSums(t(national_CO2_combustion_footprints))",
           co2_noncombustion_cement = "rowSums(t(national_CO2_noncombustion_cement_footprints))",
           co2_noncombustion_lime = "rowSums(t(national_CO2_noncombustion_lime_footprints))",
           co2_agriculture_peatdecay = "rowSums(t(national_CO2_agriculture_peatdecay_footprints))",
           co2_waste_biogenic = "rowSums(t(national_CO2_waste_biogenic_footprints))",
           co2_waste_fossil = "rowSums(t(national_CO2_waste_fossil_footprints))",
           ch4_combustion = "rowSums(t(national_CH4_combustion_footprints))",
           ch4_noncombustion_gas = "rowSums(t(national_CH4_noncombustion_gas_footprints))",
           ch4_noncombustion_oil = "rowSums(t(national_CH4_noncombustion_oil_footprints))",
           ch4_noncombustion_anthracite = "rowSums(t(national_CH4_noncombustion_anthracite_footprints))",
           ch4_noncombustion_bituminouscoal = "rowSums(t(national_CH4_noncombustion_bituminouscoal_footprints))",
           ch4_noncombustion_cokingcoal = "rowSums(t(national_CH4_noncombustion_cokingcoal_footprints))",
           ch4_noncombustion_lignite = "rowSums(t(national_CH4_noncombustion_lignite_footprints))",
           ch4_noncombustion_subbituminouscoal = "rowSums(t(national_CH4_noncombustion_subbituminouscoal_footprints))",
           ch4_noncombustion_oilrefinery = "rowSums(t(national_CH4_noncombustion_oilrefinery_footprints))",
           ch4_agriculture = "rowSums(t(national_CH4_agriculture_footprints))",
           ch4_waste = "rowSums(t(national_CH4_waste_footprints))",
           n2o_combustion = "rowSums(t(national_N2O_combustion_footprints))",
           n2o_agriculture = "rowSums(t(national_N2O_agriculture_footprints))",
           sf6 = "rowSums(t(national_SF6_footprints))",
           hfc = "rowSums(t(national_HFC_footprints))",
           pfc = "rowSums(t(national_PFC_footprints))",
           energy = "rowSums(t(national_energy_footprints))") %>%
    select(year,
           geo,
           fd_category,
           co2_combustion,
           direct_FD_co2_combustion,
           co2_noncombustion_cement,
           direct_FD_co2_noncombustion_cement,
           co2_noncombustion_lime,
           direct_FD_co2_noncombustion_lime,
           co2_agriculture_peatdecay,
           direct_FD_co2_agriculture_peatdecay,
           co2_waste_biogenic,
           direct_FD_co2_waste_biogenic,
           co2_waste_fossil,
           direct_FD_co2_waste_fossil,
           ch4_combustion,
           direct_FD_ch4_combustion,
           ch4_noncombustion_gas,
           direct_FD_ch4_noncombustion_gas,
           ch4_noncombustion_oil,
           direct_FD_ch4_noncombustion_oil,
           ch4_noncombustion_anthracite,
           direct_FD_ch4_noncombustion_anthracite,
           ch4_noncombustion_bituminouscoal,
           direct_FD_ch4_noncombustion_bituminouscoal,
           ch4_noncombustion_cokingcoal,
           direct_FD_ch4_noncombustion_cokingcoal,
           ch4_noncombustion_lignite,
           direct_FD_ch4_noncombustion_lignite,
           ch4_noncombustion_subbituminouscoal,
           direct_FD_ch4_noncombustion_subbituminouscoal,
           ch4_noncombustion_oilrefinery,
           direct_FD_ch4_noncombustion_oilrefinery,
           ch4_agriculture,
           direct_FD_ch4_agriculture,
           ch4_waste,
           direct_FD_ch4_waste,
           n2o_combustion,
           direct_FD_n2o_combustion,
           n2o_agriculture,
           direct_FD_n2o_agriculture,
           sf6,
           direct_FD_sf6,
           hfc,
           direct_FD_hfc,
           pfc,
           direct_FD_pfc,
           energy,
           direct_FD_energy)
  
  
  national_fp = rbind(national_fp, look_national_fp)
  
  
}



# option holding HBS exp ratios 

mean_expenditure_by_quintile_toggle = mean_expenditure_by_quintile_long_bp %>% 
  filter(!(quintile %in% c("TOTAL","UNK"))) %>%
  group_by(geo,year) %>%
  mutate(euro_pps_bp = as.numeric(euro_pps_bp),
         mean_exp_shares = euro_pps_bp/sum(euro_pps_bp))


ala = total_fd %>%
  left_join(mean_expenditure_by_quintile_toggle, by = c("geo","year","quintile"))



join_ala = mean_expenditure_by_coicop_sector_long_bp %>%
  left_join(ala, by = c("geo","quintile","year")) %>%
  mutate(year = as.numeric(year),
         eurostat_countries_colsums = as.numeric(eurostat_countries_colsums),
         pm_bp = as.numeric(pm_bp),
         fd_me = pm_bp*((eurostat_countries_colsums*mean_exp_shares)/1000)) 

Eurostat_countries_hh_fd_mean_TIV = as.data.frame(Eurostat_countries_hh_fd) %>% select(-year)

weighted_mean_TIV_with_labels = cbind(TIVs,Eurostat_countries_hh_fd_mean_TIV) %>%
  gather(geo,fd,-country_of_production,-year,-sector,-coicop,-five_sectors,
         -TIV_CO2_combustion,-TIV_CO2_noncombustion_cement,-TIV_CO2_noncombustion_lime,
         -TIV_CO2_agriculture_peatdecay,-TIV_CO2_waste_biogenic,
         -TIV_CO2_waste_fossil,-TIV_CH4_combustion,
         -TIV_CH4_noncombustion_gas,-TIV_CH4_noncombustion_oil,
         -TIV_CH4_noncombustion_anthracite,-TIV_CH4_noncombustion_bituminouscoal,
         -TIV_CH4_noncombustion_cokingcoal,-TIV_CH4_noncombustion_lignite,
         -TIV_CH4_noncombustion_subbituminouscoal,-TIV_CH4_noncombustion_oilrefinery,
         -TIV_CH4_agriculture,-TIV_CH4_waste,
         -TIV_N2O_combustion,-TIV_N2O_agriculture,-TIV_SF6,-TIV_HFC,-TIV_PFC,
         -TIV_energy) %>%
  group_by(geo,year,coicop) %>%
  mutate(fd = as.numeric(fd)) %>%
  mutate(TIV_CO2_combustion_weighted_average = sum((fd/sum(fd))*TIV_CO2_combustion),
         TIV_CO2_noncombustion_cement_weighted_average = sum((fd/sum(fd))*TIV_CO2_noncombustion_cement),
         TIV_CO2_noncombustion_lime_weighted_average = sum((fd/sum(fd))*TIV_CO2_noncombustion_lime),
         TIV_CO2_agriculture_peatdecay_weighted_average = sum((fd/sum(fd))*TIV_CO2_agriculture_peatdecay),
         TIV_CO2_waste_biogenic_weighted_average = sum((fd/sum(fd))*TIV_CO2_waste_biogenic),
         TIV_CO2_waste_fossil_weighted_average = sum((fd/sum(fd))*TIV_CO2_waste_fossil),
         TIV_CH4_combustion_weighted_average = sum((fd/sum(fd))*TIV_CH4_combustion),
         TIV_CH4_noncombustion_gas_weighted_average = sum((fd/sum(fd))*TIV_CH4_noncombustion_gas),
         TIV_CH4_noncombustion_oil_weighted_average = sum((fd/sum(fd))*TIV_CH4_noncombustion_oil),
         TIV_CH4_noncombustion_anthracite_weighted_average = sum((fd/sum(fd))*TIV_CH4_noncombustion_anthracite),
         TIV_CH4_noncombustion_bituminouscoal_weighted_average = sum((fd/sum(fd))*TIV_CH4_noncombustion_bituminouscoal),
         TIV_CH4_noncombustion_cokingcoal_weighted_average = sum((fd/sum(fd))*TIV_CH4_noncombustion_cokingcoal),
         TIV_CH4_noncombustion_lignite_weighted_average = sum((fd/sum(fd))*TIV_CH4_noncombustion_lignite),
         TIV_CH4_noncombustion_subbituminouscoal_weighted_average = sum((fd/sum(fd))*TIV_CH4_noncombustion_subbituminouscoal),
         TIV_CH4_noncombustion_oilrefinery_weighted_average = sum((fd/sum(fd))*TIV_CH4_noncombustion_oilrefinery),
         TIV_CH4_agriculture_weighted_average = sum((fd/sum(fd))*TIV_CH4_agriculture),
         TIV_CH4_waste_weighted_average = sum((fd/sum(fd))*TIV_CH4_waste),
         TIV_N2O_combustion_weighted_average = sum((fd/sum(fd))*TIV_N2O_combustion),
         TIV_N2O_agriculture_weighted_average = sum((fd/sum(fd))*TIV_N2O_agriculture),
         TIV_SF6_weighted_average = sum((fd/sum(fd))*TIV_SF6),
         TIV_HFC_weighted_average = sum((fd/sum(fd))*TIV_HFC),
         TIV_PFC_weighted_average = sum((fd/sum(fd))*TIV_PFC),
         TIV_energy_weighted_average = sum((fd/sum(fd))*TIV_energy)) %>%
  select(year,geo,coicop,TIV_CO2_combustion_weighted_average,
         TIV_CO2_noncombustion_cement_weighted_average,
         TIV_CO2_noncombustion_lime_weighted_average,
         TIV_CO2_agriculture_peatdecay_weighted_average,
         TIV_CO2_waste_biogenic_weighted_average,
         TIV_CO2_waste_fossil_weighted_average,
         TIV_CH4_combustion_weighted_average,
         TIV_CH4_noncombustion_gas_weighted_average,
         TIV_CH4_noncombustion_oil_weighted_average,
         TIV_CH4_noncombustion_anthracite_weighted_average,
         TIV_CH4_noncombustion_bituminouscoal_weighted_average,
         TIV_CH4_noncombustion_cokingcoal_weighted_average,
         TIV_CH4_noncombustion_lignite_weighted_average,
         TIV_CH4_noncombustion_subbituminouscoal_weighted_average,
         TIV_CH4_noncombustion_oilrefinery_weighted_average,
         TIV_CH4_agriculture_weighted_average,
         TIV_CH4_waste_weighted_average,
         TIV_N2O_combustion_weighted_average,
         TIV_N2O_agriculture_weighted_average,
         TIV_SF6_weighted_average,
         TIV_HFC_weighted_average,
         TIV_PFC_weighted_average,
         TIV_energy_weighted_average) %>%
  unique() 

