Newer
Older

Alois Dirnaichner
committed
---
title: "Compare scenarios Transport"
output:
html_document:
df_print: paged
---
```{r, echo=FALSE, message=FALSE, warning=FALSE}
require(ggplot2)
require(moinput)
require(data.table)
require(dplyr)
require(remind)
require(gdxdt)
require(gdx)
require(rmndt)
require(magclass)
require(quitte)
require(ggpubr)
require(gridExtra)

Alois Dirnaichner
committed
require(edgeTrpLib)
```
```{r, echo=FALSE, warning=FALSE}
iso_plot = "DEU"
output_folder = "EDGE-T/"

Alois Dirnaichner
committed
cols <- c("NG" = "#d11141",
"Liquids" = "#8c8c8c",
"Hybrid Liquids" = "#ffc425",
"Hybrid Electric" = "#f37735",
"BEV" = "#00b159",
"FCEV" = "#00aedb")

Alois Dirnaichner
committed
datapath <- function(fname){
Marianna Rottoli
committed
file.path("./EDGE-T/", fname)

Alois Dirnaichner
committed
}
mapspath <- function(fname, scenariopath=""){
file.path("../../modules/35_transport/edge_esm/input", fname)
}

Alois Dirnaichner
committed
## Load mappings
Marianna Rottoli
committed
REMIND2ISO_MAPPING <- fread("../../config/regionmappingH12.csv")[, .(iso = CountryCode, region = RegionCode)]

Alois Dirnaichner
committed
EDGE2teESmap <- fread(mapspath("mapping_EDGE_REMIND_transport_categories.csv"))
Marianna Rottoli
committed
## load input data from last EDGE run
demand_km <- readRDS(datapath(fname = "demandF_plot_pkm.RDS")) ## detailed energy services demand, million km
demand_ej <- readRDS(datapath(fname = "demandF_plot_EJ.RDS")) ## detailed final energy demand, EJ
vintcomp <- readRDS(datapath(fname = "vintcomp.RDS"))
newcomp <- readRDS(datapath(fname = "newcomp.RDS"))
shares <- readRDS(datapath(fname = "shares.RDS"))
inco_tech <- readRDS(datapath(fname = "inco_costs.RDS"))
EF_shares <- readRDS(datapath(fname = "EF_shares.RDS"))
annual_sales <- readRDS(datapath(fname = "annual_sales.RDS"))
mj_km_data <- readRDS(datapath(fname = "mj_km_data.RDS"))

Alois Dirnaichner
committed
name_mif = list.files(pattern = "REMIND_generic", full.names = F)
name_mif = name_mif[!grepl("withoutPlu", name_mif)]
miffile <- as.data.table(read.quitte(name_mif))

Alois Dirnaichner
committed
```

Alois Dirnaichner
committed

Alois Dirnaichner
committed
plotVint = function(vintcomp, newcomp, sharesVS1){
Marianna Rottoli
committed
vintcomp = vintcomp[,.(totdem, iso, subsector_L1, year, technology,vehicle_type, sector, sharetech_vint)]
newcomp = newcomp[,.(iso, subsector_L1, year, technology,vehicle_type, sector, sharetech_new)]
Marianna Rottoli
committed
allfleet = merge(newcomp, vintcomp, all =TRUE, by = c("iso", "sector", "subsector_L1", "vehicle_type", "technology", "year"))
allfleet = merge(allfleet, sharesVS1[,.(shareVS1 = share, iso, year, vehicle_type, subsector_L1)], all.x=TRUE, by = c("iso", "year", "vehicle_type", "subsector_L1"))
allfleet[,vintdem:=totdem*sharetech_vint*shareVS1]
allfleet[,newdem:=totdem*sharetech_new*shareVS1]
allfleet=melt(allfleet, id.vars = c("iso", "sector", "subsector_L1", "vehicle_type", "technology",
Marianna Rottoli
committed
"year"), measure.vars = c("vintdem", "newdem"))
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
allfleet[,alpha:=ifelse(variable == "vintdem", 0, 1)]
load_factor = 2
annual_mileage = 15000
allfleet = allfleet[,.(value = sum(value/load_factor/annual_mileage)), by = c("iso", "technology", "variable", "year")]
allfleet = merge(allfleet, REMIND2ISO_MAPPING, by = "iso")
allfleet = allfleet[,.(value = sum(value)), by = c("region", "technology", "variable", "year")]
allfleet[,alphaval := ifelse(variable =="vintdem", 1,0)]
p = ggplot()+
geom_bar(data = allfleet[year %in% c(2015,2030,2050)],
aes(x=as.character(year),y=value, group=interaction(variable, technology),
fill = technology), alpha = 0.5, position="stack", stat = "identity", width = 0.5)+
geom_bar(data = allfleet[year %in% c(2015,2030,2050)],
aes(x=as.character(year),y=value, group=interaction(variable, technology),
fill = technology, alpha = factor(alphaval)), position="stack", stat = "identity", width = 0.5, color = "black")+
guides(fill = guide_legend(reverse=TRUE))+
theme_minimal()+
facet_wrap(~region, nrow = 4)+
theme(axis.text.x = element_text(angle = 90, hjust = 1),
axis.text = element_text(size=7),
title = element_text(size=8),
legend.text = element_text(size=8))+
scale_x_discrete(breaks = c(2015,2030,2050))+
scale_alpha_discrete(breaks = c(1,0), name = "Status", labels = c("Vintages","New additions")) +
guides(linetype=FALSE,
fill=guide_legend(reverse=FALSE, title="Transport mode"))+
scale_fill_manual(values = cols)+
labs(y = "LDV fleet [million Veh]", x="")

