Newer
Older
---
title: "figures"
output:
bookdown::word_document2:
fig_caption: yes
---
```{r setup, echo = FALSE, include = FALSE, message = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
warning = FALSE,
message = FALSE,
echo = FALSE,
comment = "#>",
fig.path = "../figures/",
dpi = 300
)
if (!require("pacman")) install.packages("pacman")
pacman::p_load(tidyverse,
here,
wesanderson,
patchwork,
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
pal <- wes_palette("Cavalcanti1", 5, type = "discrete")
extrafont::loadfonts()
```
```{r functions}
# load data wrangling functions
source(here("analysis", "R", "wrangler_functions.R"))
```
```{r load-data, include=FALSE}
## load result data for EU deciles
eu_q_count = 10
# summary countries aggregated by country quintiles and eu ntile
dat_country_summary_by_cquint_and_euntile = get_country_summary_by_cquint_and_euntile(eu_q_count)
# pivot to long format for plotting and attach readable indicator names
cols_ex = c("year", "iso2", "quint", "eu_q_rank")
pdat_country_summary_by_cquint_and_euntile =
pivot_results_longer_adorn(dat_country_summary_by_cquint_and_euntile, cols_ex)
# summary of countries by EU quantile without sectoral resolution
dat_country_summary_by_eu_ntile = get_country_summary_by_eu_ntile(eu_q_count)
# pivot to long format for plotting and attach readable indicator names
cols_ex = c("year", "iso2", "eu_q_rank")
pdat_country_summary_by_eu_ntile =
pivot_results_longer_adorn(dat_country_summary_by_eu_ntile, cols_ex)
# summary of countries by country quintile with aggregate sectoral resolution
dat_sector_summary_by_country_quintile = get_sector_summary_by_country_quintile(eu_q_count)
# pivot to long format for plotting and attach readable indicator names
cols_ex = c("year", "iso2", "quint", "eu_q_rank", "sector_agg_id")
pdat_sector_summary_by_country_quintile =
pivot_results_longer_adorn(dat_sector_summary_by_country_quintile, cols_ex)
# summary of eu ntile with aggregate sectoral resolution
dat_sector_summary_by_eu_ntile = get_sector_summary_by_eu_ntile(eu_q_count)
# pivot to long format for plotting and attach readable indicator names
cols_ex = c("year", "eu_q_rank", "sector_agg_id")
pdat_sector_summary_by_eu_ntile =
pivot_results_longer_adorn(dat_sector_summary_by_eu_ntile, cols_ex)
```
# Fig. 1
```{r ntiles-total}
p1 = pdat_country_summary_by_eu_ntile %>%
filter(year == 2015,
indicator == "total_fd_me") %>%
group_by(eu_q_rank) %>%
summarise(value = sum(value)*0.000001,
eu_ntile_name = first(eu_ntile_name)) %>%
ggplot(aes(x=eu_ntile_name, y=value)) +
geom_col(position = position_dodge(), fill=pal[1]) +
#theme_ipsum() +
theme_minimal() +
theme(text=element_text(family="Liberation Sans Narrow")) +
labs(x="", y="Expenditure (trn€)") +
theme(axis.text.x = element_text(angle = 90)) +
scale_x_discrete(labels = c("D01","D02","D03","D04","D05","D06","D07","D08","D09","D10"))
p2 = pdat_country_summary_by_eu_ntile %>%
filter(year == 2015,
indicator == "total_energy_use_tj") %>%
group_by(eu_q_rank) %>%
summarise(value = sum(value)*0.000001,
eu_ntile_name = first(eu_ntile_name)) %>%
ggplot(aes(x=eu_ntile_name, y=value)) +
geom_col(position = position_dodge(), fill=pal[1]) +
#theme_ipsum() +
theme_minimal() +
theme(text=element_text(family="Liberation Sans Narrow")) +
labs(x="", y="Energy footprint (EJ)") +
theme(axis.text.x = element_text(angle = 90)) +
scale_x_discrete(labels = c("D01","D02","D03","D04","D05","D06","D07","D08","D09","D10"))