weighted_mean_europe_TIV_with_labels = cbind(europe_TIVs, Eurostat_countries_hh_fd_mean_TIV) %>%
  gather(geo,fd,-country_of_production,-year,-sector,-coicop,-five_sectors,
         -TIV_CO2_combustion_europe,-TIV_CO2_combustion_not_europe,
         -TIV_CO2_noncombustion_cement_europe,-TIV_CO2_noncombustion_cement_not_europe,
         -TIV_CO2_noncombustion_lime_europe, -TIV_CO2_noncombustion_lime_not_europe,
         -TIV_CO2_agriculture_peatdecay_europe,-TIV_CO2_agriculture_peatdecay_not_europe,
         -TIV_CO2_waste_biogenic_europe, -TIV_CO2_waste_biogenic_not_europe,
         -TIV_CO2_waste_fossil_europe, -TIV_CO2_waste_fossil_not_europe,
         -TIV_CH4_combustion_europe,-TIV_CH4_combustion_not_europe,
         -TIV_CH4_noncombustion_gas_europe, -TIV_CH4_noncombustion_gas_not_europe,
         -TIV_CH4_noncombustion_oil_europe,-TIV_CH4_noncombustion_oil_not_europe,
         -TIV_CH4_noncombustion_anthracite_europe,-TIV_CH4_noncombustion_anthracite_not_europe,
         -TIV_CH4_noncombustion_bituminouscoal_europe,-TIV_CH4_noncombustion_bituminouscoal_not_europe,
         -TIV_CH4_noncombustion_cokingcoal_europe,-TIV_CH4_noncombustion_cokingcoal_not_europe,
         -TIV_CH4_noncombustion_lignite_europe,-TIV_CH4_noncombustion_lignite_not_europe,
         -TIV_CH4_noncombustion_subbituminouscoal_europe,-TIV_CH4_noncombustion_subbituminouscoal_not_europe,
         -TIV_CH4_noncombustion_oilrefinery_europe, -TIV_CH4_noncombustion_oilrefinery_not_europe,
         -TIV_CH4_agriculture_europe, -TIV_CH4_agriculture_not_europe,
         -TIV_CH4_waste_europe,-TIV_CH4_waste_not_europe,
         -TIV_N2O_combustion_europe,-TIV_N2O_combustion_not_europe,
         -TIV_N2O_agriculture_europe,-TIV_N2O_agriculture_not_europe,
         -TIV_SF6_europe,-TIV_SF6_not_europe,
         -TIV_HFC_europe,-TIV_HFC_not_europe,-TIV_PFC_europe,-TIV_PFC_not_europe,
         -TIV_energy_europe,-TIV_energy_not_europe) %>%
  group_by(geo,year,coicop) %>%
  mutate(fd = as.numeric(fd)) %>%
  mutate(TIV_CO2_combustion_europe_weighted_average = sum((fd/sum(fd))*TIV_CO2_combustion_europe),
         TIV_CO2_noncombustion_cement_europe_weighted_average = sum((fd/sum(fd))*TIV_CO2_noncombustion_cement_europe),
         TIV_CO2_noncombustion_lime_europe_weighted_average = sum((fd/sum(fd))*TIV_CO2_noncombustion_lime_europe),
         TIV_CO2_agriculture_peatdecay_europe_weighted_average = sum((fd/sum(fd))*TIV_CO2_agriculture_peatdecay_europe),
         TIV_CO2_waste_biogenic_europe_weighted_average = sum((fd/sum(fd))*TIV_CO2_waste_biogenic_europe),
         TIV_CO2_waste_fossil_europe_weighted_average = sum((fd/sum(fd))*TIV_CO2_waste_fossil_europe),
         TIV_CH4_combustion_europe_weighted_average = sum((fd/sum(fd))*TIV_CH4_combustion_europe),
         TIV_CH4_noncombustion_gas_europe_weighted_average = sum((fd/sum(fd))*TIV_CH4_noncombustion_gas_europe),
         TIV_CH4_noncombustion_oil_europe_weighted_average = sum((fd/sum(fd))*TIV_CH4_noncombustion_oil_europe),
         TIV_CH4_noncombustion_anthracite_europe_weighted_average = sum((fd/sum(fd))*TIV_CH4_noncombustion_anthracite_europe),
         TIV_CH4_noncombustion_bituminouscoal_europe_weighted_average = sum((fd/sum(fd))*TIV_CH4_noncombustion_bituminouscoal_europe),
         TIV_CH4_noncombustion_cokingcoal_europe_weighted_average = sum((fd/sum(fd))*TIV_CH4_noncombustion_cokingcoal_europe),
         TIV_CH4_noncombustion_lignite_europe_weighted_average = sum((fd/sum(fd))*TIV_CH4_noncombustion_lignite_europe),
         TIV_CH4_noncombustion_subbituminouscoal_europe_weighted_average = sum((fd/sum(fd))*TIV_CH4_noncombustion_subbituminouscoal_europe),
         TIV_CH4_noncombustion_oilrefinery_europe_weighted_average = sum((fd/sum(fd))*TIV_CH4_noncombustion_oilrefinery_europe),
         TIV_CH4_agriculture_europe_weighted_average = sum((fd/sum(fd))*TIV_CH4_agriculture_europe),
         TIV_CH4_waste_europe_weighted_average = sum((fd/sum(fd))*TIV_CH4_waste_europe),
         TIV_N2O_combustion_europe_weighted_average = sum((fd/sum(fd))*TIV_N2O_combustion_europe),
         TIV_N2O_agriculture_europe_weighted_average = sum((fd/sum(fd))*TIV_N2O_agriculture_europe),
         TIV_SF6_europe_weighted_average = sum((fd/sum(fd))*TIV_SF6_europe),
         TIV_HFC_europe_weighted_average = sum((fd/sum(fd))*TIV_HFC_europe),
         TIV_PFC_europe_weighted_average = sum((fd/sum(fd))*TIV_PFC_europe),
         TIV_energy_europe_weighted_average = sum((fd/sum(fd))*TIV_energy_europe)) %>%
  select(year,geo,coicop,TIV_CO2_combustion_europe_weighted_average,
         TIV_CO2_noncombustion_cement_europe_weighted_average,
         TIV_CO2_noncombustion_lime_europe_weighted_average,
         TIV_CO2_agriculture_peatdecay_europe_weighted_average,
         TIV_CO2_waste_biogenic_europe_weighted_average,
         TIV_CO2_waste_fossil_europe_weighted_average,
         TIV_CH4_combustion_europe_weighted_average,
         TIV_CH4_noncombustion_gas_europe_weighted_average,
         TIV_CH4_noncombustion_oil_europe_weighted_average,
         TIV_CH4_noncombustion_anthracite_europe_weighted_average,
         TIV_CH4_noncombustion_bituminouscoal_europe_weighted_average,
         TIV_CH4_noncombustion_cokingcoal_europe_weighted_average,
         TIV_CH4_noncombustion_lignite_europe_weighted_average,
         TIV_CH4_noncombustion_subbituminouscoal_europe_weighted_average,
         TIV_CH4_noncombustion_oilrefinery_europe_weighted_average,
         TIV_CH4_agriculture_europe_weighted_average,
         TIV_CH4_waste_europe_weighted_average,
         TIV_N2O_combustion_europe_weighted_average,
         TIV_N2O_agriculture_europe_weighted_average,
         TIV_SF6_europe_weighted_average,
         TIV_HFC_europe_weighted_average,
         TIV_PFC_europe_weighted_average,
         TIV_energy_europe_weighted_average) %>%
  unique()

domestic_TIVs_Eurostat = domestic_TIVs %>%
  filter(geo %in% c("AT",
                    "BG",
                    "BE",
                    "CY",
                    "CZ",
                    "DE",
                    "DK",
                    "EE",
                    "EL",
                    "ES",
                    "FI",
                    "FR",
                    "HR",
                    "HU",
                    "IE",
                    "IT",
                    "LT",
                    "LU",
                    "LV",
                    "MT",
                    "NL",
                    "NO",
                    "PL",
                    "PT",
                    "RO",
                    "SE",
                    "SI",
                    "SK",
                    "TR",
                    "UK"))

Eurostat_countries_hh_fd_long = as.data.frame(Eurostat_countries_hh_fd) %>%
  gather(geo,fd,-year) %>%
  arrange(year, match(geo, c("AT",
                             "BE",
                             "BG",
                             "CY",
                             "CZ",
                             "DE",
                             "DK",
                             "EE",
                             "ES",
                             "FI",
                             "FR",
                             "UK",
                             "EL",
                             "HR",
                             "HU",
                             "IE",
                             "IT",
                             "LT",
                             "LU",
                             "LV",
                             "MT",
                             "NL",
                             "NO",
                             "PL",
                             "PT",
                             "RO",
                             "SE",
                             "SI",
                             "SK",
                             "TR"))) %>% select(-year,-geo)

weighted_mean_domestic_TIV_with_labels = cbind(domestic_TIVs_Eurostat,Eurostat_countries_hh_fd_long) %>%
  group_by(geo,year,coicop) %>%
  mutate(fd = as.numeric(fd)) %>%
  mutate(TIV_CO2_combustion_domestic_weighted_average = sum((fd/sum(fd))*TIV_CO2_combustion_domestic),
         TIV_CO2_noncombustion_cement_domestic_weighted_average = sum((fd/sum(fd))*TIV_CO2_noncombustion_cement_domestic),
         TIV_CO2_noncombustion_lime_domestic_weighted_average = sum((fd/sum(fd))*TIV_CO2_noncombustion_lime_domestic),
         TIV_CO2_agriculture_peatdecay_domestic_weighted_average = sum((fd/sum(fd))*TIV_CO2_agriculture_peatdecay_domestic),
         TIV_CO2_waste_biogenic_domestic_weighted_average = sum((fd/sum(fd))*TIV_CO2_waste_biogenic_domestic),
         TIV_CO2_waste_fossil_domestic_weighted_average = sum((fd/sum(fd))*TIV_CO2_waste_fossil_domestic),
         TIV_CH4_combustion_domestic_weighted_average = sum((fd/sum(fd))*TIV_CH4_combustion_domestic),
         TIV_CH4_noncombustion_gas_domestic_weighted_average = sum((fd/sum(fd))*TIV_CH4_noncombustion_gas_domestic),
         TIV_CH4_noncombustion_oil_domestic_weighted_average = sum((fd/sum(fd))*TIV_CH4_noncombustion_oil_domestic),
         TIV_CH4_noncombustion_anthracite_domestic_weighted_average = sum((fd/sum(fd))*TIV_CH4_noncombustion_anthracite_domestic),
         TIV_CH4_noncombustion_bituminouscoal_domestic_weighted_average = sum((fd/sum(fd))*TIV_CH4_noncombustion_bituminouscoal_domestic),
         TIV_CH4_noncombustion_cokingcoal_domestic_weighted_average = sum((fd/sum(fd))*TIV_CH4_noncombustion_cokingcoal_domestic),
         TIV_CH4_noncombustion_lignite_domestic_weighted_average = sum((fd/sum(fd))*TIV_CH4_noncombustion_lignite_domestic),
         TIV_CH4_noncombustion_subbituminouscoal_domestic_weighted_average = sum((fd/sum(fd))*TIV_CH4_noncombustion_subbituminouscoal_domestic),
         TIV_CH4_noncombustion_oilrefinery_domestic_weighted_average = sum((fd/sum(fd))*TIV_CH4_noncombustion_oilrefinery_domestic),
         TIV_CH4_agriculture_domestic_weighted_average = sum((fd/sum(fd))*TIV_CH4_agriculture_domestic),
         TIV_CH4_waste_domestic_weighted_average = sum((fd/sum(fd))*TIV_CH4_waste_domestic),
         TIV_N2O_combustion_domestic_weighted_average = sum((fd/sum(fd))*TIV_N2O_combustion_domestic),
         TIV_N2O_agriculture_domestic_weighted_average = sum((fd/sum(fd))*TIV_N2O_agriculture_domestic),
         TIV_SF6_domestic_weighted_average = sum((fd/sum(fd))*TIV_SF6_domestic),
         TIV_HFC_domestic_weighted_average = sum((fd/sum(fd))*TIV_HFC_domestic),
         TIV_PFC_domestic_weighted_average = sum((fd/sum(fd))*TIV_PFC_domestic),
         TIV_energy_domestic_weighted_average = sum((fd/sum(fd))*TIV_energy_domestic)) %>%
  select(year,geo,coicop,TIV_CO2_combustion_domestic_weighted_average,
         TIV_CO2_noncombustion_cement_domestic_weighted_average,
         TIV_CO2_noncombustion_lime_domestic_weighted_average,
         TIV_CO2_agriculture_peatdecay_domestic_weighted_average,
         TIV_CO2_waste_biogenic_domestic_weighted_average,
         TIV_CO2_waste_fossil_domestic_weighted_average,
         TIV_CH4_combustion_domestic_weighted_average,
         TIV_CH4_noncombustion_gas_domestic_weighted_average,
         TIV_CH4_noncombustion_oil_domestic_weighted_average,
         TIV_CH4_noncombustion_anthracite_domestic_weighted_average,
         TIV_CH4_noncombustion_bituminouscoal_domestic_weighted_average,
         TIV_CH4_noncombustion_cokingcoal_domestic_weighted_average,
         TIV_CH4_noncombustion_lignite_domestic_weighted_average,
         TIV_CH4_noncombustion_subbituminouscoal_domestic_weighted_average,
         TIV_CH4_noncombustion_oilrefinery_domestic_weighted_average,
         TIV_CH4_agriculture_domestic_weighted_average,
         TIV_CH4_waste_domestic_weighted_average,
         TIV_N2O_combustion_domestic_weighted_average,
         TIV_N2O_agriculture_domestic_weighted_average,
         TIV_SF6_domestic_weighted_average,
         TIV_HFC_domestic_weighted_average,
         TIV_PFC_domestic_weighted_average,
         TIV_energy_domestic_weighted_average) %>%
  unique() 