Alois Dirnaichner
committed

Alois Dirnaichner
committed
Marianna Rottoli
committed
p = plotVint(vintcomp, newcomp, shares$VS1_shares)

Alois Dirnaichner
committed
```

Alois Dirnaichner
committed

Alois Dirnaichner
committed
p=ggplot()+
geom_bar(data = inco_tech[iso == iso_plot & subsector_L1 == "trn_pass_road_LDV_4W" & vehicle_type == "Large Car and SUV" & year<=2100 & year>=2010], aes(x = as.character(year), y = pinco, group = technology, fill = technology), position = position_stack(), stat = "identity")+
facet_grid(~technology)+
theme_minimal()+
scale_fill_manual(values = cols)+
expand_limits(y = c(0,0.8))+
scale_x_discrete(breaks = c(2015,2050,2100))+
theme(axis.text.x = element_text(angle = 90, vjust = +0.1),
legend.position = "none",
strip.background = element_rect(color = "grey"))+
labs(x = "", y = "Inconvenience cost [$/pkm]", title = paste0("Example of ", iso_plot))

Alois Dirnaichner
committed

Alois Dirnaichner
committed
```
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
# Endogenous intensity for Liquids
```{r, echo=FALSE, message=FALSE, warning=FALSE}
## Choice of the energy intensity (of the new sales)
intcompplotf = function(EF_shares, FV_shares, VS1_shares){
EF_shares = EF_shares[,c("iso", "year", "technology", "vehicle_type", "subsector_L1", "subsector_L2", "subsector_L3", "sector", "share","type")]
setnames(EF_shares, old="share", new = "shareINT")
FV_shares = FV_shares[iso == iso_plot & subsector_L1 == "trn_pass_road_LDV_4W" & technology == "Liquids"]
setnames(FV_shares, old="share", new = "shareF")
VS1_shares = VS1_shares[iso == iso_plot & subsector_L1 == "trn_pass_road_LDV_4W"]
shares_LDV = merge(FV_shares, EF_shares, all = FALSE, by = c("iso", "year", "technology", "vehicle_type", "subsector_L1"))
shares_LDV[, shareIF := shareF*shareINT]
shares_LDV <- shares_LDV[,.(shareIF=sum(shareIF)),by=c("iso","technology","type","vehicle_type","subsector_L1", "year")]
shares_LDV = merge(shares_LDV, VS1_shares, all = TRUE, by = c("iso", "year", "vehicle_type", "subsector_L1"))
shares_LDV[, shareIS1 := shareIF*share]
shares_LDV <- shares_LDV[,.(shareIS1=sum(shareIS1)),by=c("iso","type", "technology","subsector_L1","year")]
p = ggplot()+
geom_bar(data = shares_LDV[year<=2100 & year>=2025], aes(x=year,y=shareIS1, group = technology, fill = technology), alpha = 0.5, position = position_fill(), stat = "identity")+
geom_bar(data = shares_LDV[year<=2100 & year>=2025], aes(x=year,y=shareIS1, group = technology, fill = technology, alpha = type), position = position_fill(), stat = "identity")+
facet_wrap("technology")+
theme_minimal()+
expand_limits(y = c(0,1))+
scale_fill_manual("technology", values = cols)+
scale_alpha_discrete("Type")+
labs(y = "Share [%]", title = paste0("Energy intensity new sales of Liquids, example for ", iso_plot))
return(p)

Alois Dirnaichner
committed
}
Marianna Rottoli
committed
intcompplotf(EF_shares, shares$FV_shares, shares$VS1_shares)

Alois Dirnaichner
committed
```

