Newer
Older
% TT Mean trapping time and its distribution.
% A=TT(X) computes the mean of the length of the vertical
% line structures in a recurrence plot, so called trapping
% time TT.
%
% [A B]=TT(X) computes the TT and the lengths of the
% found vertical lines, stored in B. In order to get the
% histogramme of the line lengths, simply call
% HIST(B,[1 MAX(B)]).
% Examples: X = crp(rand(200,1),1,1,.3,'fan','silent');
% [v v_dist] = tt(X);
% hist(v_dist,200)
%
% Copyright (c) 2008-2009
% Norbert Marwan, Potsdam Institute for Climate Impact Research, Germany
% http://www.pik-potsdam.de
%
% Copyright (c) 2001-2008
% Norbert Marwan, Potsdam University, Germany
% http://www.agnld.uni-potsdam.de
%
% $Date$
% $Revision$
%
% $Log$
% Revision 3.8 2013/08/22 06:35:01 marwan
% bugfix in estimation black and white vertical lines
%
% Revision 3.7 2010/06/30 12:02:52 marwan
% Help text modified
%
% Revision 3.6 2009/03/24 08:33:47 marwan
% copyright address changed
%
% Revision 3.5 2008/04/29 14:50:06 marwan
% fixed problem of empty RP
%
% Revision 3.4 2007/12/20 16:26:57 marwan
% includes also white vertical lines
%
% Revision 3.3 2005/11/23 07:29:14 marwan
% help text updated
%
% Revision 3.2 2005/03/16 11:19:02 marwan
% help text modified
%
% Revision 3.1 2004/11/10 07:07:35 marwan
% initial import
%
%
% This program is free software; you can redistribute it and/or
% modify it under the terms of the GNU General Public License
% as published by the Free Software Foundation; either version 2
% of the License, or any later version.
error(nargchk(1,1,nargin));
if nargout>3, error('Too many output arguments'), end
%a_out = NaN; b_out = NaN; c_out = NaN;
try
if any(x(:))
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% for black vertical lines
xb=double(x);
xb(end+1,:)=0;xb=double(xb(:));
z=diff(xb);
z0=find(z==1); % begin of black sequence
z1=find(z==-1); % end of black sequence
% measure the length of black lines
if z0(1)>z1(1)
z0(2:end+1,1)=z0(1:end);z0(1,1)=0;
if length(z0)>length(z1)
z0(end)=[];
end
end
t=sort(z1-z0);
t1=t(find(t-1));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% for white vertical lines
% if LOI is not present then put it in!
if ~all(diag(x))
x = x + eye(size(x));
end
for i = 1:size(x,2)
i_ = find(x(:,i));
i1 = min(i_); i2 = max(i_);
x(1:i1,i) = 1;
x(i2:end,i) = 1;
end
xw=double(x); xw(end+1,:)=1;
zw=diff(xw(:));
z0w=find(zw==-1); % begin of white sequence
z1w=find(zw==1); % end of white sequence
% measure the length of white lines
if z0w(1)>z1w(1)
z0w(1)=[];
if length(z1w)>length(z0w)
z1w(end)=[];
end
end
if length(z1w)>length(z0w)
z0w=[1;z0w];
end
if nargout>=2
b_out=zeros(length(t),1);
b_out=t;
end
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
if nargout>0
if isempty(t1), a_out=0;
else, a_out=mean(t1);
end
else
mean(t1)
end
else
if nargout==3
c_out=NaN;
end
if nargout>=2
b_out=NaN;
end
if nargout>0
a_out=NaN;
else
NaN
end
end
warning on
catch
if nargout==3
c_out=NaN;