ok = join_ala %>% 
  mutate(year = as.character(year)) %>%
  left_join(weighted_mean_TIV_with_labels, by = c("geo","year","coicop")) %>%
  left_join(weighted_mean_europe_TIV_with_labels, by = c("geo","year","coicop")) %>%
  left_join(weighted_mean_domestic_TIV_with_labels, by = c("geo", "year", "coicop")) %>%
  mutate(co2_kg = fd_me*(TIV_CO2_combustion_weighted_average + TIV_CO2_noncombustion_cement_weighted_average +
                           TIV_CO2_noncombustion_lime_weighted_average + TIV_CO2_agriculture_peatdecay_weighted_average +
                           TIV_CO2_waste_biogenic_weighted_average + TIV_CO2_waste_fossil_weighted_average),
         co2_domestic_kg = fd_me*(TIV_CO2_combustion_domestic_weighted_average + TIV_CO2_noncombustion_cement_domestic_weighted_average +
                                    TIV_CO2_noncombustion_lime_domestic_weighted_average + TIV_CO2_agriculture_peatdecay_domestic_weighted_average +
                                    TIV_CO2_waste_biogenic_domestic_weighted_average + TIV_CO2_waste_fossil_domestic_weighted_average),
         co2_europe_kg = fd_me*((TIV_CO2_combustion_europe_weighted_average + TIV_CO2_noncombustion_cement_europe_weighted_average +
                                   TIV_CO2_noncombustion_lime_europe_weighted_average + TIV_CO2_agriculture_peatdecay_europe_weighted_average +
                                   TIV_CO2_waste_biogenic_europe_weighted_average + TIV_CO2_waste_fossil_europe_weighted_average) - (TIV_CO2_combustion_domestic_weighted_average + TIV_CO2_noncombustion_cement_domestic_weighted_average +
                                                                     TIV_CO2_noncombustion_lime_domestic_weighted_average + TIV_CO2_agriculture_peatdecay_domestic_weighted_average +
                                                                     TIV_CO2_waste_biogenic_domestic_weighted_average + TIV_CO2_waste_fossil_domestic_weighted_average)),
         co2eq_kg = fd_me*(TIV_CO2_combustion_weighted_average +
                             TIV_CO2_noncombustion_cement_weighted_average +
                             TIV_CO2_noncombustion_lime_weighted_average + TIV_CO2_agriculture_peatdecay_weighted_average +
                             TIV_CO2_waste_biogenic_weighted_average + TIV_CO2_waste_fossil_weighted_average +
                             TIV_CH4_combustion_weighted_average +
                             TIV_CH4_noncombustion_gas_weighted_average +
                           TIV_CH4_noncombustion_oil_weighted_average +
                           TIV_CH4_noncombustion_anthracite_weighted_average +
                           TIV_CH4_noncombustion_bituminouscoal_weighted_average +
                           TIV_CH4_noncombustion_cokingcoal_weighted_average +
                           TIV_CH4_noncombustion_lignite_weighted_average +
                           TIV_CH4_noncombustion_subbituminouscoal_weighted_average +
                           TIV_CH4_noncombustion_oilrefinery_weighted_average +
                           TIV_CH4_agriculture_weighted_average +
                           TIV_CH4_waste_weighted_average +
                             TIV_N2O_combustion_weighted_average +
                             TIV_N2O_agriculture_weighted_average + 
                             TIV_SF6_weighted_average +
                             TIV_HFC_weighted_average + 
                             TIV_PFC_weighted_average),
         co2eq_domestic_kg = fd_me*(TIV_CO2_combustion_domestic_weighted_average +
                                      TIV_CO2_noncombustion_cement_domestic_weighted_average +
                                      TIV_CO2_noncombustion_lime_domestic_weighted_average + TIV_CO2_agriculture_peatdecay_domestic_weighted_average +
                                      TIV_CO2_waste_biogenic_domestic_weighted_average + TIV_CO2_waste_fossil_domestic_weighted_average +
                                      TIV_CH4_combustion_domestic_weighted_average +
                                      TIV_CH4_noncombustion_gas_domestic_weighted_average +
                                      TIV_CH4_noncombustion_oil_domestic_weighted_average +
                                      TIV_CH4_noncombustion_anthracite_domestic_weighted_average +
                                      TIV_CH4_noncombustion_bituminouscoal_domestic_weighted_average +
                                      TIV_CH4_noncombustion_cokingcoal_domestic_weighted_average +
                                      TIV_CH4_noncombustion_lignite_domestic_weighted_average +
                                      TIV_CH4_noncombustion_subbituminouscoal_domestic_weighted_average +
                                      TIV_CH4_noncombustion_oilrefinery_domestic_weighted_average +
                                      TIV_CH4_agriculture_domestic_weighted_average +
                                      TIV_CH4_waste_domestic_weighted_average +
                                      TIV_N2O_combustion_domestic_weighted_average +
                                      TIV_N2O_agriculture_domestic_weighted_average +
                                      TIV_SF6_domestic_weighted_average +
                                      TIV_HFC_domestic_weighted_average + 
                                      TIV_PFC_domestic_weighted_average),
         co2eq_europe_kg = fd_me*((TIV_CO2_combustion_europe_weighted_average +
                                     TIV_CO2_noncombustion_cement_europe_weighted_average +
                                     TIV_CO2_noncombustion_lime_europe_weighted_average + TIV_CO2_agriculture_peatdecay_europe_weighted_average +
                                     TIV_CO2_waste_biogenic_europe_weighted_average + TIV_CO2_waste_fossil_europe_weighted_average +
                                     TIV_CH4_combustion_europe_weighted_average +
                                     TIV_CH4_noncombustion_gas_europe_weighted_average +
                                     TIV_CH4_noncombustion_oil_europe_weighted_average +
                                     TIV_CH4_noncombustion_anthracite_europe_weighted_average +
                                     TIV_CH4_noncombustion_bituminouscoal_europe_weighted_average +
                                     TIV_CH4_noncombustion_cokingcoal_europe_weighted_average +
                                     TIV_CH4_noncombustion_lignite_europe_weighted_average +
                                     TIV_CH4_noncombustion_subbituminouscoal_europe_weighted_average +
                                     TIV_CH4_noncombustion_oilrefinery_europe_weighted_average +
                                     TIV_CH4_agriculture_europe_weighted_average +
                                     TIV_CH4_waste_europe_weighted_average +
                                     TIV_N2O_combustion_europe_weighted_average +
                                     TIV_N2O_agriculture_europe_weighted_average +
                                     TIV_SF6_europe_weighted_average +
                                     TIV_HFC_europe_weighted_average + 
                                     TIV_PFC_europe_weighted_average) - 
                                    (TIV_CO2_combustion_domestic_weighted_average +
                                       TIV_CO2_noncombustion_cement_domestic_weighted_average +
                                       TIV_CO2_noncombustion_lime_domestic_weighted_average + TIV_CO2_agriculture_peatdecay_domestic_weighted_average +
                                       TIV_CO2_waste_biogenic_domestic_weighted_average + TIV_CO2_waste_fossil_domestic_weighted_average +
                                       TIV_CH4_combustion_domestic_weighted_average +
                                       TIV_CH4_noncombustion_gas_domestic_weighted_average +
                                       TIV_CH4_noncombustion_oil_domestic_weighted_average +
                                       TIV_CH4_noncombustion_anthracite_domestic_weighted_average +
                                       TIV_CH4_noncombustion_bituminouscoal_domestic_weighted_average +
                                       TIV_CH4_noncombustion_cokingcoal_domestic_weighted_average +
                                       TIV_CH4_noncombustion_lignite_domestic_weighted_average +
                                       TIV_CH4_noncombustion_subbituminouscoal_domestic_weighted_average +
                                       TIV_CH4_noncombustion_oilrefinery_domestic_weighted_average +
                                       TIV_CH4_agriculture_domestic_weighted_average +
                                       TIV_CH4_waste_domestic_weighted_average +
                                       TIV_N2O_combustion_domestic_weighted_average +
                                       TIV_N2O_agriculture_domestic_weighted_average +
                                       TIV_SF6_domestic_weighted_average +
                                       TIV_HFC_domestic_weighted_average + 
                                       TIV_PFC_domestic_weighted_average)),
         energy_use_TJ = fd_me*(TIV_energy_weighted_average),
         energy_use_domestic_TJ = fd_me*(TIV_energy_domestic_weighted_average),
         energy_use_europe_TJ = fd_me*(TIV_energy_europe_weighted_average - 
                                         TIV_energy_domestic_weighted_average))

# direct from FD - to go back to results without direct FD fp, do not run this next chunk and do not bind_rows with 'results'

env_ac_pefasu_no_TR = read_csv(paste0(data_dir_income_stratified_footprints, "/env_ac_pefasu_1_Data.csv")) %>%
  filter(TIME == 2015) %>%
  mutate(geo = dplyr::recode(GEO,"Austria" = "AT", 
                             "Belgium" = "BE",
                             "Cyprus" = "CY",
                             "Czechia" = "CZ",
                             "Denmark" = "DK",
                             "Estonia" = "EE",
                             "Finland" = "FI",
                             "France" = "FR",
                             "Germany (until 1990 former territory of the FRG)" = "DE",
                             "Greece" = "EL",
                             "Hungary" = "HU",
                             "Ireland" = "IE",
                             "Italy" = "IT",
                             "Latvia" = "LV",
                             "Lithuania" = "LT",
                             "Luxembourg" = "LU",
                             "Malta" = "MT",
                             "Netherlands" = "NL",
                             "Norway" = "NO",
                             "Poland" = "PL",
                             "Portugal" = "PT",
                             "Romania" = "RO",
                             "Slovakia" = "SK",
                             "Slovenia" = "SI",
                             "Spain" = "ES",
                             "Sweden" = "SE",
                             "United Kingdom" = "UK",
                             "Bulgaria" = "BG",
                             "Croatia" = "HR")) %>%
  select(NACE_R2,geo,Value) %>%
  mutate(Value = parse_number(Value),
         Value = as.numeric(Value)) %>%
  spread(NACE_R2,Value) %>%
  clean_names() %>%
  mutate(HH_HEAT = heating_cooling_activities_by_households/total_activities_by_households,
         HH_TRA = transport_activities_by_households/total_activities_by_households,
         HH_OTH = other_activities_by_households/total_activities_by_households) %>%
  select(geo,HH_HEAT,HH_TRA,HH_OTH) 


env_ac_pefasu_TR = env_ac_pefasu_no_TR %>%
  filter(geo == "BG") %>%
  mutate(geo = dplyr::recode(geo,
                             "BG" = "TR"))

env_ac_pefasu = rbind(env_ac_pefasu_no_TR,env_ac_pefasu_TR) %>%
  gather(sector,share_of_total_energy,-geo)

env_ac_ainah_r2 = read_csv(paste0(data_dir_income_stratified_footprints, "/env_ac_ainah_r2_1_Data.csv")) %>%
  filter(TIME == 2015) %>%
  mutate(geo = dplyr::recode(GEO,"Austria" = "AT", 
                             "Belgium" = "BE",
                             "Cyprus" = "CY",
                             "Czechia" = "CZ",
                             "Denmark" = "DK",
                             "Estonia" = "EE",
                             "Finland" = "FI",
                             "France" = "FR",
                             "Germany (until 1990 former territory of the FRG)" = "DE",
                             "Greece" = "EL",
                             "Hungary" = "HU",
                             "Ireland" = "IE",
                             "Italy" = "IT",
                             "Latvia" = "LV",
                             "Lithuania" = "LT",
                             "Luxembourg" = "LU",
                             "Malta" = "MT",
                             "Netherlands" = "NL",
                             "Norway" = "NO",
                             "Poland" = "PL",
                             "Portugal" = "PT",
                             "Romania" = "RO",
                             "Slovakia" = "SK",
                             "Slovenia" = "SI",
                             "Spain" = "ES",
                             "Sweden" = "SE",
                             "Turkey" = "TR",
                             "United Kingdom" = "UK",
                             "Bulgaria" = "BG",
                             "Croatia" = "HR")) %>%
  select(NACE_R2,AIRPOL,geo,Value) %>%
  mutate(Value = parse_number(Value),
         Value = as.numeric(Value)) %>%
  spread(NACE_R2,Value) %>%
  clean_names() %>%
  mutate(HH_HEAT = heating_cooling_activities_by_households/total_activities_by_households,
         HH_TRA = transport_activities_by_households/total_activities_by_households,
         HH_OTH = other_activities_by_households/total_activities_by_households) %>%
  select(geo,airpol,HH_HEAT,HH_TRA,HH_OTH) 


env_ac_ainah_r2_co2 = env_ac_ainah_r2 %>%
  filter(airpol == "Carbon dioxide") %>%
  select(-airpol) %>%
  gather(sector,share_of_total_co2,-geo)

env_ac_ainah_r2_ch4 = env_ac_ainah_r2 %>%
  filter(airpol == "Methane") %>%
  select(-airpol) %>%
  gather(sector,share_of_total_ch4,-geo)

env_ac_ainah_r2_n2o = env_ac_ainah_r2 %>%
  filter(airpol == "Nitrous oxide") %>%
  select(-airpol) %>%
  gather(sector,share_of_total_n2o,-geo)

direct_FD_fp_long = national_fp %>%
  filter(fd_category == "Final consumption expenditure by households",
         geo %in% c("AT",
                    "BE", "BG", "CY", "CZ",
                    "DE" , "DK" , "EE" , 
                    "ES" , "FI" , "FR" , 
                    "UK", "EL", "HR" ,
                    "HU" , "IE" , "IT" ,
                    "LT" , "LU" , "LV" ,
                    "MT" , "NL" , "PL" ,
                    "PT" , "TR" , "SK" ,
                    "SI" , "SE" , "RO" ,
                    "NO")) %>%
  select(year,geo,fd_category,direct_FD_co2_combustion,
         direct_FD_co2_noncombustion_cement,
         direct_FD_co2_noncombustion_lime,
         direct_FD_co2_agriculture_peatdecay,
         direct_FD_co2_waste_biogenic,
         direct_FD_co2_waste_fossil,
         direct_FD_ch4_combustion,
         direct_FD_ch4_noncombustion_gas,
         direct_FD_ch4_noncombustion_oil,
         direct_FD_ch4_noncombustion_anthracite,
         direct_FD_ch4_noncombustion_bituminouscoal,
         direct_FD_ch4_noncombustion_cokingcoal,
         direct_FD_ch4_noncombustion_lignite,
         direct_FD_ch4_noncombustion_subbituminouscoal,
         direct_FD_ch4_noncombustion_oilrefinery,
         direct_FD_ch4_agriculture,
         direct_FD_ch4_waste,
         direct_FD_n2o_combustion,
         direct_FD_n2o_agriculture,
         direct_FD_sf6,
         direct_FD_hfc,
         direct_FD_pfc,
         direct_FD_energy) %>%   
  slice(rep(1:n(), each = 3)) 