Alois Dirnaichner
committed
Marianna Rottoli
committed
salesplot = function(annual_sales){
annual_sales = unique(annual_sales[,c("iso","year", "technology", "shareFS1")])
annual_sales <- annual_sales[,.(shareFS1=sum(shareFS1)),by=c("iso","technology","year")]
Marianna Rottoli
committed
geom_bar(data = annual_sales[year<=2050 & year>=2015 & iso == iso_plot], aes(x=as.numeric(as.character(year)),y=shareFS1, group = technology, fill = technology), position = position_stack(), stat = "identity")+
theme_minimal()+
scale_fill_manual("Technology", values = cols)+
expand_limits(y = c(0,1))+
scale_x_continuous(breaks = c(2015,2030,2050))+
theme(axis.text.x = element_text(angle = 90, vjust = +0.1),
strip.background = element_rect(color = "grey"),
legend.position = "none")+
labs(x = "", y = "Market share on LDVs [%]", title = paste0("Sales composition, example of ", iso_plot))

Alois Dirnaichner
committed

Alois Dirnaichner
committed
}
Marianna Rottoli
committed
salesplot(annual_sales)

Alois Dirnaichner
committed
```

Alois Dirnaichner
committed
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
```{r, echo=FALSE, warning=FALSE}
demandEJplotf = function(demandEJ){
## EDGE results
demandEJ <- demandEJ[, c("sector", "subsector_L3", "subsector_L2", "subsector_L1", "vehicle_type", "technology", "iso", "year", "demand_EJ")]
## attribute aggregated mode and vehicle names for plotting purposes, and aggregate
demandEJ[, aggr_mode := ifelse(subsector_L2 == "trn_pass_road_LDV", "LDV", NA)]
demandEJ[, aggr_mode := ifelse(subsector_L3 %in% c("Passenger Rail", "HSR", "International Aviation", "Domestic Aviation"), "Pass non LDV", aggr_mode)]
demandEJ[, aggr_mode := ifelse(subsector_L2 %in% c("trn_pass_road_bus", "Bus"), "Pass non LDV", aggr_mode)]
demandEJ[, aggr_mode := ifelse(is.na(aggr_mode), "Freight", aggr_mode)]
demandEJ[, veh := ifelse(vehicle_type %in% c("Truck (0-1t)", "Truck (0-3.5t)", "Truck (0-2.7t)", "Truck (0-2t)"), "Trucks (<3.5t)", NA)]
demandEJ[, veh := ifelse(vehicle_type %in% c("Truck (16-32t)", "Truck (3.5-16t)", "Truck (6-15t)", "Truck (4.5-12t)", "Truck (2.7-4.5t)", "Truck (4.5-15t)"), "Trucks (3.5t-16)", veh)]
demandEJ[, veh := ifelse(vehicle_type %in% c("Truck (>15t)", "Truck (16-32t)", "Truck (>32t)" ), "Trucks (>16)", veh)]
demandEJ[, veh := ifelse(grepl("Large|SUV|Midsize|Multipurpose Vehicle|Van|3W Rural", vehicle_type), "Large Cars", veh)]
demandEJ[, veh := ifelse(grepl("Subcompact|Compact|Mini|Three-Wheeler", vehicle_type), "Small Cars", veh)]
demandEJ[, veh := ifelse(grepl("Motorcycle|Moped|Scooter", vehicle_type), "Motorbikes", veh)]
demandEJ[, veh := ifelse(grepl("bus|Bus", vehicle_type), "Bus", veh)]
demandEJ[, veh := ifelse(grepl("Freight Rail_tmp_vehicletype", vehicle_type), "Freight Rail", veh)]
demandEJ[, veh := ifelse(grepl("Passenger Rail|HSR", vehicle_type), "Passenger Rail", veh)]
demandEJ[, veh := ifelse(subsector_L3 == "Domestic Ship", "Domestic Shipping", veh)]
demandEJ[, veh := ifelse(subsector_L3 == "International Ship", "International Shipping", veh)]
demandEJ[, veh := ifelse(subsector_L3 == "Domestic Aviation", subsector_L3, veh)]
demandEJ[, veh := ifelse(subsector_L3 == "International Aviation", subsector_L3, veh)]
demandEJ[, veh := ifelse(is.na(veh), vehicle_type, veh)]
demandEJ = demandEJ[,.(demand_EJ = sum(demand_EJ)), by = c("iso", "year", "aggr_mode", "veh")]
demandEJ[, vehicle_type_plot := factor(veh, levels = c("LDV","Freight Rail", "Trucks (<3.5t)", "Trucks (3.5t-16)", "Truck (>12t)", "Trucks (>16)", "Trucks","Domestic Shipping", "International Shipping",
"Motorbikes", "Small Cars", "Large Cars", "Van",
"Domestic Aviation", "International Aviation", "Bus", "Passenger Rail",
"Freight", "Freight (Inland)", "Pass non LDV", "Pass non LDV (Domestic)"))]
legend_ord <- c("Freight Rail", "Trucks (<3.5t)", "Trucks (3.5t-16)", "Truck (>12t)", "Trucks (>16)", "International Shipping","Domestic Shipping", "Trucks",
"Motorbikes", "Small Cars", "Large Cars", "Van",
"International Aviation", "Domestic Aviation","Bus", "Passenger Rail",
"Freight", "LDV", "Pass non LDV", "Freight (Inland)", "Pass non LDV (Domestic)")
demandEJ = merge(demandEJ, REMIND2ISO_MAPPING, by = "iso")
demandEJ = demandEJ[,.(demand_EJ= sum(demand_EJ)), by = c("region", "year", "vehicle_type_plot", "aggr_mode")]
p=ggplot()+
geom_area(data = demandEJ[year > 2010], aes(x=year, y=demand_EJ, group = interaction(vehicle_type_plot,aggr_mode), fill = vehicle_type_plot), color = "black", position= position_stack())+
facet_wrap(~region, nrow = 4)
labs(x = "", y = "Final Energy demand [EJ]")+
theme_minimal()+
# scale_fill_manual("Vehicle Type",values = cols, breaks=legend_ord)+
theme(axis.text.x = element_text(size = 8),
axis.text.y = element_text(size=8),
axis.title = element_text(size = 9),
title = element_text(size = 9),
legend.text = element_text(size = 9),
legend.title = element_text(size =9),
strip.text = element_text(size=9))
return(p)

