Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
CRP Toolbox for MATLAB
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Norbert Marwan
CRP Toolbox for MATLAB
Commits
7dad01ca
Commit
7dad01ca
authored
18 years ago
by
marwan
Browse files
Options
Downloads
Patches
Plain Diff
initial check in
parent
89677c0d
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
crqad_big.m
+526
-0
526 additions, 0 deletions
crqad_big.m
with
526 additions
and
0 deletions
crqad_big.m
0 → 100644
+
526
−
0
View file @
7dad01ca
function
out
=
crqad_big
(
varargin
)
% CRQAD_BIG Computes and plots the diagonalwise CRQA measures.
% Y=CRQAD_BIG(X [,Y] [,param1,param2,...])
% Recurrence quantification analysis of diagonals in the
% cross recurrence plot of the vectors X and Y as well as
% X and -Y. The output is a structure (see below).
%
% The input vectors can be multi-column vectors, where
% each column will be used as a component of the
% phase-space vector. However, if the first column is
% monotonically increasing, it will be used as an
% time scale for plotting.
%
% Y=CRQAD(X,M,T,E,W) computes the recurrence
% quantification analysis of the recurrence plot
% of X by using the dimension M, delay T, the
% size of neighbourhood E, for the diagonals within
% the range [-W,W] around the main diagonal.
%
% Parameters: dimension M, delay T, the size of
% neighbourhood E and the range size W are the first
% five numbers after the data series; if W is empty,
% the whole plot will be calculated. Further parameters
% can be used to switch between various methods of finding
% the neighbours of the phasespace trajectory, to suppress
% the normalization of the data and to suppress the GUI
% (useful in order to use this programme by other programmes).
%
% Methods of finding the neighbours.
% maxnorm - Maximum norm.
% euclidean - Euclidean norm.
% minnorm - Minimum norm.
% nrmnorm - Euclidean norm between normalized vectors
% (all vectors have the length one).
% fan - Fixed amount of nearest neighbours.
% inter - Interdependent neighbours.
% omatrix - Order matrix.
% opattern - Order patterns recurrence plot.
%
% Normalization of the data series.
% normalize - Normalization of the data.
% nonormalize - No normalization of the data.
%
% Parameters not needed to be specified.
%
% Output:
% Y.RRp = RRp
% Y.RRm = RRm
% Y.DETp = DETp
% Y.DETm = DETm
% Y.Lp = Lp
% Y.Lm = Lm
%
% Examples: a = sin(0:.1:80) + randn(1,801);
% b = sin(0:.1:80) + randn(1,801);
% crqad_big(a,b,3,15,.1,100,'fan')
%
% See also CRQA, CRQAD, CRP, CRP2, CRP_BIG, DL, TT.
%
% References:
% Marwan, N., Kurths, J.:
% Nonlinear analysis of bivariate data with cross recurrence plots,
% Phys. Lett. A, 302, 2002.
% Copyright (c) 2002-2006 by AMRON
% Norbert Marwan, Potsdam University, Germany
% http://www.agnld.uni-potsdam.de
%
%
% $Date$
% $Revision$
%
% $Log$
%
%
% This program is part of the new generation XXII series.
%
% This program is free software; you can redistribute it and/or
% modify it under the terms of the GNU General Public License
% as published by the Free Software Foundation; either version 2
% of the License, or any later version.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% programme properties
global
props
init_properties
lmin
=
3
;
w
=
[];
method
=
'max'
;
method
=
1
;
t
=
1
;
m
=
1
;
e
=.