sector = rep(c("HH_HEAT","HH_TRA","HH_OTH"), nrow(direct_FD_fp_long)/3) 

direct_FD_fp_long_disagg = cbind(sector,direct_FD_fp_long) %>%
  mutate(coicop = ifelse(sector == "HH_TRA","CP072",
                         ifelse(sector == "HH_HEAT","CP045","CP05")), 
         five_sectors = ifelse(sector == "HH_TRA", "transport",
                               ifelse(sector == "HH_HEAT", "shelter", "manufactured goods"))) %>%
  left_join(env_ac_ainah_r2_co2, by = c("geo","sector")) %>%
  left_join(env_ac_ainah_r2_ch4, by = c("geo","sector")) %>%
  left_join(env_ac_ainah_r2_n2o, by = c("geo","sector")) %>%
  left_join(env_ac_pefasu, by = c("geo","sector")) %>%
  mutate(direct_FD_co2 = (direct_FD_co2_combustion +
                            direct_FD_co2_noncombustion_cement +
                            direct_FD_co2_noncombustion_lime +
                            direct_FD_co2_agriculture_peatdecay +
                            direct_FD_co2_waste_biogenic +
                            direct_FD_co2_waste_fossil)*share_of_total_co2,
         direct_FD_ch4 = (direct_FD_ch4_combustion +
                            direct_FD_ch4_noncombustion_gas +
                            direct_FD_ch4_noncombustion_oil +
                            direct_FD_ch4_noncombustion_anthracite +
                            direct_FD_ch4_noncombustion_bituminouscoal +
                            direct_FD_ch4_noncombustion_cokingcoal +
                            direct_FD_ch4_noncombustion_lignite +
                            direct_FD_ch4_noncombustion_subbituminouscoal +
                            direct_FD_ch4_noncombustion_oilrefinery +
                            direct_FD_ch4_agriculture +
                            direct_FD_ch4_waste)*share_of_total_ch4,
         direct_FD_n2o = (direct_FD_n2o_combustion +
                            direct_FD_n2o_agriculture)*share_of_total_n2o,
         direct_FD_energy = direct_FD_energy*share_of_total_energy) %>%
  left_join(shares, by = c("year","geo","coicop")) %>%
  mutate(disaggregated_direct_FD_co2 = direct_FD_co2*share,
         disaggregated_direct_FD_ch4 = direct_FD_ch4*share,
         disaggregated_direct_FD_n2o = direct_FD_n2o*share,
         disaggregated_direct_FD_energy = direct_FD_energy*share) %>%
  select(year,geo,sector, quintile,
         coicop, five_sectors,
         disaggregated_direct_FD_co2,
         disaggregated_direct_FD_ch4,
         disaggregated_direct_FD_n2o,
         disaggregated_direct_FD_energy) 

direct_FD_co2 = direct_FD_fp_long_disagg %>%
  select(year,geo,sector,quintile,coicop,five_sectors,disaggregated_direct_FD_co2) %>%
  spread(quintile,disaggregated_direct_FD_co2) %>%
  rename(q1_co2 = QUINTILE1,
         q2_co2 = QUINTILE2,
         q3_co2 = QUINTILE3,
         q4_co2 = QUINTILE4,
         q5_co2 = QUINTILE5) %>%
  mutate(q1_co2_domestic = q1_co2,
         q2_co2_domestic = q2_co2,
         q3_co2_domestic = q3_co2,
         q4_co2_domestic = q4_co2,
         q5_co2_domestic = q5_co2,
         co2_total = q1_co2+q2_co2+q3_co2+q4_co2+q5_co2,
         co2_total_domestic = q1_co2_domestic+
           q2_co2_domestic+q3_co2_domestic+
           q4_co2_domestic+q5_co2_domestic)

direct_FD_ch4 = direct_FD_fp_long_disagg %>%
  select(year,geo,sector,quintile,coicop,five_sectors,disaggregated_direct_FD_ch4) %>%
  spread(quintile,disaggregated_direct_FD_ch4) %>%
  rename(q1_ch4 = QUINTILE1,
         q2_ch4 = QUINTILE2,
         q3_ch4 = QUINTILE3,
         q4_ch4 = QUINTILE4,
         q5_ch4 = QUINTILE5) %>%
  mutate(q1_ch4_domestic = q1_ch4,
         q2_ch4_domestic = q2_ch4,
         q3_ch4_domestic = q3_ch4,
         q4_ch4_domestic = q4_ch4,
         q5_ch4_domestic = q5_ch4,
         ch4_total = q1_ch4+q2_ch4+q3_ch4+q4_ch4+q5_ch4,
         ch4_total_domestic = q1_ch4_domestic+
           q2_ch4_domestic+q3_ch4_domestic+
           q4_ch4_domestic+q5_ch4_domestic)


direct_FD_n2o = direct_FD_fp_long_disagg %>%
  select(year,geo,sector,quintile,coicop,five_sectors,disaggregated_direct_FD_n2o) %>%
  spread(quintile,disaggregated_direct_FD_n2o) %>%
  rename(q1_n2o = QUINTILE1,
         q2_n2o = QUINTILE2,
         q3_n2o = QUINTILE3,
         q4_n2o = QUINTILE4,
         q5_n2o = QUINTILE5) %>%
  mutate(q1_n2o_domestic = q1_n2o,
         q2_n2o_domestic = q2_n2o,
         q3_n2o_domestic = q3_n2o,
         q4_n2o_domestic = q4_n2o,
         q5_n2o_domestic = q5_n2o,
         n2o_total = q1_n2o+q2_n2o+q3_n2o+q4_n2o+q5_n2o,
         n2o_total_domestic = q1_n2o_domestic+
           q2_n2o_domestic+q3_n2o_domestic+
           q4_n2o_domestic+q5_n2o_domestic)

direct_FD_energy = direct_FD_fp_long_disagg %>%
  select(year,geo,sector,quintile,coicop,five_sectors,disaggregated_direct_FD_energy) %>%
  spread(quintile,disaggregated_direct_FD_energy) %>%
  rename(q1_energy = QUINTILE1,
         q2_energy = QUINTILE2,
         q3_energy = QUINTILE3,
         q4_energy = QUINTILE4,
         q5_energy = QUINTILE5) %>%
  mutate(q1_energy_domestic = q1_energy,
         q2_energy_domestic = q2_energy,
         q3_energy_domestic = q3_energy,
         q4_energy_domestic = q4_energy,
         q5_energy_domestic = q5_energy,
         energy_total = q1_energy+q2_energy+q3_energy+q4_energy+q5_energy,
         energy_total_domestic = q1_energy_domestic+
           q2_energy_domestic+q3_energy_domestic+
           q4_energy_domestic+q5_energy_domestic)


direct_FD_fp_wide = direct_FD_co2 %>%
  left_join(direct_FD_ch4, by = c("year","geo",
                                  "sector","coicop",
                                  "five_sectors")) %>%
  left_join(direct_FD_n2o, by = c("year","geo",
                                  "sector","coicop",
                                  "five_sectors")) %>%
  left_join(direct_FD_energy, by = c("year","geo",
                                     "sector","coicop",
                                     "five_sectors")) %>%
  mutate(country_of_production = geo) %>%
  mutate(q1_co2eq = q1_co2 + q1_ch4 + q1_n2o,
         q2_co2eq = q2_co2 + q2_ch4 + q2_n2o,
         q3_co2eq = q3_co2 + q3_ch4 + q3_n2o,
         q4_co2eq = q4_co2 + q4_ch4 + q4_n2o,
         q5_co2eq = q5_co2 + q5_ch4 + q5_n2o,
         co2eq_total = q1_co2eq +
           q2_co2eq + q3_co2eq +
           q4_co2eq + q5_co2eq,
         q1_co2eq_domestic = q1_co2_domestic + q1_ch4_domestic + q1_n2o_domestic,
         q2_co2eq_domestic = q2_co2_domestic + q2_ch4_domestic + q2_n2o_domestic,
         q3_co2eq_domestic = q3_co2_domestic + q3_ch4_domestic + q3_n2o_domestic,
         q4_co2eq_domestic = q4_co2_domestic + q4_ch4_domestic + q4_n2o_domestic,
         q5_co2eq_domestic = q5_co2_domestic + q5_ch4_domestic + q5_n2o_domestic,
         co2eq_total_domestic = q1_co2eq_domestic +
           q2_co2eq_domestic + q3_co2eq_domestic +
           q4_co2eq_domestic + q5_co2eq_domestic) %>%
  select(-q1_ch4,
         -q2_ch4,
         -q3_ch4,
         -q4_ch4,
         -q5_ch4,
         -ch4_total,
         -q1_ch4_domestic,
         -q2_ch4_domestic,
         -q3_ch4_domestic,
         -q4_ch4_domestic,
         -q5_ch4_domestic,
         -ch4_total_domestic,
         -q1_n2o,
         -q2_n2o,
         -q3_n2o,
         -q4_n2o,
         -q5_n2o,
         -n2o_total,
         -q1_n2o_domestic,
         -q2_n2o_domestic,
         -q3_n2o_domestic,
         -q4_n2o_domestic,
         -q5_n2o_domestic,
         -n2o_total_domestic)

direct_FD_fp_wide_all = direct_FD_fp_wide %>%
  clean_names() %>%
  select(year,geo,coicop,q1_co2:q5_co2,
         q1_co2_domestic:q5_co2_domestic,
         q1_co2eq:q5_co2eq,
         q1_co2eq_domestic:q5_co2eq_domestic,
         q1_energy:q5_energy,
         q1_energy_domestic:q5_energy_domestic)

## extract co2 and pivot long
cols_co2 = c("q1_co2", "q2_co2", "q3_co2", "q4_co2", "q5_co2")
tmp_co2 = direct_FD_fp_wide_all %>%
  select(year, geo, coicop, cols_co2) %>%
  pivot_longer(cols = cols_co2,
               names_to = "quintile",
               values_to = "co2_kg") %>%
  mutate(quint = parse_number(quintile)) %>%
  select(-quintile)

## extract co2 domestic and pivot long
cols_co2_domestic = c("q1_co2_domestic", "q2_co2_domestic", "q3_co2_domestic", "q4_co2_domestic", "q5_co2_domestic")
tmp_co2_domestic = direct_FD_fp_wide_all %>%
  select(year, geo, coicop, cols_co2_domestic) %>%
  pivot_longer(cols = cols_co2_domestic,
               names_to = "quintile",
               values_to = "co2_domestic_kg") %>%
  mutate(quint = parse_number(quintile)) %>%
  select(-quintile)

## extract co2eq and pivot long
cols_co2eq = c("q1_co2eq", "q2_co2eq", "q3_co2eq", "q4_co2eq", "q5_co2eq")
tmp_co2eq = direct_FD_fp_wide_all %>%
  select(year, geo, coicop, cols_co2eq) %>%
  pivot_longer(cols = cols_co2eq,
               names_to = "quintile",
               values_to = "co2eq_kg") %>%
  mutate(quint = parse_number(quintile)) %>%
  select(-quintile)

## extract co2eq domestic and pivot long
cols_co2eq_domestic = c("q1_co2eq_domestic", "q2_co2eq_domestic", "q3_co2eq_domestic", "q4_co2eq_domestic", "q5_co2eq_domestic")
tmp_co2eq_domestic = direct_FD_fp_wide_all %>%
  select(year, geo, coicop, cols_co2eq_domestic) %>%
  pivot_longer(cols = cols_co2eq_domestic,
               names_to = "quintile",
               values_to = "co2eq_domestic_kg") %>%
  mutate(quint = parse_number(quintile)) %>%
  select(-quintile)

## extract energy use and pivot long
cols_energy = c("q1_energy","q2_energy","q3_energy","q4_energy","q5_energy")
tmp_energy = direct_FD_fp_wide_all %>%
  select(year, geo, coicop, cols_energy) %>%
  pivot_longer(cols = cols_energy,
               names_to = "quintile",
               values_to = "energy_use_TJ") %>%
  mutate(quint = parse_number(quintile)) %>%
  select(-quintile)