p3 = pdat_country_summary_by_eu_ntile %>%
filter(year == 2015,
indicator == "total_co2eq_kg") %>%
group_by(eu_q_rank) %>%
summarise(value = sum(value)*0.000000001,
eu_ntile_name = first(eu_ntile_name)) %>%
ggplot(aes(x=eu_ntile_name, y=value)) +
geom_col(position = position_dodge(), fill=pal[1]) +
#theme_ipsum() +
theme_minimal() +
theme(text=element_text(family="Liberation Sans Narrow")) +
labs(x="", y="Carbon footprint (MtCO2eq)") +
theme(axis.text.x = element_text(angle = 90)) +
scale_x_discrete(labels = c("D01","D02","D03","D04","D05","D06","D07","D08","D09","D10"))
p_top = p1 + p2 + p3
```
```{r ntiles-intensity-violin}
p1 = dat_country_summary_by_eu_ntile %>%
filter(year == 2015) %>%
ggplot(aes(x=factor(eu_q_rank), y=pe_co2eq_kg)) +
geom_violin(aes(weight=total_fd_me), fill=pal[1], color=pal[1], alpha=0.5) +
geom_point( alpha=0.3) +
geom_segment(data=dat_country_summary_by_eu_ntile %>%
filter(year == 2015) %>%
group_by(eu_q_rank) %>%
summarise(pe_co2eq_kg = weighted.mean(pe_co2eq_kg,total_fd_me)),
aes(y=pe_co2eq_kg, yend=pe_co2eq_kg, x=eu_q_rank-0.3, xend=eu_q_rank+0.3), size=1.5) +
#theme_ipsum() +
theme_minimal() +
theme(text=element_text(family="Liberation Sans Narrow")) +
labs(x="", y="Carbon intensity per expenditure (kgCO2eq/€)") +
theme(axis.text.x = element_text(angle = 90)) +
scale_x_discrete(labels = c("D01","D02","D03","D04","D05","D06","D07","D08","D09","D10"))
p2 = dat_country_summary_by_eu_ntile %>%
filter(year == 2015) %>%
ggplot(aes(x=factor(eu_q_rank), y=pe_energy_use_mj)) +
geom_violin(aes(weight=total_fd_me), fill=pal[1], color=pal[1], alpha=0.5) +
geom_point( alpha=0.3) +
geom_segment(data=dat_country_summary_by_eu_ntile %>%
filter(year == 2015) %>%
group_by(eu_q_rank) %>%
summarise(pe_energy_use_mj = weighted.mean(pe_energy_use_mj,total_fd_me)),
aes(y=pe_energy_use_mj, yend=pe_energy_use_mj, x=eu_q_rank-0.3, xend=eu_q_rank+0.3), size=1.5) +
#theme_ipsum() +
theme_minimal() +
theme(text=element_text(family="Liberation Sans Narrow")) +
labs(x="", y="Energy intensity per expenditure (MJ/€)") +
theme(axis.text.x = element_text(angle = 90)) +
scale_x_discrete(labels = c("D01","D02","D03","D04","D05","D06","D07","D08","D09","D10"))
dat3 = dat_country_summary_by_eu_ntile %>%
filter(year == 2015) %>%
mutate(intensity_e_c = total_co2eq_kg*0.001/total_energy_use_tj)
p3 = dat3 %>%
ggplot(aes(x=factor(eu_q_rank), y=intensity_e_c)) +
geom_violin(aes(weight=total_energy_use_tj), fill=pal[1], color=pal[1], alpha=0.5) +
geom_point( alpha=0.3) +
geom_segment(data=dat3 %>%
filter(year == 2015) %>%
group_by(eu_q_rank) %>%
summarise(intensity_e_c = weighted.mean(intensity_e_c,total_energy_use_tj)),
aes(y=intensity_e_c, yend=intensity_e_c, x=eu_q_rank-0.3, xend=eu_q_rank+0.3), size=1.5) +
#theme_ipsum() +
theme_minimal() +
theme(text=element_text(family="Liberation Sans Narrow")) +
labs(x="", y="Carbon intensity per energy (gCO2eq/TJ)") +
theme(axis.text.x = element_text(angle = 90)) +
scale_x_discrete(labels = c("D01","D02","D03","D04","D05","D06","D07","D08","D09","D10"))
p_bottom = p2 + p1 + p3
#p3 & theme(plot.margin = margin(1, 1, 1, 1, "mm"))
```
```{r , fig.width=12, fig.height=8}
a = p_top / p_bottom + plot_annotation(tag_levels = 'a') +
plot_layout(guides = 'collect') &
theme(plot.margin = unit(c(0.25,0.25,0.25,0.25), "cm"),
legend.position = 'bottom',
axis.title.y = element_text(size=13, hjust = 0.5),