1
;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% check the input
error
(
nargchk
(
1
,
10
,
nargin
));
if
nargout
>
1
,
error
(
'Too many output arguments'
),
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% splash the GPL
splash_gpl
(
'crp'
);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% check and read the input
varargin
{
11
}
=
[];
i_double
=
find
(
cellfun
(
'isclass'
,
varargin
,
'double'
));
i_char
=
find
(
cellfun
(
'isclass'
,
varargin
,
'char'
));
nogui
=
0
;
if
nargin
&
isnumeric
(
varargin
{
1
})
% check the text input parameters for method, gui
check_meth
=
{
'ma'
,
'eu'
,
'mi'
,
'nr'
,
'fa'
,
'in'
,
'om'
,
'op'
,
'di'
};
% maxnorm, euclidean, nrmnorm, fan, distance
check_gui
=
{
'gui'
,
'nog'
,
'sil'
};
% gui, nogui, silent
check_norm
=
{
'non'
,
'nor'
};
% nonormalize, normalize
temp_meth
=
0
;
temp_gui
=
0
;
temp_norm
=
0
;
if
~
isempty
(
i_char
)
for
i
=
1
:
length
(
i_char
),
varargin
{
i_char
(
i
)}(
4
)
=
'0'
;
temp_meth
=
temp_meth
+
strcmpi
(
varargin
{
i_char
(
i
)}(
1
:
2
),
check_meth
'
);
temp_gui
=
temp_gui
+
strcmpi
(
varargin
{
i_char
(
i
)}(
1
:
3
),
check_gui
'
);
temp_norm
=
temp_norm
+
strcmpi
(
varargin
{
i_char
(
i
)}(
1
:
3
),
check_norm
'
);
end
method
=
min
(
find
(
temp_meth
));
nonorm
=
min
(
find
(
temp_norm
))
-
1
;
nogui
=
min
(
find
(
temp_gui
))
-
1
;
for
i
=
1
:
length
(
i_char
);
temp2
(
i
,:)
=
varargin
{
i_char
(
i
)}(
1
:
3
);
end
i_char
(
strmatch
(
check_gui
(
find
(
temp_gui
)),
temp2
))
=
[];
if
isempty
(
nogui
),
nogui
=
0
;
end
if
isempty
(
method
),
method
=
1
;
end
if
nonorm
>
1
,
nonorm
=
1
;
end
if
nogui
>
2
,
nogui
=
1
;
end
if
method
>
length
(
check_meth
),
method
=
length
(
check_meth
);
end
else
nogui
=
0
;
nonorm
=
1
;
if
nargout
nogui
=
1
;
action
=
'compute'
;
end
end
if
nogui
==
0
action
=
'init'
;
else
action
=
'compute'
;
end
% get the parameters for creating RP
if
max
(
size
(
varargin
{
1
}))
<=
3
error
(
'To less values in data X.'
)
end
x
=
double
(
varargin
{
1
});
if
isempty
(
varargin
{
2
})
|
~
isnumeric
(
varargin
{
2
}),
y
=
x
;
else
y
=
double
(
varargin
{
2
});
end
if
sum
(
double
(
diff
(
x
(:,
1
))
<=
0
)),
embed_flag
=
0
;
end
if
(
isnumeric
(
varargin
{
2
})
&
max
(
size
(
varargin
{
2
}))
==
1
)
|
~
isnumeric
(
varargin
{
2
})
y
=
x
;
if
~
isempty
(
varargin
{
i_double
(
2
)}),
m
=
varargin
{
i_double
(
2
)}(
1
);
else
m
=
1
;
end
if
~
isempty
(
varargin
{
i_double
(
3
)}),
t
=
varargin
{
i_double
(
3
)}(
1
);
else
t
=
1
;
end
if
~
isempty
(
varargin
{
i_double
(
4
)}),
e
=
varargin
{
i_double
(
4
)}(
1
);
else
e
=.
1
;
end
if
~
isempty
(
varargin
{
i_double
(
5
)}),
w
=
varargin
{
i_double
(
5
)}(
1
);
else
w
=
varargin
{
i_double
(
5
)};
end
% if ~isempty(varargin{i_double(6)}), wstep=varargin{i_double(6)}(1); else wstep=1; end
else
if
~
isempty
(
varargin
{
i_double
(
3
)}),
m
=
varargin
{
i_double
(
3
)}(
1
);
else
m
=
1
;
end
if
~
isempty
(
varargin
{
i_double
(
4
)}),
t
=
varargin
{
i_double
(
4
)}(
1
);
else
t
=
1
;
end
if
~
isempty
(
varargin
{
i_double
(
5
)}),
e
=
varargin
{
i_double
(
5
)}(
1
);
else
e
=.
1
;
end
if
~
isempty
(
varargin
{
i_double
(
6
)}),
w
=
varargin
{
i_double
(
6
)}(
1
);
else
w
=
varargin
{
i_double
(
6
)};
end
% if ~isempty(varargin{i_double(7)}), wstep=varargin{i_double(7)}(1); else wstep=1; end
end
else
error
(
'No valid arguments.'
