Newer
Older
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
group_by(v_mean, v_first) %>%
summarise(ratio = last(scaled)/first(scaled)) %>%
mutate(bin_ratio = if_else((ratio*100)%%round_by > round_by*0.5,
ratio*100+(round_by-(ratio*100)%%round_by),
ratio*100-(ratio*100)%%round_by)) %>%
group_by(bin_ratio, v_first) %>%
summarise(v_mean = mean(v_mean)) %>%
mutate(bin_ratio = bin_ratio*0.01)
df_scenario = df_all %>%
filter(v_mean %in% df_scenario_info$fe_gj_pc) %>%
left_join(df_scenario_info, by=c("v_mean"="fe_gj_pc"))
library(wesanderson)
a = df_all %>%
ggplot(aes(x=v_first, y=bin_ratio, fill=v_mean)) +
geom_tile() +
geom_hline(yintercept = ineq_curr, alpha=0.8, color="grey", linetype=2) +
geom_line(data=df_scenario, aes(color=scenario, group=scenario)) +
annotate(geom="text", x=max(df_all$v_first)-5.7,y=ineq_curr+0.6,label = "Current (2015) 10:10 ratio") +
#scale_fill_viridis("Mean energy\navailable") +
scale_fill_gradient("Mean energy\navailable (GJ/cap)",
low=wes_palette("Chevalier1")[3],
high = wes_palette("Rushmore1")[4]) +
#scale_color_manual(values=wes_palette("Darjeeling1")) +
theme_minimal() +
labs(x="Minimum energy requirement (GJ/cap)", y="Maximum energy inequality (10:10 ratio)", color = "Scenario")+
theme(text=element_text(family="Liberation Sans Narrow"),
axis.text.x = element_text(size = 13),
axis.text.y = element_text(size = 13)) +
scale_y_continuous(breaks = c(2.5,5,7.5,10,12.5)) # +
#theme_ipsum()
a
ggsave(here("analysis", "figures", "figureSxx.pdf"))
```
<!-- The following line ensures the references appear here for the MS Word or HTML output files, rather than right at the end of the document (this will not work for PDF files): -->
<div id="refs"></div>