Newer
Older
function [c_out, l_out, t_out] = migram(varargin)
%MIGRAM Calculate windowed mutual information between two signals.
% I = MIGRAM(A,B,MAXLAG,WINDOW,NOVERLAP) calculates the windowed mutual
% information between the signals in vector A and vector B. MIGRAM splits
% the signals into overlapping segments and forms the columns of I with
% their mutual information values up to maximum lag specified by scalar
% MAXLAG. Each column of I contains the mutual information function
% between the short-term, time-localized signals A and B. Time increases
% linearly across the columns of I, from left to right. Lag increases
% linearly down the rows, starting at -MAXLAG. If lengths of A and B
% differ, the shorter signal is filled with zeros. If N is the length of
% the signals, I is a matrix with 2*MAXLAG+1 rows and
% k = fix((N-NOVERLAP)/(WINDOW-NOVERLAP))
% columns.
%
% I = MIGRAM(A,B,MAXLAG,WINDOW,NOVERLAP,NBINS) calculates the mutual
% information based on histograms with the number of bins NBINS.
%
% I = MIGRAM(...,'norm') calculates the renormalised mutual
% information, which is I/log(NBINS) and ensures a value range [0 1].
%
% [I,L,T] = MIGRAM(...) returns a column of lag L and one of time T
% at which the mutual information is computed. L has length equal
% to the number of rows of I, T has length k.
%
% I = MIGRAM(A,B) calculates windowed mutual information using defeault
% settings; the defeaults are MAXLAG = floor(0.1*N), WINDOW = floor(0.1*N),
% NOVERLAP = 0 and NBINS = 10. You can tell MIGRAM to use the defeault
% for any parameter by leaving it off or using [] for that parameter, e.g.
% MIGRAM(A,B,[],1000).
%
% MIGRAM(A,B) with no output arguments plots the mutual information
% using the current figure.
%
% Remark
% Please note that the mutual information derived with MI slightly
% differs from the results derived with MIGRAM. The reason is that
% MI also considers estimation errors.
%
% Example
% x = cos(0:.01:10*pi)';
% y = sin(0:.01:10*pi)' + .5 * randn(length(x),1);
% migram(x,y)
%
% See also MI, CORRGRAM.
% Copyright (c) 2008-2009
% Norbert Marwan, Potsdam Institute for Climate Impact Research, Germany
% http://www.pik-potsdam.de
%
% Copyright (c) 2007-2008
% Norbert Marwan, Potsdam University, Germany
% http://www.agnld.uni-potsdam.de
%
% $Date$
% $Revision$
verbose = 0;
x = varargin{1}; y = varargin{2};
x = x(:); y = y(:);
% check input and inital setting of parameters
nx = length(x); ny = length(y);
if nx < ny % zero-pad x if it has length less than y
x(ny) = 0; nx = ny;
end
if ny < nx % zero-pad y if it has length less than x
y(nx) = 0;
end
% check for NaNs
if any(isnan(x(:,1)) + isnan(y(:,1)))
error('Data contains NaNs.')
end
maxlag = floor(nx/10);
window = floor(nx/10);
noverlap = 0;
nbins = 10;
norm = 0;
i_num = find(cellfun('isclass',varargin,'double'));
i_char = find(cellfun('isclass',varargin,'char'));
if maxlag < 0, error('Requires positive integer value for maximum lag.'), end
if length(maxlag) > 1, error('Requires MAXLAG to be a scalar.'), end
end
if window <= 0, error('Requires positive integer value for window length.'), end
if length(window) > 1, error('Requires WINDOW to be a scalar.'), end
end
if noverlap < 0, error('Requires positive integer value for NOVERLAP.'), end
if length(noverlap) > 1, error('Requires NOVERLAP to be a scalar.'), end
if noverlap >= window, error('Requires NOVERLAP to be strictly less than the window length.'), end
end
if nbins <= 0, error('Requires positive integer value for NBINS.'), end