## extract energy domestic and pivot long
cols_energy_domestic = c("q1_energy_domestic","q2_energy_domestic","q3_energy_domestic","q4_energy_domestic","q5_energy_domestic")
tmp_energy_domestic = direct_FD_fp_wide_all %>%
  select(year, geo, coicop, cols_energy_domestic) %>%
  pivot_longer(cols = cols_energy_domestic,
               names_to = "quintile",
               values_to = "energy_use_domestic_TJ") %>%
  mutate(quint = parse_number(quintile)) %>%
  select(-quintile)

direct_FD_fp_wide_recombined = tmp_co2 %>%
  left_join(tmp_co2_domestic, by=c("year", "geo", "coicop", "quint")) %>%
  left_join(tmp_co2eq, by=c("year", "geo", "coicop", "quint")) %>%
  left_join(tmp_co2eq_domestic, by=c("year", "geo", "coicop", "quint")) %>%
  left_join(tmp_energy, by=c("year", "geo", "coicop", "quint")) %>%
  left_join(tmp_energy_domestic, by=c("year", "geo", "coicop", "quint")) %>%
  clean_names() %>%
  mutate(year = as.numeric(year))

results = ok %>% 
  filter(!(geo %in% c("EA","EA12","EA13","EA17",
                      "EA18","EA19","EEA28","EEA30_2007",
                      "EFTA","EU15","EU25",
                      "EU27_2007", "EU27_2020",
                      "EU28","XK", "RS", 
                      "MK", "ME")),
         !(quintile %in% c("TOTAL","UNK")),
         !(year %in% c(1988,1994,1999))) %>%
  group_by(geo,quintile,year,coicop) %>%
  summarise(fd_me = sum(fd_me, na.rm = TRUE),
            co2_kg = sum(co2_kg, na.rm = TRUE),
            co2_domestic_kg = sum(co2_domestic_kg, na.rm = TRUE),
            co2_europe_kg = sum(co2_europe_kg, na.rm = TRUE),
            co2eq_kg = sum(co2eq_kg, na.rm = TRUE),
            co2eq_domestic_kg = sum(co2eq_domestic_kg, na.rm = TRUE),
            co2eq_europe_kg = sum(co2eq_europe_kg, na.rm = TRUE),
            energy_use_TJ = sum(energy_use_TJ, na.rm = TRUE),
            energy_use_domestic_TJ = sum(energy_use_domestic_TJ, na.rm = TRUE),
            energy_use_europe_TJ = sum(energy_use_europe_TJ, na.rm = TRUE)) %>% 
  ungroup() %>%
  mutate(year = as.numeric(year)) %>%
  na.omit() 

results_formatted = results %>%
  clean_names() %>%
  mutate(quint = parse_number(quintile)) %>%
  select(-quintile) %>%
  filter(coicop %in% c("CP011",
                       "CP012",
                       "CP02",
                       "CP03",
                       "rent",
                       "CP043",
                       "CP044",
                       "CP045",
                       "CP05",
                       "CP06",
                       "CP071",
                       "CP072",
                       "CP073",
                       "CP08",
                       "CP09",
                       "CP10",
                       "CP11",
                       "CP12"))

results_formatted_with_direct_FD_fp = bind_rows(results_formatted,direct_FD_fp_wide_recombined)


write.csv(results_formatted_with_direct_FD_fp, paste0(data_dir_income_stratified_footprints, "/results_formatted_method2_ixi.csv"))
write_rds(results_formatted_with_direct_FD_fp, paste0(data_dir_income_stratified_footprints, "/results_formatted_method2_ixi.rds"))

European expenditure deciles

  • need to download EUROSTAT households and Norway households

# set target number of quantiles
target_eu_ntiles = 10

##### main paper results (main paper method, EXIOBASE industry-by-industry version)

# 1) load income-stratified-footprints formatted results file from previous code chunk
dat_results_raw = read_rds(here("analysis", "preprocessing", "income-stratified-footprints",
                                "results_formatted_method1_ixi.rds")) %>%
  ungroup() %>%
  mutate(year= strtoi(year)) %>%
  rename(iso2 = geo)

# get iso3 country codes to join with household data
country_codes = ISOcodes::ISO_3166_1 %>%
  select(iso2 = Alpha_2, iso3 = Alpha_3) %>%
  # resolve inconsistency between EUROSTAT and ISO for Greece and UK/Great Britain
  mutate(iso2 = if_else(iso2=="GR", "EL", iso2)) %>%
  mutate(iso2 = if_else(iso2=="GB", "UK", iso2))

# read in total private households data from EUROSTAT and Norway, merge, and write .csv 
## set 4 digits per value
options(digits=4)

## EUROSTAT total private households
total_private_households_Eurostat = read.csv(here("/analysis/preprocessing/income-stratified-footprints/lfst_hhnhtych_1_Data.csv")) %>%
  filter(!(GEO %in% c("European Union - 27 countries (from 2020)",
                    "Euro area - 19 countries  (from 2015)",
                    "European Union - 28 countries (2013-2020)",
                    "European Union - 15 countries (1995-2004)"))) %>%
  mutate(geo = dplyr::recode(GEO,
                             "Belgium" = "BE",
                             "Bulgaria" = "BG",
                             "Czechia" = "CZ",
                             "Denmark" = "DK",
                             "Germany (until 1990 former territory of the FRG)" = "DE",
                             "Estonia" = "EE",
                             "Ireland" = "IE",
                             "Greece" = "EL",
                             "Spain" = "ES",
                             "France" = "FR",
                             "Croatia" = "HR",
                             "Italy" = "IT",
                             "Cyprus" = "CY",
                             "Latvia" = "LV",
                             "Lithuania" = "LT",
                             "Luxembourg" = "LU",
                             "Hungary" = "HU",
                             "Malta" = "MT",
                             "Netherlands" = "NL",
                             "Austria" = "AT",
                             "Poland" = "PL",
                             "Portugal" = "PT",
                             "Romania" = "RO",
                             "Slovenia" = "SI",
                             "Slovakia" = "SK",
                             "Finland" = "FI",
                             "Sweden" = "SE",
                             "United Kingdom" = "UK",
                             "Montenegro" = "ME",
                             "North Macedonia" = "MK",
                             "Serbia" = "RS",
                             "Turkey" = "TR")) %>%
  select(TIME,geo,Value) %>%
  rename(year = TIME, total_private_households = Value) %>%
  mutate(total_private_households = as.character(total_private_households),
         total_private_households = parse_number(total_private_households),
         total_private_households = as.numeric(total_private_households),
         total_private_households = total_private_households*1000)

## Norway total private households
total_private_households_Norway = read.csv(here("/analysis/preprocessing/income-stratified-footprints/Privathusholdninger.csv")) %>%
  gather(year, total_private_households, Private.households.2005:Private.households.2019) %>%
  mutate(geo = dplyr::recode(region,
                             "0 The whole country" = "NO"),
         year = dplyr::recode(year,
                              "Private.households.2005" = 2005,
                              "Private.households.2006" = 2006,
                              "Private.households.2007" = 2007,
                              "Private.households.2008" = 2008,
                              "Private.households.2009" = 2009,
                              "Private.households.2010" = 2010,
                              "Private.households.2011" = 2011,
                              "Private.households.2012" = 2012,
                              "Private.households.2013" = 2013,
                              "Private.households.2014" = 2014,
                              "Private.households.2015" = 2015,
                              "Private.households.2016" = 2016,
                              "Private.households.2017" = 2017,
                              "Private.households.2018" = 2018,
                              "Private.households.2019" = 2019)) %>%
  select(year,geo,total_private_households)

## merge EUROSTAT and Norway total private households data
total_private_households = rbind(total_private_households_Eurostat,
                                 total_private_households_Norway) %>%
  mutate(geo = as.character(geo),
         year = as.numeric(year),
         total_private_households = as.numeric(total_private_households))

## write .csv file with all total private households data
write_csv(total_private_households, here("/analysis/preprocessing/income-stratified-footprints/total_private_households.csv"))
# the original 'total_private_households_original.csv' is in 'income-stratified-footprints-in-europe/data' - if something goes wrong
# with the main paper results (pulling from the mrio results file written later) then the problem is here, when I added 
# the as.character mutation in the total_private_households_Eurostat

## return to 2 digits per value
options(digits=2)

# 2) load merged total private households data 
hh_data = read_csv(here("analysis", "preprocessing", "income-stratified-footprints", 
                        "total_private_households.csv")) %>%
  mutate(imputed = if_else(is.na(total_private_households), TRUE, FALSE)) %>%
  rename(iso2 = geo) %>%
  group_by(iso2) %>%
  # impute households with next available neighbour
  mutate(hh = na_locf(total_private_households)) %>%
  left_join(country_codes, by="iso2") %>%
  select(-total_private_households)

#3) load EUROSTAT mean expenditures per household income quintile per household and per adult equivalent (written and saved in the previous, income-stratified-footprints code chunk)
df_expenditure_long = read_csv(here("analysis",
                                    "preprocessing",
                                    "income-stratified-footprints",
                                    "mean_expenditure_by_quintile_long.csv"),
                               na = ":") %>%
  #filter(year >=2010, geo != "IT") %>%
  #filter(year >=2005, geo != "IT") %>%
  #decide here
  filter(year >=2005) %>%
  mutate(imputed = if_else(is.na(mean_expenditure), TRUE, FALSE)) %>%
  group_by(geo,unit,quintile) %>%
  mutate(value = na_locf(mean_expenditure)) %>%
  select(-mean_expenditure) %>% 
  ungroup()

## calculate adult equivalents per household
df_adult_e_p_hh = df_expenditure_long %>%
  rename(iso2 = geo) %>%
  pivot_wider(id_cols = c(iso2, year, quintile, imputed), 
              names_from = unit, 
              values_from = value) %>%
  clean_names() %>%
  mutate(adult_e_p_hh = pps_hh/pps_ae) %>%
  left_join(country_codes, by="iso2") %>%
  mutate(iso3 = if_else(iso2 == "XK", "XKX", iso3),
         quint = parse_number(quintile))

## add quintile population data
mrio_results_with_adult_eq_all = dat_results_raw %>%
  filter(year %in% c(2005, 2010, 2015)) %>%
  left_join(hh_data, by=c("iso2", "year")) %>%
  mutate(hh_quintile = hh/5) %>% # population per country quinitle
  select(-hh) %>%
  rename(hh_imputed = imputed) %>%
  left_join(df_adult_e_p_hh %>%
              select(iso2, year, quint, imputed_ae = imputed, adult_e_p_hh), 
            by=c("iso2", "year", "quint")) %>%
  mutate(ae_quintile = hh_quintile * adult_e_p_hh) %>%
  select(-c(hh_quintile, adult_e_p_hh))

## for the European expenditure deciles we use only countries with data in 2005, 2010 and 2015. This excludes Luxembourg and Italy. 
complete_countries = mrio_results_with_adult_eq_all %>%
  group_by(year, iso2) %>%
  summarise(co2_kg = sum(co2_kg)) %>%
  ungroup() %>%
  filter(co2_kg>0) %>%
  select(iso2, year, co2_kg) %>%
  pivot_wider(id_cols = c(iso2), names_from = year, values_from = co2_kg) %>%
  drop_na() %>%
  select(iso2) %>%
  pull()

df_adult_e_p_hh %>%
  filter(iso2 %in% complete_countries, year<=2015, year>=2005) %>%
  mutate(quint = parse_number(quintile)) 

# calculate European expenditure deciles based on loaded income-stratified-footprints result file and adult equivalents.
# returns country quintiles mapped to European ntile rank and European ntile boundaries
# helper function called by function below
calculate_eu_ntiles <- function(pyear, pquantile_count=10) {
  
  country_data_annual_sorted = summary_country_fd %>%
    ungroup() %>%
    filter(year==pyear) %>%
    arrange(fd_pae_e) %>%
    mutate(idx = 1:n(),
           eu_q_rank = 0) # later to be filled with euro quintile rank
  
  # total European adult equivalents (of included countries) in year
  total_ae_in_year = sum(country_data_annual_sorted$ae_quintile)
  
  # quantile target ae population
  eu_decile_adult_eq = total_ae_in_year/pquantile_count
  
  # country quintles must be split to allocate ae population according to eu quantile target ae population
  # filtering by condition that can't be fulfilled is a lazy way to create an empty dataframe
  # of the same structure as country_data_annual_sorted
  additional_rows = country_data_annual_sorted %>%
    filter(year==1)
  
  # store quantile split values
  eu_quantile_boundaries = data.frame(euro_q_rank = 1:pquantile_count, p = 0)
  
  # loops through the ordered dataset, assigns European quantile rank
  # and splits quintiles where necessary
  eu_ae_current = 0
  euro_q_rank_current = 1
  for (row_idx in 1:nrow(country_data_annual_sorted)) {
    row = country_data_annual_sorted[row_idx,]
    if (row["ae_quintile"] + eu_ae_current <= eu_decile_adult_eq) {
      eu_ae_current = eu_ae_current + row["ae_quintile"]
      country_data_annual_sorted[row_idx, "eu_q_rank"] = euro_q_rank_current
    } else {
      ae_diff = eu_decile_adult_eq - eu_ae_current
      ## write rest of this European decile (split country quintile)
      new_row = country_data_annual_sorted[row_idx, ]
      new_row[1, "eu_q_rank"] = euro_q_rank_current
      new_row[1, "ae_quintile"] = ae_diff
      ## record European quantile boundary
      eu_quantile_boundaries[eu_quantile_boundaries$euro_q_rank==euro_q_rank_current, "p"] =
        country_data_annual_sorted[row_idx, "fd_pae_e"]
      ## put first part of population in overflow dataframe
      additional_rows = additional_rows %>%
        bind_rows(new_row)
      ## classify rest of country quintile population to next European quantile
      country_data_annual_sorted[row_idx, "ae_quintile"] = 
        country_data_annual_sorted[row_idx, "ae_quintile"] - (ae_diff+0.0001)
      euro_q_rank_current = euro_q_rank_current + 1
      country_data_annual_sorted[row_idx, "eu_q_rank"] = euro_q_rank_current
      eu_ae_current = country_data_annual_sorted[row_idx, "ae_quintile"]
      