)
end
Nx
=
length
(
x
);
Ny
=
length
(
y
);
if
size
(
x
,
1
)
<
size
(
x
,
2
),
x
=
x
'
;
end
if
size
(
y
,
1
)
<
size
(
y
,
2
),
y
=
y
'
;
end
if
size
(
x
,
2
)
>=
2
xscale
=
x
(:,
1
);
if
~
isempty
(
find
(
diff
(
xscale
)
<
0
)),
embed_flag
=
0
;
end
if
nonorm
==
1
,
x
=
(
x
(:,
2
)
-
mean
(
x
(:,
2
)))/
std
(
x
(:,
2
));
else
x
=
x
(:,
2
);
end
else
if
nonorm
==
1
,
x
=
(
x
-
mean
(
x
))/
std
(
x
);
end
xscale
=
(
1
:
length
(
x
))
'
;
end
if
size
(
y
,
2
)
>=
2
yscale
=
y
(:,
1
);
if
~
isempty
(
find
(
diff
(
yscale
)
<
0
)),
embed_flag
=
0
;
end
if
nonorm
==
1
,
y
=
(
y
(:,
2
)
-
mean
(
y
(:,
2
)))/
std
(
y
(:,
2
));
else
y
=
y
(:,
2
);
end
else
if
nonorm
==
1
,
y
=
(
y
-
mean
(
y
))/
std
(
y
);
end
yscale
=
(
1
:
length
(
y
))
'
;
end
if
max
(
size
(
x
))
~=
max
(
size
(
y
)),
if
~
nogui
,
errordlg
(
'Data must have the same length.'
,
'Check Data'
),
else
error
(
'Data must have the same length.'
),
end
end
if
e
<
0
,
e
=
1
;
if
~
nogui
warndlg
(
'The threshold size E can not be negative and is now set to 1.'
,
'Check Data'
)
h
=
findobj
(
'Tag'
,
'crqa_eps'
);
set
(
h
(
1
),
'String'
,
str2num
(
e
))
else
disp
(
'The threshold size E can not be negative and is now set to 1.'
),
end
end
if
t
<
1
,
t
=
1
;
if
~
nogui
warndlg
(
'The delay T can not be smaller than one and is now set to 1.'
,
'Check Data'
)
h
=
findobj
(
'Tag'
,
'crqa_maxLag'
);
set
(
h
(
1
),
'String'
,
str2num
(
t
))
else
disp
(
'The delay T can not be smaller than one and is now set to 1.'
)
end
end
if
isempty
(
w
)
&
Nx
>
5000
,
w
=
100
;
wstep
=
1
;
end
if
isempty
(
w
),
w
=.
5
*
Nx
;
wstep
=
1
;
end
% if w<2,
% w=2;
% if ~nogui, warndlg('The window size W exceeds the valid range.','Check Data')
% else, disp('The window size W exceeds the valid range.'), end
% end
if
w
>
Nx
,
w
=
Nx
;
wstep
=
1
;;
if
~
nogui
,
warndlg
(
'The window size W exceeds the valid range.'
,
'Check Data'
)
else
,
disp
(
'The window size W exceeds the valid range.'
),
end
end
t
=
round
(
t
);
m
=
round
(
m
);
w
=
round
(
w
);
% wstep=round(wstep);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% compute
flag
=
1
;
x1
=
x
;
x2
=
y
;
if
method
>
3
disp
(
'Warning: RQA from choosen neighbourhood is not possible!'
