christen_fox.jl 6.19 KiB
"""
Delayed Acceptance algorithm
If `saveproxies == true` save log-density lower levels.
This is particularly useful for Multilevel integration.
References
* Christen, J.A. and Fox, C. (2005). "Markov chain Monte Carlo Using an Approximation"
Journal of Computational and Graphical Statistics
"""
struct ChristenFox{saveproxies, P <: AbstractProposal} <: RejectionBasedSampler
proposal :: P
end
ChristenFox(proposal::AbstractProposal, saveproxies::Bool=false) = ChristenFox{saveproxies, typeof(proposal)}(proposal)
## Save samples only for highest level
function AbstractMCMC.samples(sample, model::AbstractMultilevelModel, ::ChristenFox{false, P}; kwargs...) where {P}
(level, x, f_x) = sample
return (;
states = typeof(x)[],
logprobs = typeof(f_x)[],
rejections = Vector{Int}[],
)
end
function AbstractMCMC.save!!(samples, sample, ::Integer, model::AbstractMultilevelModel, ::ChristenFox{false, P}; kwargs... ) where {P}
(level, x, f_x) = sample
# accept (at hightest level)
if level == length(model)
push!(samples.states, x)
push!(samples.logprobs, f_x)
push!(samples.rejections, zeros(Int, length(model)))
# reject
else samples.rejections[end][level+1] += 1 end
return samples
end
## Save each level
function AbstractMCMC.samples(sample, model::AbstractMultilevelModel, ::ChristenFox{true, P}; kwargs...) where {P}
(level, x, f_x) = sample
return (;
states = typeof(x)[],
logprobs = typeof(f_x)[],
rejections = Vector{Int}[],
current = Ref{Int}(0) # reference to current top level state
)
end
function AbstractMCMC.save!!(samples, sample, ::Integer, model::AbstractMultilevelModel, ::ChristenFox{true, P}; kwargs... ) where {P}
(level, x, f_x) = sample
# accept
if level == length(model)
push!(samples.states, x)
push!(samples.logprobs, f_x)
push!(samples.rejections, zeros(Int, length(model)))
samples.current[] = length(samples.states) # reset current to accepted
else
samples.rejections[samples.current[]][level+1] += 1 # update rejection counter
# store promoted
if level > 0
push!(samples.states, x)
push!(samples.logprobs, f_x)
push!(samples.rejections, zeros(Int, length(model)))
end
end
return samples
end
## General chain stepping
function AbstractMCMC.step(rng::AbstractRNG, model::AbstractModel, sampler::ChristenFox; x0=nothing, f0=nothing, kwargs...)
# Initialize states
_resample = isnothing(x0)
x = _resample ? rand(rng, sampler.proposal) : x0
# Initialize logprobs
_recompute = _resample || isnothing(f0)
f_x = _recompute ? [ logdensity(model, x; level=l) for l=1:length(model) ] : f0
return (length(model), x, f_x), (x, f_x)
end
function AbstractMCMC.step(rng::AbstractRNG, model::AbstractMultilevelModel, sampler::ChristenFox, state; kwargs...)
# Load old state
x, f_x = state
# Propose
y = propose(rng, sampler.proposal, x)
f_y = [ logdensity(model, y; level=1) ]
q = logpratio(sampler.proposal, x, y)
# Promotion probability
A_1 = min( f_y[1] - f_x[1] + q, 0)
accept = log(rand(rng)) < A_1
if !accept return (0, x, f_x), (x, f_x) end # completly reject, never promoted
# Promotion loop
for l = 2:length(model)
push!(f_y, logdensity(model, y; level=l) )
# Next promotion
A_l = f_y[l] - f_x[l] + f_y[l-1] - f_x[l-1]
accept = log(rand(rng)) < A_l
if !accept return (l-1, y, f_y), (x, f_x) end # rejected at level l, promoted to l-1
end
# Accept at highest level
return (length(model), y, f_y), (y, f_y)
end
## Chain stepping specialized for Sampled-Based LogDensities, uses cached evaluation
function AbstractMCMC.step(rng::AbstractRNG, model::MultilevelSampledLogDensity, sampler::ChristenFox; x0=nothing, f0=nothing, kwargs...)
# Initialize states
_resample = isnothing(x0)
x = _resample ? rand(rng, sampler.proposal) : x0
# Initialize logprobs
_recompute = _resample || isnothing(f0)
if _recompute
# Recursively cached
f_x = [ logdensity(model, x; level=1) ]
sizehint!(f_x, length(model))
for l=2:length(model)
push!(f_x, logdensity(model, x; level=l, cache=f_x[end]))
end
else f_x = f0 end
return (length(model), x, f_x), (x, f_x)
end
function AbstractMCMC.step(rng::AbstractRNG, model::MultilevelSampledLogDensity, sampler::ChristenFox, state; kwargs...)
# Load old state
x, f_x = state
# Propose
y = propose(rng, sampler.proposal, x)
f_y = [ logdensity(model, y; level=1) ]
q = logpratio(sampler.proposal, x, y)
# Promotion probability
A_1 = min( f_y[1] - f_x[1] + q, 0)
accept = log(rand(rng)) < A_1
if !accept return (0, x, f_x), (x, f_x) end # completly reject, never promoted
# Promotion loop
for l = 2:length(model)
push!(f_y, logdensity(model, y; level=l, cache=f_y[end]) ) # > Only this line changes!
# Next promotion
A_l = f_y[l] - f_x[l] + f_y[l-1] - f_x[l-1]
accept = log(rand(rng)) < A_l
if !accept return (l-1, y, f_y), (x, f_x) end # rejected at level l, promoted to l-1
end
# Accept at highest level
return (length(model), y, f_y), (y, f_y)
end
function AbstractMCMC.bundle_samples(samples, ::AbstractMultilevelModel, ::ChristenFox, state, chain_type::Type{<:NamedTuple}; kwargs...)
return (; states = samples.states, logprobs = samples.logprobs, rejections = samples.rejections)
end
function _chain_info(samples, model::AbstractMultilevelModel, ::ChristenFox)
n_total = sum( 1 .+ sum.(samples.rejections))
n_reject = sum(samples.rejections)
info = Dict(
:chain_length => n_total,
:rejection_rate => n_reject ./ n_total,
)
if model isa MultilevelSampledLogDensity
evals_per_level = n_total .- cumsum([0, n_reject[1:end-1]... ])
costs_per_level = model.nlevels .- [0, model.nlevels[1:end-1]...]
info[:total_costs] = sum( evals_per_level .* costs_per_level )
end
return info
end