axis.text.x = element_text(size = 12),
axis.text.y = element_text(size = 12),
legend.text = element_text(size=12),
legend.title = element_text(size=13))
ggsave(here("analysis", "figures", "figure1.pdf"), device=cairo_pdf)
```
```{r figure1, out.width="98%", fig.cap="Household expenditure and environmental footprints and intensities across European expenditure deciles. Total expenditures (a), energy footprint (b), and carbon footprint (c) per decile. Energy intensity of consumption as energy footprint per expenditure (d), carbon intensity of consumption as carbon footprint per expenditure (e), and carbon intensity of energy as carbon footprint per energy footprint (f)."}
knitr::include_graphics(here::here("analysis", "figures", "figure1.pdf"))
```
# Fig.2
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
pdat_basket = get_sector_summary_by_eu_ntile_direct(eu_q_count) %>%
ungroup() %>%
filter(year==2015) %>%
left_join(read_csv(here("analysis/data/derived/sectors_agg_method1_ixi.csv")), by="sector_agg_id") %>%
group_by(eu_q_rank) %>%
mutate(value = total_fd_me/sum(total_fd_me)*100) %>%
select(five_sectors, eu_q_rank,
value) %>%
mutate(indicator = "Expenditure share (%)")
pdat_int_co2eq = get_sector_summary_by_eu_ntile_direct(eu_q_count) %>%
ungroup() %>%
filter(year==2015) %>%
left_join(read_csv(here("analysis/data/derived/sectors_agg_method1_ixi.csv")), by="sector_agg_id") %>%
mutate(value = (total_co2eq_kg)/(total_fd_me*1000000)) %>%
select(five_sectors, eu_q_rank,
value) %>%
mutate(indicator = "Carbon intensity (kgCO2eq/€)")
pdat_int_energy = get_sector_summary_by_eu_ntile_direct(eu_q_count) %>%
ungroup() %>%
filter(year==2015) %>%
left_join(read_csv(here("analysis/data/derived/sectors_agg_method1_ixi.csv")), by="sector_agg_id") %>%
mutate(value = (total_energy_use_tj)/(total_fd_me)) %>%
select(five_sectors, eu_q_rank,
value) %>%
mutate(indicator = "Energy intensity (MJ/€)")
library(viridis)
pdat = pdat_int_co2eq %>%
bind_rows(pdat_int_energy) %>%
bind_rows(pdat_basket)
p1 = pdat_basket %>%
mutate(Decile = if_else(eu_q_rank<10, paste0("D0", eu_q_rank), paste0("D", eu_q_rank))) %>%
ggplot(aes(x=value, y=five_sectors, color=Decile)) +
#geom_point(shape=18, alpha=0.75) +
geom_text(label="I", alpha=0.75, fontface="bold") +
scale_color_viridis(option = "A", end = 0.8,
direction = -1,
labs(x=unique(pdat_basket$indicator),y="")
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
p2 = pdat_int_energy %>%
mutate(Decile = if_else(eu_q_rank<10, paste0("D0", eu_q_rank), paste0("D", eu_q_rank))) %>%
ggplot(aes(x=value, y=five_sectors, color=Decile)) +
#geom_point(shape=18, alpha=0.75) +
geom_text(label="I", alpha=0.75, fontface="bold") +
scale_color_viridis(option = "A", end = 0.8,
direction = -1,
discrete = T,
name="European\ndecile") +
theme_minimal() +
labs(x=unique(pdat_int_energy$indicator),y="")
p3 = pdat_int_co2eq %>%
mutate(Decile = if_else(eu_q_rank<10, paste0("D0", eu_q_rank), paste0("D", eu_q_rank))) %>%
ggplot(aes(x=value, y=five_sectors, color=Decile)) +
#geom_point(shape=18, alpha=0.75) +
geom_text(label="I", alpha=0.75, fontface="bold") +
scale_color_viridis(option = "A", end = 0.8,
direction = -1,
discrete = T,
name="European\ndecile") +
theme_minimal() +
labs(x=unique(pdat_int_co2eq$indicator),y="")
#plot_annotation(tag_levels = 'a')
a = (p1 + p2 + p3) +
plot_layout(guides = "collect") +
plot_annotation(tag_levels = 'a') &
theme(legend.position = 'bottom',