)
return
end
warning
off
if
size
(
x1
,
1
)
<
size
(
x1
,
2
),
x1
=
x1
'
;
end
if
size
(
x2
,
1
)
<
size
(
x2
,
2
),
x2
=
x2
'
;
end
% embedding vectors
NX
=
Nx
-
t
*
(
m
-
1
);
NY
=
Ny
-
t
*
(
m
-
1
);
i
=
(
1
:
NX
)
'
;
j
=
0
:
t
:
0
+
(
m
-
1
)
*
t
;
i
=
reshape
(
i
(:,
ones
(
1
,
m
))
+
j
(
ones
(
NX
,
1
),:),
m
*
NX
,
1
);
x1
=
x
(
i
);
x2
=
reshape
(
x1
,
NX
,
m
);
i
=
(
1
:
NY
)
'
;
j
=
0
:
t
:
0
+
(
m
-
1
)
*
t
;
i
=
reshape
(
i
(:,
ones
(
1
,
m
))
+
j
(
ones
(
NY
,
1
),:),
m
*
NY
,
1
);
y1
=
y
(
i
);
y2
=
reshape
(
y1
,
NY
,
m
);
% compute the diagonalwise RQA
clear
DET
L
RR
;
j
=
0
;
hw
=
waitbar
(
0
,
'Compute RQA'
);
for
i
=
0
:
w
,
waitbar
(
i
/(
2
*
w
))
clear
z
z0
z1
if
m
>
1
switch
(
method
)
%%%%%%%%%%%%%%%%% local CRP, fixed distance
case
1
%%%%%%%%%%%%%%%%% maximum norm
s
=
max
(
abs
(
x2
(
1
:
NX
-
i
,:)
-
y2
(
i
+
1
:
NY
,:))
'
);
case
2
%%%%%%%%%%%%%%%%% euclidean norm
errcode
=
112
;
s
=
sqrt
(
sum
((
x2
(
1
:
NX
-
i
,:)
-
y2
(
i
+
1
:
NY
,:))
.^
2
,
2
));
case
3
%%%%%%%%%%%%%%%%% minimum norm
errcode
=
113
;
s
=
sum
(
abs
(
x2
(
1
:
NX
-
i
,:)
-
y2
(
i
+
1
:
NY
,:))
'
);
end
else
s
=
abs
(
x2
(
1
:
NX
-
i
,:)
-
y2
(
i
+
1
:
NY
,:));
end
X
=
s
(:)
<
e
;
if
sum
(
X
)
==
length
(
X
),
l1
=
length
(
X
);
else
z
=
diff
(
X
);
z0
=
[];
if
~
isempty
(
find
(
~
(
z
-
1
))),
z0
(:,
1
)
=
find
(
~
(
z
-
1
));
else
,
z0
(
1
:
length
(
X
))
=
0
;
end
,
if
~
isempty
(
find
(
~
(
z
+
1
))),
z1
=
find
(
~
(
z
+
1
));
else
,
z1
(
1
:
length
(
X
))
=
0
;
end
if
z0
(
1
)
>
z1
(
1
)
z0
(
2
:
end
+
1
,
1
)
=
z0
(
1
:
end
);
z0
(
1
)
=
0
;
end
if
length
(
z0
)
>
length
(
z1
),
z0
(
end
)
=
[];
end
l
=
sort
(
z1
-
z0
);
l1
=
l
(
find
(
l
>
lmin
));
end
DET
(
j
+
w
+
1
)
=
sum
(
l1
)/
sum
(
X
);
L
(
j
+
w
+
1
)
=
mean
(
l1
);
RR
(
j
+
w
+
1
)
=
sum
(
X
)/
length
(
X
);
if
m
>
1
switch
(
method
)
%%%%%%%%%%%%%%%%% local CRP, fixed distance
case
1
%%%%%%%%%%%%%%%%% maximum norm
s
=
max
(
abs
(
x2
(
i
+
1
:
NX
,:)
-
y2
(
1
:
NY
-
i
,:))
'
);
case
2
%%%%%%%%%%%%%%%%% euclidean norm
errcode
=
112
;
s
=
sqrt
(
sum
((
x2
(
i
+
1
:
NX
,:)
-
y2
(
1
:
NY
-
i
,:))
.^
2
,
2
));
case
3
%%%%%%%%%%%%%%%%% minimum norm
errcode
=
113
;
s
=
sum
