Skip to content
Snippets Groups Projects
si.Rmd 103 KiB
Newer Older
Ingram Jaccard's avatar
Ingram Jaccard committed
  group_by(v_mean, v_first) %>%
  summarise(ratio = last(scaled)/first(scaled)) %>%
  mutate(bin_ratio = if_else((ratio*100)%%round_by > round_by*0.5, 
                             ratio*100+(round_by-(ratio*100)%%round_by),
                             ratio*100-(ratio*100)%%round_by)) %>%
  group_by(bin_ratio, v_first) %>%
  summarise(v_mean = mean(v_mean)) %>%
  mutate(bin_ratio = bin_ratio*0.01)

df_scenario = df_all %>%
  filter(v_mean %in% df_scenario_info$fe_gj_pc) %>%
  left_join(df_scenario_info, by=c("v_mean"="fe_gj_pc"))

library(wesanderson)

a = df_all %>%
  ggplot(aes(x=v_first, y=bin_ratio, fill=v_mean)) +
  geom_tile() +
  geom_hline(yintercept = ineq_curr, alpha=0.8, color="grey", linetype=2) +
  geom_line(data=df_scenario, aes(color=scenario, group=scenario)) +
  annotate(geom="text", x=max(df_all$v_first)-5.7,y=ineq_curr+0.6,label = "Current (2015) 10:10 ratio") +
  #scale_fill_viridis("Mean energy\navailable") +
  scale_fill_gradient("Mean energy\navailable (GJ/cap)",
                      low=wes_palette("Chevalier1")[3], 
                      high = wes_palette("Rushmore1")[4]) +
  #scale_color_manual(values=wes_palette("Darjeeling1")) +
  theme_minimal() +
  labs(x="Minimum energy requirement (GJ/cap)", y="Maximum energy inequality (10:10 ratio)", color = "Scenario")+
  theme(text=element_text(family="Liberation Sans Narrow"),
        axis.text.x = element_text(size = 13),
        axis.text.y = element_text(size = 13)) +
  scale_y_continuous(breaks = c(2.5,5,7.5,10,12.5)) # +
  #theme_ipsum()
a
ggsave(here("analysis", "figures", "figureSxx.pdf"))
```
Ingram Jaccard's avatar
Ingram Jaccard committed

Ingram Jaccard's avatar
Ingram Jaccard committed
# References 

<!-- The following line ensures the references appear here for the MS Word or HTML output files, rather than right at the end of the document (this will not work for PDF files):  -->

<div id="refs"></div>