text=element_text(family="Liberation Sans Narrow"),
axis.title.y = element_text(size=13, hjust = 0.5),
axis.text.x = element_text(size = 12),
axis.text.y = element_text(size = 12),
legend.text = element_text(size=12),
legend.title = element_text(size=13))
ggsave(here("analysis", "figures", "figure2.pdf"), device=cairo_pdf)
```
```{r figure2, out.width="100%", fig.cap="Sectoral expenditure shares and carbon intensities of European expenditure deciles. Share of expenditure per final demand sector of total spending per decile in percent (a) and carbon intensity per final demand sector in kgCO2eq/€."}
knitr::include_graphics(here::here("analysis", "figures", "figure2.pdf"))
```
# Fig.3
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
pdat = get_sector_summary_by_eu_ntile_direct(eu_q_count) %>%
ungroup() %>%
filter(year==2015) %>%
left_join(read_csv(here("analysis/data/derived/sectors_agg_method1_ixi.csv")), by="sector_agg_id") %>%
select(five_sectors, eu_q_rank, contains("pae_co2eq"), contains("pae_energy")) %>%
pivot_longer(cols=-c(five_sectors, eu_q_rank), names_to="indicator", values_to="value") %>%
mutate(indicator_type = if_else(str_detect(indicator, "co2eq"),
"tCO2eq per adult eq",
"Energy GJ per adult eq")) %>%
filter(indicator != "pae_co2eq_t",
indicator != "pae_energy_use_gj")
pal <- wes_palette("Zissou1", 4, type = "discrete")
pal = pal[c(2,1,3,4)]
p1 = ggplot(pdat %>% filter(indicator_type == "tCO2eq per adult eq"),
aes(x=(eu_q_rank), y=value, fill=indicator)) +
geom_col(position = position_stack()) +
facet_wrap(~five_sectors, ncol = 5) +
scale_fill_manual(values = pal, name="Location", labels=c("Direct", "Domestic", "Europe", "non-Europe")) +
scale_x_continuous(breaks = c(1,2,3,4,5,6,7,8,9,10),
labels = c("D01","D02","D03","D04","D05","D06","D07","D08","D09","D10")) +
#theme_ipsum() +
theme_minimal() +
labs(x="", y="Carbon footprint tCO2eq per adult eq")# +
# theme(legend.position = "bottom",
# text=element_text(family="Liberation Sans Narrow"),
# axis.text.x = element_text(angle = 90, size = 12),
# axis.text.y = element_text(size = 12),
# strip.text = element_text(size = 12),
# axis.title.y = element_text(size = 10))
p2 = ggplot(pdat %>% filter(indicator_type == "Energy GJ per adult eq"),
aes(x=(eu_q_rank), y=value, fill=indicator)) +
geom_col(position = position_stack()) +
facet_wrap(~five_sectors, ncol = 5) +
scale_fill_manual(values = pal, name="Location", labels=c("Direct", "Domestic", "Europe", "non-Europe")) +
scale_x_continuous(breaks = c(1,2,3,4,5,6,7,8,9,10),
labels = c("D01","D02","D03","D04","D05","D06","D07","D08","D09","D10")) +
#theme_ipsum() +
theme_minimal() +
#theme(text=element_text(family="Liberation Sans Narrow")) +
labs(x="", y="Energy footprint GJ per adult eq") #+
# theme(legend.position = "bottom",
# axis.text.x = element_text(angle = 90, size = 12),
# axis.text.y = element_text(size = 12),
# strip.text = element_text(size = 12),
# axis.title.y = element_text(size = 10))
a = (p1 / p2) +
plot_layout(guides = "collect") &
theme(text=element_text(family="Liberation Sans Narrow"),
legend.position = "bottom",
axis.title.y = element_text(size=13, hjust = 0.5),
axis.text.x = element_text(angle = 90, size = 11),
axis.text.y = element_text(size = 12),
legend.text = element_text(size=12),
strip.text = element_text(size = 13),
legend.title = element_text(size=13),
plot.margin = margin(1, 1, 1, 1, "mm"),
panel.spacing = unit(c(1, 1, 1, 1), "mm"))