(
abs
(
x2
(
i
+
1
:
NX
,:)
-
y2
(
1
:
NY
-
i
,:))
'
);
end
else
s
=
abs
(
x2
(
i
+
1
:
NX
,:)
-
y2
(
1
:
NY
-
i
,:));
end
X
=
s
(:)
<
e
;
if
sum
(
X
)
==
length
(
X
),
l1
=
length
(
X
);
else
z
=
diff
(
X
);
z0
=
[];
if
~
isempty
(
find
(
~
(
z
-
1
))),
z0
(:,
1
)
=
find
(
~
(
z
-
1
));
else
,
z0
(
1
:
length
(
X
))
=
0
;
end
,
if
~
isempty
(
find
(
~
(
z
+
1
))),
z1
=
find
(
~
(
z
+
1
));
else
,
z1
(
1
:
length
(
X
))
=
0
;
end
if
z0
(
1
)
>
z1
(
1
)
z0
(
2
:
end
+
1
,
1
)
=
z0
(
1
:
end
);
z0
(
1
)
=
0
;
end
if
length
(
z0
)
>
length
(
z1
),
z0
(
end
)
=
[];
end
l
=
sort
(
z1
-
z0
);
l1
=
l
(
find
(
l
>
lmin
));
end
DET
(
w
-
j
+
1
)
=
sum
(
l1
)/
sum
(
X
);
L
(
w
-
j
+
1
)
=
mean
(
l1
);
RR
(
w
-
j
+
1
)
=
sum
(
X
)/
length
(
X
);
j
=
j
+
1
;
end
L
(
find
(
isnan
(
L
)))
=
0
;
RR
(
find
(
isnan
(
RR
)))
=
0
;
DET
(
find
(
isnan
(
DET
)))
=
0
;
if
nargout
,
XCF
=
xcf
(
x1
,
x2
,
w
,
1
);
end
if
~
nargout
subplot
(
2
,
2
,
1
)
clim
=
1
;
xcf
(
x
,
y
,
w
)
set
(
gca
,
'fonta'
,
'i'
)
xlabel
(
'Lag'
),
axis
([
-
w
w
-
clim
clim
])
ylabel
(
'Cross Correlation'
)
h
=
text
(
0
,
0
,
'A'
,
'fontw'
,
'b'
);
set
(
h
,
'un'
,
'pi'
),
set
(
h
,
'pos'
,[
9
,
16
,
0
])
switch
flag
case
1
subplot
(
2
,
2
,
2
),
plot
([
-
w
:
w
],
RR
,
'k'
,
'linew'
,
.
7
),
set
(
gca
,
'fonta'
,
'i'
),
axis
([
-
w
w
0
1
])
xlabel
(
'Lag'
),
ylabel
(
'Recurrence Rate'
),
grid
on
h
=
text
(
0
,
0
,
'B'
,
'fontw'
,
'b'
);
set
(
h
,
'un'
,
'pi'
),
set
(
h
,
'pos'
,[
9
,
16
,
0
])
subplot
(
2
,
2
,
3
),
plot
([
-
w
:
w
],
DET
,
'k'
,
'linew'
,
.
7
),
set
(
gca
,
'fonta'
,
'i'
),
xlabel
(
'Lag'
)
axis
([
-
w
w
0
1
]),
ylabel
(
'Determinism'
),
grid
on
h
=
text
(
0
,
0
,
'C'
,
'fontw'
,
'b'
);
set
(
h
,
'un'
,
'pi'
),
set
(
h
,
'pos'
,[
9
,
16
,
0
])
subplot
(
2
,
2
,
4
),
plot
([
-
w
:
w
],
L
,
'k'
,
'linew'
,
.
7
),
set
(
gca
,
'fonta'
,
'i'
),
xlabel
(
'Lag'
)
Lmax
=
max
(
L
);
if
~
Lmax
,
Lmax
=
1
;
end
axis
([
-
w
w
0
Lmax
]),
ylabel
(
'Averaged Line Length'
),
grid
on
h
=
text
(
0
,
0
,
'D'
,
'fontw'
,
'b'
);
set
(
h
,
'un'
,
'pi'
),
set
(
h
,
'pos'
,[
9
,
16
,
0
])
case
2
subplot
(
2
,
2
,
2
),
plot
([
-
w
:
w
],
smooth
(
RR
,
5
,
5
),
'k'
,
'linew'
,
.