    }
  }
  
  country_data_eu_quantiles = country_data_annual_sorted %>%
  bind_rows(additional_rows) %>%
  arrange(fd_pae_e, eu_q_rank) %>%
  mutate(idx = 1:n())

  # add zeroth and nth quantile (min and max)
  eu_quantile_boundaries[pquantile_count, "p"] = max(country_data_eu_quantiles$fd_pae_e)
  
  list("df_q_data" = country_data_eu_quantiles, "df_q_boundaries" = eu_quantile_boundaries)
}

# maps income-stratified-footprint results to European ntile ranks, returns mapping and ntile European boundaries
map_mrio_results_to_eu_ntiles <- function(pyear, ptarget_ntiles) {
  
  df_eu_ntiles = calculate_eu_ntiles(pyear, pquantile_count = ptarget_ntiles)
  df_eu_ntiles_data = df_eu_ntiles$df_q_data
  
  sector_mapping = mrio_results_with_adult_eq %>%
    group_by(sector_id) %>%#
    summarise(sector_agg_id = first(sector_agg_id)) %>%
    ungroup()
  
  df_mapped_data = mrio_results_with_adult_eq %>%
    select(year, 
           iso2, 
           quint, 
           sector_id, 
           fd_me, 
           co2_kg, 
           co2_domestic_kg, 
           co2_europe_kg,
           co2eq_kg, 
           co2eq_domestic_kg, 
           co2eq_europe_kg,
           energy_use_TJ, 
           energy_use_domestic_TJ,
           energy_use_europe_TJ,
           ae_quintile) %>%
    filter(year==pyear) %>%
    # calculate per adult equivalent values in quintiles
    mutate(fd_pae_e = fd_me*1000000/ae_quintile,
           co2_pae_kg = co2_kg/ae_quintile,
           co2_pae_dom_kg = co2_domestic_kg/ae_quintile,
           co2_pae_eu_kg = co2_europe_kg/ae_quintile,
           co2eq_pae_kg = co2eq_kg/ae_quintile,
           co2eq_pae_dom_kg = co2eq_domestic_kg/ae_quintile,
           co2eq_pae_eu_kg = co2eq_europe_kg/ae_quintile,
           energy_use_pae_tj = energy_use_TJ/ae_quintile,
           energy_use_dom_pae_tj = energy_use_domestic_TJ/ae_quintile,
           energy_use_eu_pae_tj = energy_use_europe_TJ/ae_quintile) %>%
    # remove totals
    select(-c(fd_me, 
              co2_kg,
              co2_domestic_kg,
              co2_europe_kg,
              co2eq_kg,
              co2eq_domestic_kg,
              co2eq_europe_kg,
              energy_use_TJ,
              energy_use_domestic_TJ,
              energy_use_europe_TJ,
              year, ae_quintile)) %>%
    full_join(df_eu_ntiles_data %>%
                rename(fd_pae_e_quint_tmp = fd_pae_e), by=c("iso2", "quint")) %>%
    rename(adult_eq = ae_quintile) %>% # country quintile and their split fraction population
    # recalculate totals
    mutate(fd_me = fd_pae_e*adult_eq/1000000,
           co2_kg = co2_pae_kg*adult_eq,
           co2_dom_kg = co2_pae_dom_kg*adult_eq,
           co2_eu_kg = co2_pae_eu_kg*adult_eq,
           co2eq_kg = co2eq_pae_kg*adult_eq,
           co2eq_dom_kg = co2eq_pae_dom_kg*adult_eq,
           co2eq_eu_kg = co2eq_pae_eu_kg*adult_eq,
           energy_use_tj = energy_use_pae_tj*adult_eq,
           energy_use_dom_tj = energy_use_dom_pae_tj*adult_eq,
           energy_use_eu_tj = energy_use_eu_pae_tj*adult_eq
           ) %>%
    left_join(sector_mapping, by="sector_id")
  
  list("df_mapped_data" = df_mapped_data, "df_ntile_boundaries" = df_eu_ntiles$df_q_boundaries)
  
}

# filter only countries with complete info for years 2005, 2010, 2015
mrio_results_with_adult_eq = mrio_results_with_adult_eq_all %>%
  filter(iso2 %in% complete_countries)

# summarize final demand per adult equivalent per quintile across all sectors as basis for European deciles for complete countries
summary_country_fd = mrio_results_with_adult_eq %>%
  group_by(iso2, year, quint) %>%
  summarise(ae_quintile = first(ae_quintile),
            fd_pae_e = sum(fd_me*1000000)/(ae_quintile))

# summarize final demand per adult equivalent per quintile across all sectors as basis for European deciles for all countries
summary_country_fd_all = mrio_results_with_adult_eq_all %>%
  group_by(iso2, year, quint) %>%
  summarise(ae_quintile = first(ae_quintile),
            fd_pae_e = sum(fd_me*1000000)/(ae_quintile))

df_mapped_result_2005 = map_mrio_results_to_eu_ntiles(2005, target_eu_ntiles)
df_mapped_result_2005_data = df_mapped_result_2005$df_mapped_data
df_mapped_result_2005_ntiles = df_mapped_result_2005$df_ntile_boundaries

df_mapped_result_2010 = map_mrio_results_to_eu_ntiles(2010, target_eu_ntiles)
df_mapped_result_2010_data = df_mapped_result_2010$df_mapped_data
df_mapped_result_2010_ntiles = df_mapped_result_2010$df_ntile_boundaries

df_mapped_result_2015 = map_mrio_results_to_eu_ntiles(2015, target_eu_ntiles)
df_mapped_result_2015_data = df_mapped_result_2015$df_mapped_data
df_mapped_result_2015_ntiles = df_mapped_result_2015$df_ntile_boundaries

df_mapped_result_data = df_mapped_result_2005_data %>%
  bind_rows(df_mapped_result_2010_data) %>%
  bind_rows(df_mapped_result_2015_data)

write_csv(df_mapped_result_data, 
          here(paste0("analysis/data/derived/mrio_results_eu_ntile_mapped_n_", target_eu_ntiles, ".csv")))


###### SI results, main paper method, EXIOBASE product-by-product version

# 1) load income-stratified-footprints formatted results file
dat_results_raw = read_rds(here("analysis", "preprocessing", "income-stratified-footprints",
                            "results_formatted_method1_pxp.rds")) %>%
  ungroup() %>%
  mutate(year= strtoi(year)) %>%
  rename(iso2 = geo)

# get iso3 country codes to join with household data
country_codes = ISOcodes::ISO_3166_1 %>%
  select(iso2 = Alpha_2, iso3 = Alpha_3) %>%
  # resolve inconsistency between EUROSTAT and ISO for Greece and UK/Great Britain
  mutate(iso2 = if_else(iso2=="GR", "EL", iso2)) %>%
  mutate(iso2 = if_else(iso2=="GB", "UK", iso2))

# read in total private households data from EUROSTAT and Norway, merge, and write .csv 
## set 4 digits per value
options(digits=4)

## EUROSTAT total private households
total_private_households_Eurostat = read.csv(here("/analysis/preprocessing/income-stratified-footprints/lfst_hhnhtych_1_Data.csv")) %>%
  filter(!(GEO %in% c("European Union - 27 countries (from 2020)",
                    "Euro area - 19 countries  (from 2015)",
                    "European Union - 28 countries (2013-2020)",
                    "European Union - 15 countries (1995-2004)"))) %>%
  mutate(geo = dplyr::recode(GEO,
                             "Belgium" = "BE",
                             "Bulgaria" = "BG",
                             "Czechia" = "CZ",
                             "Denmark" = "DK",
                             "Germany (until 1990 former territory of the FRG)" = "DE",
                             "Estonia" = "EE",
                             "Ireland" = "IE",
                             "Greece" = "EL",
                             "Spain" = "ES",
                             "France" = "FR",
                             "Croatia" = "HR",
                             "Italy" = "IT",
                             "Cyprus" = "CY",
                             "Latvia" = "LV",
                             "Lithuania" = "LT",
                             "Luxembourg" = "LU",
                             "Hungary" = "HU",
                             "Malta" = "MT",
                             "Netherlands" = "NL",
                             "Austria" = "AT",
                             "Poland" = "PL",
                             "Portugal" = "PT",
                             "Romania" = "RO",
                             "Slovenia" = "SI",
                             "Slovakia" = "SK",
                             "Finland" = "FI",
                             "Sweden" = "SE",
                             "United Kingdom" = "UK",
                             "Montenegro" = "ME",
                             "North Macedonia" = "MK",
                             "Serbia" = "RS",
                             "Turkey" = "TR")) %>%
  select(TIME,geo,Value) %>%
  rename(year = TIME, total_private_households = Value) %>%
  mutate(total_private_households = as.character(total_private_households),
         total_private_households = parse_number(total_private_households),
         total_private_households = as.numeric(total_private_households),
         total_private_households = total_private_households*1000)

## Norway total private households
total_private_households_Norway = read.csv(here("/analysis/preprocessing/income-stratified-footprints/Privathusholdninger.csv")) %>%
  gather(year, total_private_households, Private.households.2005:Private.households.2019) %>%
  mutate(geo = dplyr::recode(region,
                             "0 The whole country" = "NO"),
         year = dplyr::recode(year,
                              "Private.households.2005" = 2005,
                              "Private.households.2006" = 2006,
                              "Private.households.2007" = 2007,
                              "Private.households.2008" = 2008,
                              "Private.households.2009" = 2009,
                              "Private.households.2010" = 2010,
                              "Private.households.2011" = 2011,
                              "Private.households.2012" = 2012,
                              "Private.households.2013" = 2013,
                              "Private.households.2014" = 2014,
                              "Private.households.2015" = 2015,
                              "Private.households.2016" = 2016,
                              "Private.households.2017" = 2017,
                              "Private.households.2018" = 2018,
                              "Private.households.2019" = 2019)) %>%
  select(year,geo,total_private_households)

## merge EUROSTAT and Norway total private households data
total_private_households = rbind(total_private_households_Eurostat,
                                 total_private_households_Norway) %>%
  mutate(geo = as.character(geo),
         year = as.numeric(year),
         total_private_households = as.numeric(total_private_households))

## write .csv file with all total private households data
write_csv(total_private_households, here("/analysis/preprocessing/income-stratified-footprints/total_private_households.csv"))
# the original 'total_private_households_original.csv' is in 'income-stratified-footprints-in-europe/data' - if something goes wrong
# with the main paper results (pulling from the mrio results file written later) then the problem is here, when I added 
# the as.character mutation in the total_private_households_Eurostat

## return to 2 digits per value
options(digits=2)

# 2) load merged total private households data 
hh_data = read_csv(here("analysis", "preprocessing", "income-stratified-footprints",
                        "total_private_households.csv")) %>%
  mutate(imputed = if_else(is.na(total_private_households), TRUE, FALSE)) %>%
  rename(iso2 = geo) %>%
  group_by(iso2) %>%
  # impute households with next available neighbour
  mutate(hh = na_locf(total_private_households)) %>%
  left_join(country_codes, by="iso2") %>%
  select(-total_private_households)

#3) load EUROSTAT mean expenditures per household income quintile per household and per adult equivalent (written and saved in the previous, income-stratified-footprints code chunk)
df_expenditure_long = read_csv(here("analysis", "preprocessing", "income-stratified-footprints",
                                    "mean_expenditure_by_quintile_long.csv"),
                               na = ":") %>%
  #filter(year >=2010, geo != "IT") %>%
  #filter(year >=2005, geo != "IT") %>%
  #decide here
  filter(year >=2005) %>%
  mutate(imputed = if_else(is.na(mean_expenditure), TRUE, FALSE)) %>%
  group_by(geo,unit,quintile) %>%
  mutate(value = na_locf(mean_expenditure)) %>%
  select(-mean_expenditure) %>% 
  ungroup()

## calculate adult equivalents per household
df_adult_e_p_hh = df_expenditure_long %>%
  rename(iso2 = geo) %>%
  pivot_wider(id_cols = c(iso2, year, quintile, imputed), 
              names_from = unit, 
              values_from = value) %>%
  clean_names() %>%
  mutate(adult_e_p_hh = pps_hh/pps_ae) %>%
  left_join(country_codes, by="iso2") %>%
  mutate(iso3 = if_else(iso2 == "XK", "XKX", iso3),
         quint = parse_number(quintile))