# hm = pdat %>% filter(indicator_type == "Energy GJ per adult eq") %>%
# group_by(eu_q_rank) %>%
# summarise(value = sum(value))
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
ggsave(here("analysis", "figures", "figure3.pdf"))
```
```{r figure3, out.width="100%", fig.cap="Energy and carbon footprints by final consumption sector and European expenditure decile in 2015, further broken down by emission source location."}
knitr::include_graphics(here::here("analysis", "figures", "figure3.pdf"))
```
# Fig.4
```{r}
pal <- wes_palette("Zissou1", 4, type = "discrete")
pal = pal[c(2,1,3,4)]
pdat_int_energy = get_sector_summary_by_eu_ntile_direct(eu_q_count) %>%
ungroup() %>%
filter(year==2015) %>%
left_join(read_csv(here("analysis/data/derived/sectors_agg_method1_ixi.csv")),
by="sector_agg_id") %>%
mutate(intensity_energy = (total_energy_use_tj)/(total_fd_me)) %>%
select(five_sectors, eu_q_rank,
intensity_energy) %>%
filter(eu_q_rank == 10) %>%
select(-eu_q_rank)
pdat_final_demand = get_sector_summary_by_eu_ntile_direct(eu_q_count) %>%
ungroup() %>%
filter(year==2015) %>%
left_join(read_csv(here("analysis/data/derived/sectors_agg_method1_ixi.csv")),
by="sector_agg_id") %>%
left_join(pdat_int_energy, by="five_sectors") %>%
mutate(total_energy_use_tj_new = (total_fd_me)*intensity_energy) %>%
mutate(total_energy_use_tj_diff = total_energy_use_tj-total_energy_use_tj_new) %>%
select(five_sectors, eu_q_rank,
total_energy_use_tj_diff, total_energy_use_tj_new) %>%
group_by(eu_q_rank) %>%
summarise(total_energy_use_tj_new = sum(total_energy_use_tj_new)*0.000001,
total_energy_use_tj_diff = sum(total_energy_use_tj_diff)*0.000001) %>%
pivot_longer(-c(eu_q_rank), names_to = "indicator", values_to = "value")
p1 = ggplot(pdat_final_demand, aes(x=eu_q_rank, y=value, fill=indicator, alpha=indicator)) +
geom_col(position = position_stack()) +
scale_fill_manual(values=c(pal[1], pal[2]),
labels=c("2015", "Best technology"), name="Energy\nfootprint") +
scale_alpha_manual(values=c(0.3,1),labels=c("2015", "Best technology"), name="Energy\nfootprint")+
scale_x_continuous(breaks = c(1,2,3,4,5,6,7,8,9,10),
labels = c("D01","D02","D03","D04","D05","D06","D07","D08","D09","D10")) +
labs(y="Energy footprint (EJ)", x="") +
theme_minimal() +
coord_flip() +
theme(legend.position="bottom")
```
```{r}
pdat_energy_country = get_sector_summary_by_country_quintile_direct() %>%
ungroup() %>%
filter(year==2015) %>%
left_join(read_csv(here("analysis/data/derived/sectors_agg_method1_ixi.csv")),
by="sector_agg_id") %>%
left_join(pdat_int_energy, by="five_sectors") %>%
mutate(total_energy_use_tj_new = (total_fd_me)*intensity_energy) %>%
#mutate(total_energy_use_tj_save = total_energy_use_tj_new/total_energy_use_tj*100) %>%
select(iso2,
total_energy_use_tj_new, total_energy_use_tj) %>%
group_by(iso2) %>%
summarise(total_energy_use_tj_save = 100 - sum(total_energy_use_tj_new)/sum(total_energy_use_tj)*100)
```
```{r include=FALSE}
library(rworldmap)
library(ggthemes)
df_country_mean = pdat_energy_country %>%
mutate(iso2 = if_else(iso2 == "EL", "GR", iso2)) %>%
mutate(iso2 = if_else(iso2 == "UK", "GB", iso2)) %>%
left_join(ISO_3166_1 %>% select(iso2 = Alpha_2, iso3 = Alpha_3), by="iso2")
quantile_rank_map = joinCountryData2Map(df_country_mean,
joinCode = "ISO_A3",
nameJoinColumn = "iso3")
quantile_rank_map_poly = fortify(quantile_rank_map) #extract polygons