if length(nbins) > 1, error('Requires NBINS to be a scalar.'), end
end
% normalise the result
for i = 1:length(i_char)
if strcmpi(varargin(i_char(i)), 'norm'), norm = 1; end
end
% prepare time delayed signals
X = buffer(x,maxlag+1,maxlag)';
Y = fliplr(buffer(y,maxlag+1,maxlag)');
% divide the delayed signals into overlapping windows
% and compute the correlation coefficient
cnt = 1;
C = zeros(2*maxlag+1, fix((nx-noverlap)/(window-noverlap)));
if verbose, h = waitbar(0,'Compute mutual information'); end
% -MAXLAG:0
[Yi dummy] = buffer(Y(:,1),window,noverlap,'nodelay');
for i = 1:size(X,2), if verbose, waitbar(i/(2*size(X,2))), end
[Xi dummy] = buffer(X(:,i),window,noverlap,'nodelay');
C(i,:) = MI6(Xi, Yi, nbins);
%cnt = cnt + 1;
end
else
for i = 1:size(X,2), if verbose, waitbar(cnt/(2*size(X,2))), end
[Xi dummy] = buffer(X(:,i),window,noverlap,'nodelay');
C(cnt,:) = MI5(Xi, Yi, nbins);
cnt = cnt + 1;
end
end
% 0:MAXLAG
[Xi dummy] = buffer(X(:,end),window,noverlap,'nodelay');
if exist('accumarray','builtin') == 5
for i = 2:size(Y,2), if verbose, waitbar(cnt/(2*size(X,2))), end
[Yi dummy] = buffer(Y(:,i),window,noverlap,'nodelay');
C(i+cnt,:) = MI6(Xi, Yi, nbins);
% cnt = cnt + 1;
end
else
for i = 2:size(Y,2), if verbose, waitbar(cnt/(2*size(X,2))), end
[Yi dummy] = buffer(Y(:,i),window,noverlap,'nodelay');
C(cnt,:) = MI5(Xi, Yi, nbins);
cnt = cnt + 1;
end
end
if verbose, delete(h), end
% create time scale for the windows
t = (1:nx/size(Xi,2):nx)';
l = (-maxlag:maxlag)';
% if result has to be normalised
if norm
C = C / log(nbins);
end
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
% display and output result
if nargout == 0
newplot
imagesc(t, l, C)
xlabel('Time'), ylabel('Lag'), axis xy
title('Windowed mutual information', 'fontweight', 'bold')
colorbar
elseif nargout == 1,
c_out = C;
elseif nargout == 2,
c_out = C;
l_out = l;
elseif nargout == 3,
c_out = C;
t_out = t;
l_out = l;
end
% mutual information for Matlab version >= 6
function Z = MI6(x, y, nbins)
% normalise the data and replace the values with integers
% in the range [1 nbins]
x = x - repmat(min(x), size(x,1), 1);
y = y - repmat(min(y), size(y,1), 1);
x = x ./ repmat(max(x) + eps, size(x,1), 1);
y = y ./ repmat(max(y) + eps, size(y,1), 1);
x = floor(x * nbins) + 1;
y = floor(y * nbins) + 1;
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
% compute probabilities
Z = zeros(1,size(x,2));
for i = 1:size(x,2)
Pxy = accumarray([x(:,i) y(:,i)] + 1, 1);
Px = sum(Pxy,1);
Py = sum(Pxy,2);
Pxy = Pxy / sum(Pxy(:));
Px = Px / sum(Px(:));
Py = Py / sum(Py(:));
% entropies
Ix = -sum((Px(Px ~= 0)) .* log(Px(Px ~= 0)));
Iy = -sum((Py(Py ~= 0)) .* log(Py(Py ~= 0)));
Ixy = -sum(Pxy(Pxy ~= 0) .* log(Pxy(Pxy ~= 0)));
% mutual information
Z(i) = Ix + Iy - Ixy;
end
% mutual information for Matlab version < 6
function Z = MI5(x, y, nbins)
% normalise the data and replace the values with integers
% in the range [1 nbins]
x = x - repmat(min(x), size(x,1), 1);
y = y - repmat(min(y), size(y,1), 1);
x = x ./ repmat(max(x) + eps, size(x,1), 1);
y = y ./ repmat(max(y) + eps, size(y,1), 1);
x = floor(x * nbins) + 1;
y = floor(y * nbins) + 1;
% compute probabilities
Z = zeros(1,size(x,2));
for i = 1:size(x,2)
Pxy = full(sparse(x(:,i) + 1, y(:,i) + 1, 1));
Px = sum(Pxy,1);
Py = sum(Pxy,2);
Pxy = Pxy / sum(Pxy(:));
Px = Px / sum(Px(:));
Py = Py / sum(Py(:));
% entropies
Ix = -sum((Px(Px ~= 0)) .* log(Px(Px ~= 0)));
Iy = -sum((Py(Py ~= 0)) .* log(Py(Py ~= 0)));
Ixy = -sum(Pxy(Pxy ~= 0) .* log(Pxy(Pxy ~= 0)));
% mutual information
Z(i) = Ix + Iy - Ixy;
end