Newer
Older
function X = taucrp(varargin)
%TAUCRP Creates a close returns plot.
% R=TAUCRP(X [,Y] [,param1,param2,...]) creates a cross
% recurrence plot/ recurrence plot R for a limited range of
% past and future states, also known as close returns plot.
%
% R=TAUCRP(X [,Y],M,T,E,W) uses the dimension M, delay T, the size
% of neighbourhood E and the range W of past and future time
% steps.
%
% If X and Y are multi-column vectors then they will be
% considered as phase space vectors (TAUCRP can be used
% for real phase space vectors without embedding).
%
% Parameters: dimension M, delay T, the size of neighbourhood
% E and the range W are the first four numbers after the data
% series; further parameters can be used to switch between
% various methods of finding the neighbours of the phasespace
% trajectory and to suppress the normalization of the data.
%
% Methods of finding the neighbours/ of plot.
% maxnorm - Maximum norm.
% euclidean - Euclidean norm.
% minnorm - Minimum norm.
% fan - Fixed amount of nearest neighbours.
% distance - Distance coded matrix (global CRP, Euclidean norm).
%
% Normalization of the data series.
% normalize - Normalization of the data.
% nonormalize - No normalization of the data.
%
% Parameters not needed to be specified.
%
%
% Examples: a = sin((1:1000) * 2 * pi/67);
% w = 160;
% X = taucrp(a,2,17,.2,w,'nonorm','euclidean');
% imagesc(1:size(X,2),-w:w,X), colormap([1 1 1; 0 0 0])
%
% See also CRP, CRP2, CRP_BIG, JRP, CRQA.
%
% References:
% Marwan, N., Romano, M. C., Thiel, M., Kurths, J.:
% Recurrence Plots for the Analysis of Complex Systems, Physics
% Reports, 438(5-6), 2007.
% Copyright (c) 2008-2009
% Norbert Marwan, Potsdam Institute for Climate Impact Research, Germany
% http://www.pik-potsdam.de
%
% Copyright (c) 2008
% Norbert Marwan, Potsdam University, Germany
% http://www.agnld.uni-potsdam.de
%
% $Date$
% $Revision$
%
% $Log$
% Revision 5.2 2009/03/24 08:33:47 marwan
% copyright address changed
%
% Revision 5.1 2008/01/25 12:47:26 marwan
% initial import
%
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
warning off
global errcode props nonorm
errcode=0;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% programme properties
init_properties
m_init = 1;
tau_init = 1;
eps_init = 0.1;
w_init = 100;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% check and read the input
error(nargchk(1,8,nargin));
if nargout>1, error('Too many output arguments'), end
check_meth={'ma','eu','mi','rr','fa','di'}; % maxnorm, euclidean, nrmnorm, fan, distance
check_norm={'non','nor'}; % nonormalize, normalize
check_gui={'gui','nog','sil'}; % gui, nogui, silent
if isnumeric(varargin{1}) % read commandline input
varargin{9}=[];
% transform any int to double
intclasses = {'uint8';'uint16';'uint32';'uint64';'int8';'int16';'int32';'int64'};
flagClass = [];
for i = 1:length(intclasses)
i_int=find(cellfun('isclass',varargin,intclasses{i}));
if ~isempty(i_int)
for j = 1:length(i_int)
varargin{i_int(j)} = double(varargin{i_int(j)});
end
flagClass = [flagClass; i_int(:)];
end
end
if ~isempty(flagClass)
disp(['Warning: Input arguments at position [',num2str(flagClass'),'] contain integer values']);
disp(['(now converted to double).'])
end
i_double=find(cellfun('isclass',varargin,'double'));
i_char=find(cellfun('isclass',varargin,'char'));
% check the text input parameters for method, gui and normalization
temp_meth=0;
temp_norm=0;
temp_gui=0;
if ~isempty(i_char)
for i=1:length(i_char),
varargin{i_char(i)}(4)='0';
temp_meth=temp_meth+strcmpi(varargin{i_char(i)}(1:2),check_meth');
temp_norm=temp_norm+strcmpi(varargin{i_char(i)}(1:3),check_norm');
temp_gui=temp_gui+strcmpi(varargin{i_char(i)}(1:3),check_gui');
end
method=min(find(temp_meth));
nonorm=min(find(temp_norm))-1;
nogui=min(find(temp_gui))-1;
if isempty(method), method=1; end
if isempty(nonorm), nonorm=1; end
if isempty(nogui), nogui=0; end
if method>length(check_meth), method=length(check_meth); end
if nonorm>1, nonorm=1; end
if nogui>2, nogui=2; end
else
method=1; nonorm=1; nogui=0;
end
if nogui==0 & nargout>0, nogui=1; end
% get the parameters for creating RP
if max(size(varargin{1}))<=3
error('To less values in data X.')