quantile_rank_map_poly = merge(quantile_rank_map_poly, quantile_rank_map@data, by.x="id", by.y="ADMIN", all.x=T)
quantile_rank_map_poly = quantile_rank_map_poly %>% arrange(id, order)
```
```{r dle-country, fig.width=8}
map = ggplot() +
geom_polygon(data = quantile_rank_map_poly, aes(long, lat, group = group), color="black") +
geom_polygon(data = quantile_rank_map_poly, aes(long, lat, group = group,
fill=total_energy_use_tj_save)) +
#scale_fill_gradient(name="Mean decile \nrank", low="skyblue", high = "skyblue4", na.value = "#EEEEEE") +
scale_fill_viridis(direction = -1, discrete = F, na.value = "white", name="Energy\nsavings (%)") +
theme_map() +
labs(x="",y="")+
coord_map("bonne", lat0 = 50,xlim = c(-9, 40), ylim = c(38, 68), clip="on") +
theme(legend.position = c(0.85, 0.6))
```
```{r fig.height=7, fig.width=11}
a = p1 + map + plot_annotation(tag_levels = 'a') +
theme(plot.margin = margin(1, 1, 1, 1, "mm"),
text=element_text(family="Liberation Sans Narrow"),
axis.text.x = element_text(size = 12),
axis.text.y = element_text(size = 12),
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
legend.text = element_text(size=12),
legend.title = element_text(size=13))
ggsave(here("analysis", "figures", "figure4.pdf"))
```
```{r figure4, out.width="100%", fig.cap="Energy savings through sectoral best current technology by expenditure deciles a) and country b)."}
knitr::include_graphics(here::here("analysis", "figures", "figure4.pdf"))
```
# Fig.5
```{r }
pdat_int_energy = get_sector_summary_by_eu_ntile_direct(eu_q_count) %>%
ungroup() %>%
filter(year==2015) %>%
left_join(read_csv(here("analysis/data/derived/sectors_agg_method1_ixi.csv")),
by="sector_agg_id") %>%
mutate(intensity_energy = (total_energy_use_tj)/(total_fd_me)) %>%
select(five_sectors, eu_q_rank,
intensity_energy) %>%
filter(eu_q_rank == 10) %>%
select(-eu_q_rank)
pdat_final_demand = get_sector_summary_by_eu_ntile_direct(eu_q_count) %>%
ungroup() %>%
filter(year==2015) %>%
left_join(read_csv(here("analysis/data/derived/sectors_agg_method1_ixi.csv")),
by="sector_agg_id") %>%
left_join(pdat_int_energy, by="five_sectors") %>%
mutate(total_energy_use_tj_new = (total_fd_me)*intensity_energy) %>%
mutate(total_energy_use_tj_diff = total_energy_use_tj-total_energy_use_tj_new) %>%
select(eu_q_rank,total_energy_use_tj_new) %>%
group_by(eu_q_rank) %>%
summarise(total_energy_use_tj_new = sum(total_energy_use_tj_new)) %>%
mutate(pae_energy_use_tj = total_energy_use_tj_new/33417583,
pae_energy_use_gj = pae_energy_use_tj*1000)
df_energy_deciles = pdat_final_demand %>%
select(eu_q_rank, pae_energy_use_gj)
ineq_curr = df_energy_deciles$pae_energy_use_gj[10]/df_energy_deciles$pae_energy_use_gj[1]
df_scenario_info = read_excel(here("analysis/data/raw/scenarios.xlsx"), sheet="overview") %>%
select(scenario, fe_gj_aeu = final_energy_gj_per_aeu_2050,
ccs_required = primary_energy_fossil_w_ccs2050_ej,
description) %>%
arrange(fe_gj_aeu) %>%
mutate(fe_gj_aeu = round(fe_gj_aeu),
ccs_required = round(ccs_required))
mea_seq = c(df_scenario_info$fe_gj_aeu, seq(from=50, to=300, by=50))
#mea = c(16,300)
mer = c(16,60)
# vectorized function that returns scaled quantiles given
#quantile index column and column with quantile averages
#qidx: quantile index
#qavg_to_scale: column to scale
#first_target: target value of first quantile
#mean_target: target mean of scaled quantiles
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
scaled_quantiles <- function(.data,
qidx,
qavg_to_scale,
first_target,
mean_target) {
# cumbersomely extract current quantile mean
mean_current = .data %>%
ungroup() %>%
summarise(mean_cur = first(mean({{qavg_to_scale}}))) %>%
pull(mean_cur)
# cumbersomely extract current first wuantile value
first_current = .data %>%
ungroup() %>%
arrange({{qidx}}) %>%
summarise(first_cur = first({{qavg_to_scale}})) %>%
pull(first_cur)
df_tmp = .data %>%
mutate(tmp = {{qavg_to_scale}}*mean_target/mean_current)
first_tmp = df_tmp$tmp[1]
df_tmp = df_tmp %>%
mutate(scaled = mean_target-(mean_target-tmp) * (mean_target-first_target)/(mean_target-first_tmp)) %>%
select({{qidx}}, scaled) %>%
mutate(v_mean = mean_target, v_first = first_target)
}
## run once to save file
df_all = NULL
for (min_energy in seq(from=mer[1], to=mer[2], by=0.1)) {
for (mean_energy in mea_seq) {
if (min_energy <= mean_energy) {
df_all = df_all %>%
bind_rows(df_energy_deciles %>%
scaled_quantiles(eu_q_rank, pae_energy_use_gj, min_energy, mean_energy))
}
}
}
saveRDS(df_all, here("analysis/data/derived/scenarios_extrafine.rds"))
df_all = readRDS(here("analysis/data/derived/scenarios_extrafine.rds")) %>%
filter(eu_q_rank %in% c(1,10)) %>%
group_by(v_mean, v_first) %>%
summarise(ratio = last(scaled)/first(scaled)) %>%
mutate(bin_ratio = if_else((ratio*100)%%round_by > round_by*0.5,
ratio*100+(round_by-(ratio*100)%%round_by),
ratio*100-(ratio*100)%%round_by)) %>%
group_by(bin_ratio, v_first) %>%
summarise(v_mean = mean(v_mean)) %>%
mutate(bin_ratio = bin_ratio*0.01)
df_grid = df_all %>%
filter(!(v_mean %in% df_scenario_info$fe_gj_aeu))
filter((v_mean %in% df_scenario_info$fe_gj_aeu))
df_dle = tibble(bin_ratio = 1, v_first = 16, v_mean = 16)
scenario_label = df_scenario_info %>%
mutate(labl = paste0(scenario, " (", fe_gj_aeu, ")")) %>%
pull(labl)
library(ggsci)
a = df_grid %>%
ggplot(aes(x=v_first, y=bin_ratio, group=v_mean)) +
geom_smooth(aes(linetype="Maximum energy\nsupply (GJ/ae)"), se=FALSE, color="grey", size=0.5) +
scale_linetype_manual(name="", values = c(2)) +
geom_smooth(data=df_scenario, aes(color=factor(v_mean)), se=FALSE) +
geom_point(data=df_dle, aes(color=factor(v_mean))) +
geom_hline(yintercept = ineq_curr, color="grey") +
annotate(geom="text",x=56,y=12,label="300", angle=-35, size=3, color="grey32") +
annotate(geom="text",x=46,y=9.5,label="200", angle=-35, size=3, color="grey32") +
annotate(geom="text",x=33.5,y=6,label="100", angle=-35, size=3, color="grey32") +
annotate(geom="text",x=60,y=ineq_curr-0.28,
label="energy use inequality 2015", size=3.75, hjust=1, color="grey40") +
scale_color_npg(
name = "Scenario",
labels = scenario_label) +
lims(x=c(15.5,60), y=c(1,13)) +
labs(x= "Minimum energy use (GJ/ae)", y="Energy use inequality (90:10 ratio)") +
theme_minimal() +
theme(text=element_text(family="Liberation Sans Narrow"),
axis.title.y = element_text(size=13, hjust = 0.5),
axis.text.x = element_text(size = 12),
axis.text.y = element_text(size = 12),
legend.text = element_text(size=12),
legend.title = element_text(size=13))
ggsave(here("analysis", "figures", "figure5.pdf"))
```
```{r figure5, out.width="70%", fig.align="center", fig.cap="Mean energy available for Europe in decarbonisation scenarios, positioned in option space between a range of minimum energy requirements and range of associated maximum inequality. All expenditure deciles have 'best technology' already."}
knitr::include_graphics(here::here("analysis", "figures", "figure5.pdf"))
```