7
),
set
(
gca
,
'fonta'
,
'i'
),
axis
([
-
w
w
0
1
])
xlabel
(
'Lag'
),
ylabel
(
'Recurrence Rate'
),
grid
on
h
=
text
(
0
,
0
,
'B'
,
'fontw'
,
'b'
);
set
(
h
,
'un'
,
'pi'
),
set
(
h
,
'pos'
,[
9
,
16
,
0
])
subplot
(
2
,
2
,
3
),
plot
([
-
w
:
w
],
smooth
(
DET
,
5
,
5
),
'k'
,
'linew'
,
.
7
),
set
(
gca
,
'fonta'
,
'i'
),
xlabel
(
'Lag'
)
axis
([
-
w
w
0
1
]),
ylabel
(
'Determinism'
),
grid
on
h
=
text
(
0
,
0
,
'C'
,
'fontw'
,
'b'
);
set
(
h
,
'un'
,
'pi'
),
set
(
h
,
'pos'
,[
9
,
16
,
0
])
subplot
(
2
,
2
,
4
),
plot
([
-
w
:
w
],
smooth
(
L
,
5
,
5
),
'k'
,
'linew'
,
.
7
),
set
(
gca
,
'fonta'
,
'i'
),
xlabel
(
'Lag'
)
axis
([
-
w
w
0
max
(
L
)]),
ylabel
(
'Averaged Line Length'
),
grid
on
h
=
text
(
0
,
0
,
'D'
,
'fontw'
,
'b'
);
set
(
h
,
'un'
,
'pi'
),
set
(
h
,
'pos'
,[
9
,
16
,
0
])
end
else
out
.
XCF
=
XCF
'
;
out
.
RRp
=
RR
;
out
.
DETp
=
DET
;
out
.
Lp
=
L
;
end
% compute the diagonalwise RQA
clear
DET
L
RR
,
j
=
0
;
for
i
=
0
:
w
,
waitbar
((
i
+
w
)/(
2
*
w
))
clear
z
z0
z1
if
m
>
1
switch
(
method
)
%%%%%%%%%%%%%%%%% local CRP, fixed distance
case
1
%%%%%%%%%%%%%%%%% maximum norm
s
=
max
(
abs
(
-
x2
(
1
:
NX
-
i
,:)
-
y2
(
i
+
1
:
NY
,:))
'
);
case
2
%%%%%%%%%%%%%%%%% euclidean norm
errcode
=
112
;
s
=
sqrt
(
sum
((
-
x2
(
1
:
NX
-
i
,:)
-
y2
(
i
+
1
:
NY
,:))
.^
2
,
2
));
case
3
%%%%%%%%%%%%%%%%% minimum norm
errcode
=
113
;
s
=
sum
(
abs
(
-
x2
(
1
:
NX
-
i
,:)
-
y2
(
i
+
1
:
NY
,:))
'
);
end
else
s
=
abs
(
-
x2
(
1
:
NX
-
i
)
-
y2
(
i
+
1
:
NY
));
end
X
=
s
(:)
<
e
;
if
sum
(
X
)
==
length
(
X
),
l1
=
length
(
X
);
else
z
=
diff
(
X
);
z0
=
[];
if
~
isempty
(
find
(
~
(
z
-
1
))),
z0
(:,
1
)
=
find
(
~
(
z
-
1
));
else
,
z0
(
1
:
length
(
X
))
=
0
;
end
,
if
~
isempty
(
find
(
~
(
z
+
1
))),
z1
=
find
(
~
(
z
+
1
));
else
,
z1
(
1
:
length
(
X
))
=
0
;
end
if
z0
(
1
)
>
z1
(
1
)
z0
(
2
:
end
+
1
,
1
)
=
z0
(
1
:
end
);
z0
(
1
)
=
0
;
end
if
length
(
z0
)
>
length
(
z1
),
z0
(
end
)
=
[];
end
l
=
sort
(
z1
-
z0
);
l1
=
l
(
find
(
l
>
lmin
));
end
DET
(
j
+
w
+
1
)
=
sum
(
l1
)/
sum
(
X
);
L
(
j
+
w
+
1
)
=
mean
(
l1
);
RR
(
j
+
w
+
1
)
=
sum
(
X
)/
length
(
X
);
if
m
>
1
switch
(
method
)
%%%%%%%%%%%%%%%%% local CRP, fixed distance
case
1