## add quintile population data
mrio_results_with_adult_eq_all = dat_results_raw %>%
  filter(year %in% c(2005, 2010, 2015)) %>%
  left_join(hh_data, by=c("iso2", "year")) %>%
  mutate(hh_quintile = hh/5) %>% # population per country quinitle
  select(-hh) %>%
  rename(hh_imputed = imputed) %>%
  left_join(df_adult_e_p_hh %>%
              select(iso2, year, quint, imputed_ae = imputed, adult_e_p_hh), 
            by=c("iso2", "year", "quint")) %>%
  mutate(ae_quintile = hh_quintile * adult_e_p_hh) %>%
  select(-c(hh_quintile, adult_e_p_hh))

## for the European expenditure deciles we use only countries with data in 2005, 2010 and 2015. This excludes Luxembourg and Italy. 
complete_countries = mrio_results_with_adult_eq_all %>%
  group_by(year, iso2) %>%
  summarise(co2_kg = sum(co2_kg)) %>%
  ungroup() %>%
  filter(co2_kg>0) %>%
  select(iso2, year, co2_kg) %>%
  pivot_wider(id_cols = c(iso2), names_from = year, values_from = co2_kg) %>%
  drop_na() %>%
  select(iso2) %>%
  pull()

df_adult_e_p_hh %>%
  filter(iso2 %in% complete_countries, year<=2015, year>=2005) %>%
  mutate(quint = parse_number(quintile)) 

# calculate European expenditure deciles based on loaded income-stratified-footprints result file and adult equivalents.
# returns country quintiles mapped to European ntile rank and European ntile boundaries
# helper function called by function below
calculate_eu_ntiles <- function(pyear, pquantile_count=10) {
  
  country_data_annual_sorted = summary_country_fd %>%
    ungroup() %>%
    filter(year==pyear) %>%
    arrange(fd_pae_e) %>%
    mutate(idx = 1:n(),
           eu_q_rank = 0) # later to be filled with euro quintile rank
  
  # total European adult equivalents (of included countries) in year
  total_ae_in_year = sum(country_data_annual_sorted$ae_quintile)
  
  # quantile target ae population
  eu_decile_adult_eq = total_ae_in_year/pquantile_count
  
  # country quintiles must be split to allocate ae population according to European quantile target ae population
  # filtering by condition that cant be fulfilled is a lazy way to create an empty dataframe
  # of the same structure as country_data_annual_sorted
  additional_rows = country_data_annual_sorted %>%
    filter(year==1)
  
  # store quantile split values
  eu_quantile_boundaries = data.frame(euro_q_rank = 1:pquantile_count, p = 0)
  
  # loops through the ordered dataset, assignes euro quantile rank
  # and splits quintiles where necessary
  eu_ae_current = 0
  euro_q_rank_current = 1
  for (row_idx in 1:nrow(country_data_annual_sorted)) {
    row = country_data_annual_sorted[row_idx,]
    if (row["ae_quintile"] + eu_ae_current <= eu_decile_adult_eq) {
      eu_ae_current = eu_ae_current + row["ae_quintile"]
      country_data_annual_sorted[row_idx, "eu_q_rank"] = euro_q_rank_current
    } else {
      ae_diff = eu_decile_adult_eq - eu_ae_current
      ## write rest of this European decile (split country quintile)
      new_row = country_data_annual_sorted[row_idx, ]
      new_row[1, "eu_q_rank"] = euro_q_rank_current
      new_row[1, "ae_quintile"] = ae_diff
      ## record European quantile boundary
      eu_quantile_boundaries[eu_quantile_boundaries$euro_q_rank==euro_q_rank_current, "p"] =
        country_data_annual_sorted[row_idx, "fd_pae_e"]
      ## put first part of population in overflow dataframe
      additional_rows = additional_rows %>%
        bind_rows(new_row)
      ## classify rest of country quintile population to next European quantile
      country_data_annual_sorted[row_idx, "ae_quintile"] = 
        country_data_annual_sorted[row_idx, "ae_quintile"] - (ae_diff+0.0001)
      euro_q_rank_current = euro_q_rank_current + 1
      country_data_annual_sorted[row_idx, "eu_q_rank"] = euro_q_rank_current
      eu_ae_current = country_data_annual_sorted[row_idx, "ae_quintile"]
      
    }
  }
  
  country_data_eu_quantiles = country_data_annual_sorted %>%
  bind_rows(additional_rows) %>%
  arrange(fd_pae_e, eu_q_rank) %>%
  mutate(idx = 1:n())

  # add zeroth and nth quantile (min and max)
  eu_quantile_boundaries[pquantile_count, "p"] = max(country_data_eu_quantiles$fd_pae_e)
  
  list("df_q_data" = country_data_eu_quantiles, "df_q_boundaries" = eu_quantile_boundaries)
}

# maps income-stratified-footprint results to European ntile ranks, returns mapping and ntile European boundaries
map_mrio_results_to_eu_ntiles <- function(pyear, ptarget_ntiles) {
  
  df_eu_ntiles = calculate_eu_ntiles(pyear, pquantile_count = ptarget_ntiles)
  df_eu_ntiles_data = df_eu_ntiles$df_q_data
  
  sector_mapping = mrio_results_with_adult_eq %>%
    group_by(sector_id) %>%#
    summarise(sector_agg_id = first(sector_agg_id)) %>%
    ungroup()
  
  df_mapped_data = mrio_results_with_adult_eq %>%
    select(year, 
           iso2, 
           quint, 
           sector_id, 
           fd_me, 
           co2_kg, 
           co2_domestic_kg, 
           co2_europe_kg,
           co2eq_kg, 
           co2eq_domestic_kg, 
           co2eq_europe_kg,
           energy_use_TJ, 
           energy_use_domestic_TJ,
           energy_use_europe_TJ,
           ae_quintile) %>%
    filter(year==pyear) %>%
    # calculate per adult equivalent values in quintiles
    mutate(fd_pae_e = fd_me*1000000/ae_quintile,
           co2_pae_kg = co2_kg/ae_quintile,
           co2_pae_dom_kg = co2_domestic_kg/ae_quintile,
           co2_pae_eu_kg = co2_europe_kg/ae_quintile,
           co2eq_pae_kg = co2eq_kg/ae_quintile,
           co2eq_pae_dom_kg = co2eq_domestic_kg/ae_quintile,
           co2eq_pae_eu_kg = co2eq_europe_kg/ae_quintile,
           energy_use_pae_tj = energy_use_TJ/ae_quintile,
           energy_use_dom_pae_tj = energy_use_domestic_TJ/ae_quintile,
           energy_use_eu_pae_tj = energy_use_europe_TJ/ae_quintile) %>%
    # remove totals
    select(-c(fd_me, 
              co2_kg,
              co2_domestic_kg,
              co2_europe_kg,
              co2eq_kg,
              co2eq_domestic_kg,
              co2eq_europe_kg,
              energy_use_TJ,
              energy_use_domestic_TJ,
              energy_use_europe_TJ,
              year, ae_quintile)) %>%
    full_join(df_eu_ntiles_data %>%
                rename(fd_pae_e_quint_tmp = fd_pae_e), by=c("iso2", "quint")) %>%
    rename(adult_eq = ae_quintile) %>% # country quintile and their split fraction population
    # recalculate totals
    mutate(fd_me = fd_pae_e*adult_eq/1000000,
           co2_kg = co2_pae_kg*adult_eq,
           co2_dom_kg = co2_pae_dom_kg*adult_eq,
           co2_eu_kg = co2_pae_eu_kg*adult_eq,
           co2eq_kg = co2eq_pae_kg*adult_eq,
           co2eq_dom_kg = co2eq_pae_dom_kg*adult_eq,
           co2eq_eu_kg = co2eq_pae_eu_kg*adult_eq,
           energy_use_tj = energy_use_pae_tj*adult_eq,
           energy_use_dom_tj = energy_use_dom_pae_tj*adult_eq,
           energy_use_eu_tj = energy_use_eu_pae_tj*adult_eq
           ) %>%
    left_join(sector_mapping, by="sector_id")
  
  list("df_mapped_data" = df_mapped_data, "df_ntile_boundaries" = df_eu_ntiles$df_q_boundaries)
  
}

# filter only countries with complete info for years 2005, 2010, 2015
mrio_results_with_adult_eq = mrio_results_with_adult_eq_all %>%
  filter(iso2 %in% complete_countries)

# summarize final demand per adult equivalent per quintile across all sectors as basis for European deciles for complete countries
summary_country_fd = mrio_results_with_adult_eq %>%
  group_by(iso2, year, quint) %>%
  summarise(ae_quintile = first(ae_quintile),
            fd_pae_e = sum(fd_me*1000000)/(ae_quintile))

# summarize final demand per adult equivalent per quintile across all sectors as basis for European deciles for all countries
summary_country_fd_all = mrio_results_with_adult_eq_all %>%
  group_by(iso2, year, quint) %>%
  summarise(ae_quintile = first(ae_quintile),
            fd_pae_e = sum(fd_me*1000000)/(ae_quintile))

df_mapped_result_2005 = map_mrio_results_to_eu_ntiles(2005, target_eu_ntiles)
df_mapped_result_2005_data = df_mapped_result_2005$df_mapped_data
df_mapped_result_2005_ntiles = df_mapped_result_2005$df_ntile_boundaries

df_mapped_result_2010 = map_mrio_results_to_eu_ntiles(2010, target_eu_ntiles)
df_mapped_result_2010_data = df_mapped_result_2010$df_mapped_data
df_mapped_result_2010_ntiles = df_mapped_result_2010$df_ntile_boundaries

df_mapped_result_data = df_mapped_result_2005_data %>%
  bind_rows(df_mapped_result_2010_data) 

write_csv(df_mapped_result_data, 
          here(paste0("analysis/data/derived/si/mrio_results_eu_ntile_mapped_n_", target_eu_ntiles, "_pxp.csv")))


##### SI results, alternative method, EXOIBASE industry-by-industry version

# 1) load income-stratified-footprints formatted results file
dat_results_raw = read_rds(here("analysis", "preprocessing", "income-stratified-footprints",
                                "results_formatted_method2_ixi.rds")) %>%
  ungroup() %>%
  mutate(year= strtoi(year)) %>%
  rename(iso2 = geo)

# get iso3 country codes to join with hh data
country_codes = ISOcodes::ISO_3166_1 %>%
  select(iso2 = Alpha_2, iso3 = Alpha_3) %>%
  # resolve inconsistency between EUROSTAT and ISO for Greece and UK/Great Britain
  mutate(iso2 = if_else(iso2=="GR", "EL", iso2)) %>%
  mutate(iso2 = if_else(iso2=="GB", "UK", iso2))

# read in total private households data from EUROSTAT and Norway, merge, and write .csv 
## set 4 digits per value
options(digits=4)

## EUROSTAT total private households
total_private_households_Eurostat = read.csv(here("/analysis/preprocessing/income-stratified-footprints/lfst_hhnhtych_1_Data.csv")) %>%
  filter(!(GEO %in% c("European Union - 27 countries (from 2020)",
                    "Euro area - 19 countries  (from 2015)",
                    "European Union - 28 countries (2013-2020)",
                    "European Union - 15 countries (1995-2004)"))) %>%
  mutate(geo = dplyr::recode(GEO,
                             "Belgium" = "BE",
                             "Bulgaria" = "BG",
                             "Czechia" = "CZ",
                             "Denmark" = "DK",
                             "Germany (until 1990 former territory of the FRG)" = "DE",
                             "Estonia" = "EE",
                             "Ireland" = "IE",
                             "Greece" = "EL",
                             "Spain" = "ES",
                             "France" = "FR",
                             "Croatia" = "HR",
                             "Italy" = "IT",
                             "Cyprus" = "CY",
                             "Latvia" = "LV",
                             "Lithuania" = "LT",
                             "Luxembourg" = "LU",
                             "Hungary" = "HU",
                             "Malta" = "MT",
                             "Netherlands" = "NL",
                             "Austria" = "AT",
                             "Poland" = "PL",
                             "Portugal" = "PT",
                             "Romania" = "RO",
                             "Slovenia" = "SI",
                             "Slovakia" = "SK",
                             "Finland" = "FI",
                             "Sweden" = "SE",
                             "United Kingdom" = "UK",
                             "Montenegro" = "ME",
                             "North Macedonia" = "MK",
                             "Serbia" = "RS",
                             "Turkey" = "TR")) %>%
  select(TIME,geo,Value) %>%
  rename(year = TIME, total_private_households = Value) %>%
  mutate(total_private_households = as.character(total_private_households),
         total_private_households = parse_number(total_private_households),
         total_private_households = as.numeric(total_private_households),
         total_private_households = total_private_households*1000)

## Norway total private households
total_private_households_Norway = read.csv(here("/analysis/preprocessing/income-stratified-footprints/Privathusholdninger.csv")) %>%
  gather(year, total_private_households, Private.households.2005:Private.households.2019) %>%
  mutate(geo = dplyr::recode(region,
                             "0 The whole country" = "NO"),
         year = dplyr::recode(year,
                              "Private.households.2005" = 2005,
                              "Private.households.2006" = 2006,
                              "Private.households.2007" = 2007,
                              "Private.households.2008" = 2008,
                              "Private.households.2009" = 2009,
                              "Private.households.2010" = 2010,
                              "Private.households.2011" = 2011,
                              "Private.households.2012" = 2012,
                              "Private.households.2013" = 2013,
                              "Private.households.2014" = 2014,
                              "Private.households.2015" = 2015,
                              "Private.households.2016" = 2016,
                              "Private.households.2017" = 2017,
                              "Private.households.2018" = 2018,
                              "Private.households.2019" = 2019)) %>%
  select(year,geo,total_private_households)

## merge EUROSTAT and Norway total private households data
total_private_households = rbind(total_private_households_Eurostat,
                                 total_private_households_Norway) %>%
  mutate(geo = as.character(geo),
         year = as.numeric(year),
         total_private_households = as.numeric(total_private_households))

## write .csv file with all total private households data
write_csv(total_private_households, here("/analysis/preprocessing/income-stratified-footprints/total_private_households.csv"))
# the original 'total_private_households_original.csv' is in 'income-stratified-footprints-in-europe/data' - if something goes wrong
# with the main paper results (pulling from the mrio results file written later) then the problem is here, when I added 
# the as.character mutation in the total_private_households_Eurostat

## return to 2 digits per value
options(digits=2)

# 2) load EUROSTAT household data
hh_data = read_csv(here("analysis", "preprocessing", "income-stratified-footprints",
                        "total_private_households.csv")) %>%
  mutate(imputed = if_else(is.na(total_private_households), TRUE, FALSE)) %>%
  rename(iso2 = geo) %>%
  group_by(iso2) %>%
  # impute households with next available neighbour
  mutate(hh = na_locf(total_private_households)) %>%
  left_join(country_codes, by="iso2") %>%
  select(-total_private_households)

#3) EUROSTAT mean expenditures per household income quintile per household and per adult equivalent
df_expenditure_long = read_csv(here("analysis", "preprocessing", "income-stratified-footprints",
                                    "mean_expenditure_by_quintile_long.csv"),
                               na = ":") %>%
  #filter(year >=2010, geo != "IT") %>%
  #filter(year >=2005, geo != "IT") %>%
  #decide here
  filter(year >=2005) %>%
  mutate(imputed = if_else(is.na(mean_expenditure), TRUE, FALSE)) %>%
  group_by(geo,unit,quintile) %>%
  mutate(value = na_locf(mean_expenditure)) %>%
  select(-mean_expenditure) %>% 
  ungroup()

## calculate adult equivalents per household
df_adult_e_p_hh = df_expenditure_long %>%
  rename(iso2 = geo) %>%
  pivot_wider(id_cols = c(iso2, year, quintile, imputed), 
              names_from = unit, 
              values_from = value) %>%
  clean_names() %>%
  mutate(adult_e_p_hh = pps_hh/pps_ae) %>%
  left_join(country_codes, by="iso2") %>%
  mutate(iso3 = if_else(iso2 == "XK", "XKX", iso3),
         quint = parse_number(quintile))

## add quintile population data
mrio_results_with_adult_eq_all = dat_results_raw %>%
  filter(year %in% c(2005, 2010, 2015)) %>%
  left_join(hh_data, by=c("iso2", "year")) %>%
  mutate(hh_quintile = hh/5) %>% # population per country quinitle
  select(-hh) %>%
  rename(hh_imputed = imputed) %>%
  left_join(df_adult_e_p_hh %>%
              select(iso2, year, quint, imputed_ae = imputed, adult_e_p_hh), 
            by=c("iso2", "year", "quint")) %>%
  mutate(ae_quintile = hh_quintile * adult_e_p_hh) %>%
  select(-c(hh_quintile, adult_e_p_hh))

## for the European expenditure deciles we use only countries with data in 2005, 2010 and 2015. This excludes Luxembourg and Italy. 
complete_countries = mrio_results_with_adult_eq_all %>%
  group_by(year, iso2) %>%
  summarise(co2_kg = sum(co2_kg)) %>%
  ungroup() %>%
  filter(co2_kg>0) %>%
  select(iso2, year, co2_kg) %>%
  pivot_wider(id_cols = c(iso2), names_from = year, values_from = co2_kg) %>%
  drop_na() %>%
  select(iso2) %>%
  pull()

df_adult_e_p_hh %>%
  filter(iso2 %in% complete_countries, year<=2015, year>=2005) %>%
  mutate(quint = parse_number(quintile))

# calculate European expenditure deciles based on loaded income-stratified-footprints result file and adult equivalents.
# returns country quintiles mapped to European ntile rank and European ntile boundaries
# helper function called by function below
calculate_eu_ntiles <- function(pyear, pquantile_count=10) {
  
  country_data_annual_sorted = summary_country_fd %>%
    ungroup() %>%
    filter(year==pyear) %>%
    arrange(fd_pae_e) %>%
    mutate(idx = 1:n(),
           eu_q_rank = 0) # later to be filled with euro quintile rank
  
  # total European adult equivalents (of included countries) in year
  total_ae_in_year = sum(country_data_annual_sorted$ae_quintile)
  
  # quantile target ae population
  eu_decile_adult_eq = total_ae_in_year/pquantile_count
  
  # country quintiles must be split to allocate ae population according to European quantile target ae population
  # filtering by condition that can't be fulfilled is a lazy way to create an empty dataframe
  # of the same structure as country_data_annual_sorted
  additional_rows = country_data_annual_sorted %>%
    filter(year==1)
  
  # store quantile split values
  eu_quantile_boundaries = data.frame(euro_q_rank = 1:pquantile_count, p = 0)

  ## loops through the ordered dataset, assigns European quantile rank
  ## and splits quintiles where necessary
  eu_ae_current = 0
  euro_q_rank_current = 1
  for (row_idx in 1:nrow(country_data_annual_sorted)) {
    row = country_data_annual_sorted[row_idx,]
    if (row["ae_quintile"] + eu_ae_current <= eu_decile_adult_eq) {
      eu_ae_current = eu_ae_current + row["ae_quintile"]
      country_data_annual_sorted[row_idx, "eu_q_rank"] = euro_q_rank_current
    } else {
      ae_diff = eu_decile_adult_eq - eu_ae_current
      ## write rest of this European decile (split country quintile)
      new_row = country_data_annual_sorted[row_idx, ]
      new_row[1, "eu_q_rank"] = euro_q_rank_current
      new_row[1, "ae_quintile"] = ae_diff
      ## record European quantile boundary
      eu_quantile_boundaries[eu_quantile_boundaries$euro_q_rank==euro_q_rank_current, "p"] =
        country_data_annual_sorted[row_idx, "fd_pae_e"]
      ## put first part of population in overflow dataframe
      additional_rows = additional_rows %>%
        bind_rows(new_row)
      ## classify rest of country quintile population to next European quantile
      country_data_annual_sorted[row_idx, "ae_quintile"] = 
        country_data_annual_sorted[row_idx, "ae_quintile"] - (ae_diff+0.0001)
      euro_q_rank_current = euro_q_rank_current + 1
      country_data_annual_sorted[row_idx, "eu_q_rank"] = euro_q_rank_current
      eu_ae_current = country_data_annual_sorted[row_idx, "ae_quintile"]
      
    }
  }
  
  country_data_eu_quantiles = country_data_annual_sorted %>%
  bind_rows(additional_rows) %>%
  arrange(fd_pae_e, eu_q_rank) %>%
  mutate(idx = 1:n())

  # add zeroth and nth quantile (min and max)
  eu_quantile_boundaries[pquantile_count, "p"] = max(country_data_eu_quantiles$fd_pae_e)
  
  list("df_q_data" = country_data_eu_quantiles, "df_q_boundaries" = eu_quantile_boundaries)
}

# maps income-stratified-footprint results to European ntile ranks, returns mapping and ntile European boundaries
map_mrio_results_to_eu_ntiles <- function(pyear, ptarget_ntiles) {
  
  df_eu_ntiles = calculate_eu_ntiles(pyear, pquantile_count = ptarget_ntiles)
  df_eu_ntiles_data = df_eu_ntiles$df_q_data
  
  sector_mapping = mrio_results_with_adult_eq %>%
    group_by(coicop) %>%#
    summarise(coicop = first(coicop)) %>%
    ungroup()
  
  df_mapped_data = mrio_results_with_adult_eq %>%
    select(year, 
           iso2, 
           quint, 
           coicop, 
           fd_me, 
           co2_kg, 
           co2_domestic_kg, 
           co2_europe_kg,
           co2eq_kg, 
           co2eq_domestic_kg, 
           co2eq_europe_kg,
           energy_use_tj, 
           energy_use_domestic_tj,
           energy_use_europe_tj,
           ae_quintile) %>%
    filter(year==pyear) %>%
    # calculate per adult equivalent values in quintiles
    mutate(fd_pae_e = fd_me*1000000/ae_quintile,
           co2_pae_kg = co2_kg/ae_quintile,
           co2_pae_dom_kg = co2_domestic_kg/ae_quintile,
           co2_pae_eu_kg = co2_europe_kg/ae_quintile,
           co2eq_pae_kg = co2eq_kg/ae_quintile,
           co2eq_pae_dom_kg = co2eq_domestic_kg/ae_quintile,
           co2eq_pae_eu_kg = co2eq_europe_kg/ae_quintile,
           energy_use_pae_tj = energy_use_tj/ae_quintile,
           energy_use_dom_pae_tj = energy_use_domestic_tj/ae_quintile,
           energy_use_eu_pae_tj = energy_use_europe_tj/ae_quintile) %>%
    # remove totals
    select(-c(fd_me, 
              co2_kg,
              co2_domestic_kg,
              co2_europe_kg,
              co2eq_kg,
              co2eq_domestic_kg,
              co2eq_europe_kg,
              energy_use_tj,
              energy_use_domestic_tj,
              energy_use_europe_tj,
              year, ae_quintile)) %>%
    full_join(df_eu_ntiles_data %>%
                rename(fd_pae_e_quint_tmp = fd_pae_e), by=c("iso2", "quint")) %>%
    rename(adult_eq = ae_quintile) %>% # country quintile and their split fraction population
    # recalculate totals
    mutate(fd_me = fd_pae_e*adult_eq/1000000,
           co2_kg = co2_pae_kg*adult_eq,
           co2_dom_kg = co2_pae_dom_kg*adult_eq,
           co2_eu_kg = co2_pae_eu_kg*adult_eq,
           co2eq_kg = co2eq_pae_kg*adult_eq,
           co2eq_dom_kg = co2eq_pae_dom_kg*adult_eq,
           co2eq_eu_kg = co2eq_pae_eu_kg*adult_eq,
           energy_use_tj = energy_use_pae_tj*adult_eq,
           energy_use_dom_tj = energy_use_dom_pae_tj*adult_eq,
           energy_use_eu_tj = energy_use_eu_pae_tj*adult_eq
           ) #%>%
    #left_join(sector_mapping, by="sector_id") # comment out joining sectors (only working with coicop categories in method2)
  
  list("df_mapped_data" = df_mapped_data, "df_ntile_boundaries" = df_eu_ntiles$df_q_boundaries)
  
}

# filter only countries with complete info for years 2005, 2010, 2015
mrio_results_with_adult_eq = mrio_results_with_adult_eq_all %>%
  filter(iso2 %in% complete_countries)

# summarize final demand per adult equivalent per quintile across all sectors as basis for European deciles for complete countries
summary_country_fd = mrio_results_with_adult_eq %>%
  group_by(iso2, year, quint) %>%
  summarise(ae_quintile = first(ae_quintile),
            fd_pae_e = sum(fd_me*1000000, na.rm = T)/(ae_quintile))

# summarize final demand per adult equivalent per quintile across all sectors as basis for European deciles for all countries
summary_country_fd_all = mrio_results_with_adult_eq_all %>%
  group_by(iso2, year, quint) %>%
  summarise(ae_quintile = first(ae_quintile),
            fd_pae_e = sum(fd_me*1000000, na.rm = T)/(ae_quintile))

df_mapped_result_2005 = map_mrio_results_to_eu_ntiles(2005, target_eu_ntiles)
df_mapped_result_2005_data = df_mapped_result_2005$df_mapped_data
df_mapped_result_2005_ntiles = df_mapped_result_2005$df_ntile_boundaries

df_mapped_result_2010 = map_mrio_results_to_eu_ntiles(2010, target_eu_ntiles)
df_mapped_result_2010_data = df_mapped_result_2010$df_mapped_data
df_mapped_result_2010_ntiles = df_mapped_result_2010$df_ntile_boundaries

df_mapped_result_2015 = map_mrio_results_to_eu_ntiles(2015, target_eu_ntiles)
df_mapped_result_2015_data = df_mapped_result_2015$df_mapped_data
df_mapped_result_2015_ntiles = df_mapped_result_2015$df_ntile_boundaries

df_mapped_result_data = df_mapped_result_2005_data %>%
  bind_rows(df_mapped_result_2010_data) %>%
  bind_rows(df_mapped_result_2015_data)

write_csv(df_mapped_result_data, 
          here(paste0("analysis/data/derived/si/mrio_results_eu_ntile_mapped_n_", target_eu_ntiles, "_method2_ixi.csv")))