end
x=double(varargin{1});
if isempty(varargin{2}) | ~isnumeric(varargin{2}), y=x; else
y=double(varargin{2}); end
if (isnumeric(varargin{2}) & max(size(varargin{2}))==1) | ~isnumeric(varargin{2})
y=x;
if ~isempty(varargin{i_double(2)}), m0=varargin{i_double(2)}(1); else m0=m_init; end
if ~isempty(varargin{i_double(3)}), t=varargin{i_double(3)}(1); else t=tau_init; end
if ~isempty(varargin{i_double(4)}), e=varargin{i_double(4)}(1); else e=eps_init; end
if ~isempty(varargin{i_double(5)}), w=varargin{i_double(5)}(1); else w=w_init; end
else
if ~isempty(varargin{i_double(3)}), m0=varargin{i_double(3)}(1); else m0=m_init; end
if ~isempty(varargin{i_double(4)}), t=varargin{i_double(4)}(1); else t=tau_init; end
if ~isempty(varargin{i_double(5)}), e=varargin{i_double(5)}(1); else e=eps_init; end
if ~isempty(varargin{i_double(6)}), w=varargin{i_double(6)}(1); else w=w_init; end
end
t=round(t); m0=round(m0); mflag=method;
if e<0, e=1; disp('Warning: The threshold size E cannot be negative and is now set to 1.'), end
if t<1, t=1; disp('Warning: The delay T cannot be smaller than one and is now set to 1.'), end
if m0 < 1, m0 = 1; end
if t < 1, t = 1; end
if size(x,1)==1, x=x'; end, if size(y,1)==1, y=y'; end
m=max([size(x,2) size(y,2)]);
if w > size(x,1); w = size(x,1); end
if method==8 & (m*m0) > 1,
m0=1;
error(['The neighbourhood criterion ''Oder matrix''',10,'is not implemented - use crp or crp_big instead.'])
end
if method==9 & (m*m0) == 1,
m0=2;
disp(['Warning: For order patterns recurrence plots the dimension must',10,...
'be larger than one. ',...
'Embedding dimension is set to ',num2str(m0),'.'])
end
action='init';
if ~isempty(find(isnan(x)))
disp('NaN detected (in first variable) - will be cleared.')
for k=1:size(x,2), x(find(isnan(x(:,k))),:)=[]; end
end
if ~isempty(find(isnan(y)))
disp('NaN detected (in second variable) - will be cleared.')
for k=1:size(y,2), y(find(isnan(y(:,k))),:)=[]; end
end
if size(x,1) < t*(m-1)+1 | size(y,1) < t*(m-1)+1
error(['Too less data',10,...
'Either too much NaN or the number of columns in the vectors do not match.'])
end
Nx=size(x,1); Ny=size(y,1);
NX=Nx-t*(m0-1);NY=Ny-t*(m0-1);
x0=zeros(Nx,m);y0=zeros(Ny,m);
x0(1:size(x,1),1:size(x,2))=x;
y0(1:size(y,1),1:size(y,2))=y;
if nonorm==1,
x=(x0-repmat(mean(x0),Nx,1))./repmat(std(x0),Nx,1);
y=(y0-repmat(mean(y0),Ny,1))./repmat(std(y0),Ny,1);
end
if ~isempty(find(isnan(x))), for k=1:size(x,2), x(find(isnan(x(:,k))),:)=[]; end, end
if ~isempty(find(isnan(y))), for k=1:size(y,2), y(find(isnan(y(:,k))),:)=[]; end, end
if size(x,1) < t*(m0-1)+1 | size(y,1) < t*(m0-1)+1
error(['Too less data',10,...
'Either too much NaN or the number of columns in the vectors do not match.'])
end
else
error('No valid input given!')
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if m0>1
x2=x(1:end-t*(m0-1),:);
y2=y(1:end-t*(m0-1),:);
for i=1:m0-1,
x2(:,m*i+1:m*(i+1))=x(1+t*i:end-t*(m0-i-1),:);
y2(:,m*i+1:m*(i+1))=y(1+t*i:end-t*(m0-i-1),:);
end
x=x2; y=y2; Nx=size(x,1); Ny=size(y,1);
m=m0*m; clear x2 y2
end
x1=repmat(x,1,Ny);
for mi=1:m, x2(:,mi)=reshape(rot90(x1(:,0+mi:m:Ny*m+mi-m)),Nx*Ny,1); end
y1=repmat(y,Nx,1); x1=x2; clear x2
% create embedding vectors
NX = Nx - t*(m0-1); NY = Ny - t*(m0-1);
[idx add] = meshgrid(linspace(0,(m0-1)*t,m0), 1:Nx-(m0-1)*t);
idx = idx + add;
x1 = []; y1 = [];
for i = 1:m
x1 = [x1 reshape(x(idx,i),size(idx,1),size(idx,2))];
y1 = [y1 reshape(y(idx,i),size(idx,1),size(idx,2))];
end
% indices for which the recurrences should be computed
[i1 i2] = meshgrid(1:NX,-w:w);
i2 = i2 + i1;
i_remove = i2 > length(y1) | i2 < 1;
i2(i_remove) = 1;
% compute distance matrix
D = (x1(i1,:) - y1(i2,:));
switch method
case 1
D2 = max(abs(D),[],2);
X = double(D2 < e);
case 2
D2 = sqrt(sum(D.^2, 2));
X = double(D2 < e);
case 3
D2 = sum(abs(D), 2);
X = double(D2 < e);
case 4
D2 = max(abs(D),[],2);
SS = sort(D2(:));
idx = ceil(e * length(SS));
e_ = SS(idx);
X = double(D2 < e_);
case 5
D2 = sqrt(sum(D.^2, 2));
D3 = reshape(D2,size(i1,1),size(i1,2));
[SS, JJ] = sort(D3,1); JJ = JJ';
mine = round((2*w+1)*e);
X1(NX*(2*w+1)) = 0;
X1(JJ(:,1:mine)+repmat([0:(2*w+1):NX*(2*w+1)-1]',1,mine)) = 1;
X = reshape(X1,(2*w+1),NX);
case 6
D2 = sqrt(sum(D.^2, 2));
X = double(D2);
end
clear X1 SS JJ s px D D_ D2 D3
X = reshape(X,size(i1,1),size(i1,2)); X(i_remove) = 0;
%imagesc(X)