%%%%%%%%%%%%%%%%% maximum norm
s
=
max
(
abs
(
-
x2
(
i
+
1
:
NX
,:)
-
y2
(
1
:
NY
-
i
,:))
'
);
case
2
%%%%%%%%%%%%%%%%% euclidean norm
errcode
=
112
;
s
=
sqrt
(
sum
((
-
x2
(
i
+
1
:
NX
,:)
-
y2
(
1
:
NY
-
i
,:))
.^
2
,
2
));
case
3
%%%%%%%%%%%%%%%%% minimum norm
errcode
=
113
;
s
=
sum
(
abs
(
-
x2
(
i
+
1
:
NX
,:)
-
y2
(
1
:
NY
-
i
,:))
'
);
end
else
s
=
abs
(
-
x2
(
i
+
1
:
NX
,:)
-
y2
(
1
:
NY
-
i
,:));
end
X
=
s
(:)
<
e
;
if
sum
(
X
)
==
length
(
X
),
l1
=
length
(
X
);
else
z
=
diff
(
X
);
z0
=
[];
if
~
isempty
(
find
(
~
(
z
-
1
))),
z0
(:,
1
)
=
find
(
~
(
z
-
1
));
else
,
z0
(
1
:
length
(
X
))
=
0
;
end
,
if
~
isempty
(
find
(
~
(
z
+
1
))),
z1
=
find
(
~
(
z
+
1
));
else
,
z1
(
1
:
length
(
X
))
=
0
;
end
if
z0
(
1
)
>
z1
(
1
)
z0
(
2
:
end
+
1
,
1
)
=
z0
(
1
:
end
);
z0
(
1
)
=
0
;
end
if
length
(
z0
)
>
length
(
z1
),
z0
(
end
)
=
[];
end
l
=
sort
(
z1
-
z0
);
l1
=
l
(
find
(
l
>
lmin
));
end
DET
(
w
-
j
+
1
)
=
sum
(
l1
)/
sum
(
X
);
L
(
w
-
j
+
1
)
=
mean
(
l1
);
RR
(
w
-
j
+
1
)
=
sum
(
X
)/
length
(
X
);
j
=
j
+
1
;
end
if
ishandle
(
hw
),
delete
(
hw
),
end
L
(
find
(
isnan
(
L
)))
=
0
;
RR
(
find
(
isnan
(
RR
)))
=
0
;
DET
(
find
(
isnan
(
DET
)))
=
0
;
if
~
nargout
switch
flag
case
1
subplot
(
2
,
2
,
2
),
hold
on
,
plot
([
-
w
:
w
],
RR
,
'r'
,
'linew'
,
.
7
),
hold
off
,
set
(
gca
,
'YLimMode'
,
'Auto'
)
subplot
(
2
,
2
,
3
),
hold
on
,
plot
([
-
w
:
w
],
DET
,
'r'
,
'linew'
,
.
7
),
hold
off
,
hold
off
,
set
(
gca
,
'YLimMode'
,
'Auto'
)
subplot
(
2
,
2
,
4
),
hold
on
,
plot
([
-
w
:
w
],
L
,
'r'
,
'linew'
,
.
7
),
hold
off
,
hold
off
,
set
(
gca
,
'YLimMode'
,
'Auto'
)
case
2
subplot
(
2
,
2
,
2
),
hold
on
,
plot
([
-
w
:
w
],
smooth
(
RR
,
5
,
5
),
'r'
,
'linew'
,
.
7
),
hold
off
,
hold
off
,
set
(
gca
,
'YLimMode'
,
'Auto'
)
subplot
(
2
,
2
,
3
),
hold
on
,
plot
([
-
w
:
w
],
smooth
(
DET
,
5
,
5
),
'r'
,
'linew'
,
.
7
),
hold
off
,
hold
off
,
set
(
gca
,
'YLimMode'
,
'Auto'
)
subplot
(
2
,
2
,
4
),
hold
on
,
plot
([
-
w
:
w
],
smooth
(
L
,
5
,
5
),
'r'
,
'linew'
,
.
7
),
hold
off
,
hold
off
,
set
(
gca
,
'YLimMode'
,
'Auto'
)
end
else
out
.
RRm
=
RR
;
out
.
DETm
=
DET
;
out
.
Lm
=
L
;
end
warning
on
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment