-
Jonas Wassmer authoredJonas Wassmer authored
GravityModule2.py 4.90 KiB
# %%
import networkx as nx
import osmnx as ox
import os
import numpy as np
import pickle
import time
import multiprocessing
from pathlib import Path
from tqdm import tqdm
import src.GermanMobiltyPanel as gmp
def flows_od(pop_o, pops, dists, mobility_fit):
"""Returns dict with flows from origin (o) to all destinations (d). {d : f_o}
pop_o : population at origin o
pops : population dictionary
dists : distances from o to destinations
"""
denominator = sum(mobility_fit(dist) * pops[l] for (l, dist) in dists.items())
return {
d: pop_o * pops[d] * mobility_fit(dist) / denominator
for (d, dist) in dists.items()
}
def flows(G, pops, mobility_fit, path_attr, cutoff=None):
"""Returns generator with flows from all origins to all destinations. (o : {d} : f_o})
G : road graph
path_attr : edge weight for shortest path algorithm.
"""
return (
(flows_od(pops[o], pops, dists, mobility_fit), paths)
for o, (dists, paths) in nx.all_pairs_dijkstra(
G, cutoff=cutoff, weight=path_attr
)
)
def compute_loads_OLD(
graph, path_attr="travel_time", disable_tqdm=False, cutoff="default"
):
"""Return graph object with commuter loads as edge weight attr on all edges."""
G = graph.copy()
max_bin, popt_exp, popt_lin = gmp.mobility_fit_params(
"data/MOP-data/mobility/", path_attr, bincount=250
)
mobility_fit = (
lambda x: gmp.exp_func(x, *popt_exp)
if x > max_bin
else gmp.lin_func(x, *popt_lin)
)
L = dict(zip(G.edges(keys=True), np.zeros(len(G.edges()))))
pops = nx.get_node_attributes(G, "population")
if cutoff == "default":
if path_attr == "length":
cutoff = 60 * 1000 # 60 km
elif path_attr == "travel_time":
cutoff = 60 * 60 # 60 mins
if not disable_tqdm:
print("Computing loads...")
for fo, paths in tqdm(
flows(G, pops, mobility_fit, path_attr, cutoff=cutoff),
total=len(G.nodes()),
disable=disable_tqdm,
):
for d, path in paths.items():
f_od = fo[d]
for i, j in zip(path[:-1], path[1:]):
L[(i, j, 0)] += f_od
nx.set_edge_attributes(G, L, "load")
return G
def compute_loads(graph, weight="travel_time", cutoff="default", disable_tqdm=False):
"""Return graph object with commuter loads as edge weight attr on all edges."""
G = graph.copy()
max_bin, popt_exp, popt_lin = gmp.mobility_fit_params(
"data/MOP-data/mobility/", weight, bincount=250
)
mobility_fit = (
lambda x: gmp.exp_func(x, *popt_exp)
if x > max_bin
else gmp.lin_func(x, *popt_lin)
)
L = dict(zip(G.edges(keys=True), np.zeros(len(G.edges()))))
populations = nx.get_node_attributes(G, "population")
if cutoff == "default":
if weight == "length":
cutoff = 60 * 1000 # 60 km
elif weight == "travel_time":
cutoff = 60 * 60 # 60 mins
if not disable_tqdm:
print("Computing loads...")
for o, (dist, path) in tqdm(
nx.all_pairs_dijkstra(G, cutoff=cutoff, weight=weight),
total=len(G.nodes()),
disable=disable_tqdm,
):
No = populations[o]
denominator = sum(
mobility_fit(dist) * populations[l] for (l, dist) in dist.items()
)
for d, path_od in path.items():
Nd = populations[d]
dist_od = dist[d]
fod = No * Nd * mobility_fit(dist_od) / denominator
L.update(
{
(i, j, 0): L[(i, j, 0)] + fod
for i, j in zip(path_od[:-1], path_od[1:])
}
)
# for i, j in zip(path_od[:-1], path_od[1:]):
# L[(i, j, 0)] += fod
nx.set_edge_attributes(G, L, "load")
return G
def commuter_loads(G, path_attr="travel_time", cache=True, cutoff="default"):
"""Return graph object with commuter loads as edge weight attr on all edges."""
if cache:
hash = nx.weisfeiler_lehman_graph_hash(
ox.get_digraph(G),
edge_attr=path_attr,
node_attr="population",
iterations=10,
digest_size=32,
)
path = f"data/cache/load-files/{hash}.pkl"
if os.path.isfile(path):
print(
"The load has already been calculated and saved. Returning this output."
)
with open(path, "rb") as f:
load = pickle.load(f)
nx.set_edge_attributes(G, load, "load")
# return G
else:
G = compute_loads(G, weight=path_attr, cutoff=cutoff, disable_tqdm=False)
load = nx.get_edge_attributes(G, "load")
with open(path, "wb") as f:
pickle.dump(load, f)
# return G
else:
G = compute_loads(G, weight=path_attr, cutoff=cutoff, disable_tqdm=False)
return G