Alois Dirnaichner
committed
}
## Final Energy demand
demandEJplotf(demand_ej)

Alois Dirnaichner
committed
```

Alois Dirnaichner
committed
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
```{r, echo=FALSE, warning=FALSE}
## demand EJ for LDV, divided by fuel type
demandEJLDVplotf <- function(demandEJ){
demandEJ = demandEJ[subsector_L1 == "trn_pass_road_LDV_4W",]
demandEJ <- demandEJ[, c("sector", "subsector_L3", "subsector_L2", "subsector_L1", "vehicle_type", "technology", "iso", "year", "demand_EJ")]
demandEJ = merge(demandEJ, REMIND2ISO_MAPPING, by = "iso")
demandEJ[technology == "Hybrid Liquids", technology := "Liquids"]
demandEJ[technology == "FCEV", technology := "Hydrogen"]
demandEJ[technology == "BEV", technology := "Electricity"]
demandEJ = demandEJ[, .(demand_EJ = sum(demand_EJ)), by = c("region", "year", "technology")]
p = ggplot()+
geom_area(data = demandEJ[year > 2010], aes(x=year, y=demand_EJ, group = technology, fill = technology), color="black",position= position_stack())+
labs(x = "", y = "Final energy demand for LDVs [EJ]")+
facet_wrap(~region, nrow = 4)
theme_minimal()+
# scale_fill_manual("Vehicle Type",values = cols, breaks=legend_ord)+
theme(axis.text.x = element_text(size = 7),
axis.text.y = element_text(size=7),
axis.title = element_text(size = 8),
title = element_text(size = 8),
legend.text = element_text(size = 8),
legend.title = element_text(size = 8),
strip.text = element_text(size=8))
return(p)

Alois Dirnaichner
committed
}

Alois Dirnaichner
committed
```
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
# Energy services demand
```{r, echo=FALSE, warning=FALSE}
demandpkmplotf = function(demandpkm){
## REMIND-EDGE results
demandpkm <- demandpkm[,c("sector","subsector_L3","subsector_L2",
"subsector_L1","vehicle_type","technology", "iso","year","demand_F")]
demandpkm[,demand_F:=demand_F ## in millionkm
*1e-6 ## in trillion km
]
## attribute aggregated mode and vehicle names for plotting purposes, and aggregate
demandpkm[, aggr_mode := ifelse(subsector_L1 %in% c("Three-Wheeler", "trn_pass_road_LDV_4W"), "LDV", NA)]
demandpkm[, aggr_mode := ifelse(sector %in% c("trn_freight", "trn_shipping_intl"), "Freight", aggr_mode)]
demandpkm[, aggr_mode := ifelse(sector %in% c("trn_aviation_intl"), "Pass. non LDV", aggr_mode)]
demandpkm[, aggr_mode := ifelse(subsector_L2 %in% c("trn_pass_road_bus", "HSR_tmp_subsector_L2", "Passenger Rail_tmp_subsector_L2", "Cycle_tmp_subsector_L2", "Walk_tmp_subsector_L2", "Domestic Aviation_tmp_subsector_L2", "Bus") | subsector_L1 %in% c("trn_pass_road_LDV_2W"), "Pass. non LDV", aggr_mode)]
demandpkm[, veh := ifelse(vehicle_type %in% c("Truck (0-1t)", "Truck (0-3.5t)"), "Trucks (<3.5t)", "Trucks (<3.5t)")]
demandpkm[, veh := ifelse(vehicle_type %in% c("Truck (16-32t)", "Truck (3.5-16t)", "Truck (6-15t)"), "Trucks (3.5t-16)", veh)]
demandpkm[, veh := ifelse(vehicle_type %in% c("Truck (>15t)", "Truck (16-32t)", "Truck (>32t)" ), "Trucks (>16)", veh)]
demandpkm[, veh := ifelse(grepl("Large|SUV|Midsize|Multipurpose Vehicle|Van|3W Rural", vehicle_type), "Large Cars", veh)]
demandpkm[, veh := ifelse(grepl("Subcompact|Compact|Mini|Three-Wheeler_tmp_vehicletype", vehicle_type), "Small Cars", veh)]
demandpkm[, veh := ifelse(grepl("Motorcycle|Moped|Scooter", vehicle_type), "Motorbikes", veh)]
demandpkm[, veh := ifelse(grepl("bus|Bus", vehicle_type), "Bus", veh)]
demandpkm[, veh := ifelse(subsector_L3 == "Domestic Aviation", "Domestic Aviation", veh)]
demandpkm[, veh := ifelse(subsector_L3 == "International Aviation", "International Aviation", veh)]
demandpkm[, veh := ifelse(grepl("Freight Rail", vehicle_type), "Freight Rail", veh)]
demandpkm[, veh := ifelse(grepl("Passenger Rail|HSR", vehicle_type), "Passenger Rail", veh)]
demandpkm[, veh := ifelse(grepl("Ship", vehicle_type), "Shipping", veh)]
demandpkm[, veh := ifelse(grepl("Cycle|Walk", subsector_L3), "Non motorized", veh)]
demandpkm = demandpkm[,.(demand_F = sum(demand_F)), by = c("iso", "year", "aggr_mode", "veh")]
setnames(demandpkm, old = "veh", new = "vehicle_type")
demandpkm[, vehicle_type_plot := factor(vehicle_type, levels = c("LDV","Freight Rail", "Trucks (<3.5t)", "Trucks (3.5t-16)", "Trucks (>16)", "Trucks",
"Motorbikes", "Small Cars", "Large Cars", "Van",
"Domestic Aviation", "International Aviation","Bus", "Passenger Rail",
"Freight", "Non motorized", "Shipping"))]
demandpkm[, mode := ifelse(vehicle_type %in% c("Freight", "Freight Rail", "Trucks", "Trucks (3.5t-16)", "Trucks (>16)", "Shipping"),"freight", "pass")]
demandpkm = merge(demandpkm, REMIND2ISO_MAPPING, by = "iso")
demandpkm = demandpkm[, .(demand_F = sum(demand_F)), by = c("region", "year", "vehicle_type_plot", "aggr_mode", "mode")]
demandpkm = demandpkm[order(aggr_mode)]
p = ggplot()+
geom_area(data = demandpkm[mode =="pass"& year > 2010], aes(x=year, y=demand_F, group = interaction(vehicle_type_plot,aggr_mode), fill = vehicle_type_plot), color="black",position= position_stack())+
labs(x = "", y = "Energy Services demand [trillion pkm]")+
facet_wrap(~region, nrow = 4)
theme_minimal()+
# scale_fill_manual("Vehicle Type",values = cols, breaks=legend_ord)+
theme(axis.text.x = element_text(size = 7),
axis.text.y = element_text(size=7),
axis.title = element_text(size = 8),
title = element_text(size = 8),
legend.text = element_text(size = 8),
legend.title = element_text(size = 8),
strip.text = element_text(size=8))

Alois Dirnaichner
committed
return(p)
}
## energy services demand
demandpkmplotf(demand_km)

Alois Dirnaichner
committed
```
# CO2 intensity of new sales
```{r, echo=FALSE, warning=FALSE}
Marianna Rottoli
committed
CO2km_intensity_newsalesplotf = function(annual_sales, mj_km_data, sharesVS1, shares_source_liquids){
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
shares_source_liquids[, technology := ifelse(variable %in% c("FE|Transport|Liquids|Oil", "FE|Transport|Liquids|Coal"), "Oil", "Biodiesel")]
shares_source_liquids = shares_source_liquids[,.(value = sum(value)), by = c("model","scenario","region", "period", "unit","technology")]
shares_source_liquids = shares_source_liquids[region != "World"]
shares_source_liquids[, region:=as.character(region)]
shares_source_liquids[, year := period]
shares_source_liquids[, period:=NULL]
gdp <- getRMNDGDP(scenario = "SSP2", usecache = T)
shares_source_liquids <- disaggregate_dt(shares_source_liquids, REMIND2ISO_MAPPING,
valuecol="value",
datacols=c("model","scenario", "unit","technology"),
weights=gdp)
shares_source_liquids[, shareliq := value/sum(value),by=c("iso", "year")]
# ## CO2 content
# CO2_petrol = 3.1 ## gCO2/gFUEL
# CO2_biodiesel = 2.7 ## TODO this number is made up!
# CO2_cng = 2.7 ## gCO2/gFUEL
## TODO of CO2 content of biodiesel is made up! gCO2/gFUEL
emi_fuel = data.table(technology = c("Oil", "Biodiesel", "NG"), ei_gF_MJ = c(20, 20, 20), emi_cGO2_gF = c(3.1, 3.1, 2.7))
emi_liquids = merge(shares_source_liquids, emi_fuel, all.x = TRUE, by = "technology")
emi_liquids = emi_liquids[, .(ei_gF_MJ = sum(shareliq*ei_gF_MJ), emi_cGO2_gF = sum(shareliq*emi_cGO2_gF)), by = c("iso", "year")][, technology := "Liquids"]
emi_NG = cbind(emi_fuel[technology == "NG"], unique(shares_source_liquids[,c("year", "iso")]))
emi_fuel = rbind(emi_NG, emi_liquids)
emi_fuel[, gCO2_MJ := ei_gF_MJ*emi_cGO2_gF]
emi_fuel = merge(mj_km_data[subsector_L1 == "trn_pass_road_LDV_4W"], emi_fuel, all.x = TRUE, by = c("iso", "year", "technology"))
emi_fuel[is.na(gCO2_MJ) & !technology %in% c("Liquids", "NG"), gCO2_MJ := 0]
emi_fuel[, gCO2_km := MJ_km * gCO2_MJ]
Marianna Rottoli
committed
totalemi = merge(emi_fuel, annual_sales, all.y = TRUE, by = c("iso", "year", "technology", "vehicle_type", "subsector_L1"), all.x = TRUE)
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
totalemi = totalemi[!is.na(share) & !is.na(gCO2_km)]
totalemi[, gCO2_km_ave := gCO2_km*share]
##totalemi = merge(totalemi, demand_ej_plot)
totalemi = totalemi[,.(gCO2_km_ave = sum(gCO2_km_ave)), by = c("year", "iso", "vehicle_type")]
totalemi = merge(totalemi, sharesVS1, all.x = TRUE, by = c("iso", "year", "vehicle_type"))
totalemi = totalemi[,.(gCO2_km_ave = sum(gCO2_km_ave*share)), by = c("iso", "year", "subsector_L1")]
totalemi = merge(totalemi, REMIND2ISO_MAPPING, by="iso")
totalemi = merge(totalemi, gdp, all.x=TRUE, by = c("iso", "year"))
totalemi[, share := weight/sum(weight), by = c("year", "region")]
totalemi = totalemi[,.(gCO2_km_ave = sum(gCO2_km_ave*share)), by = c("year", "region")]
p = ggplot()+
geom_line(data = totalemi, aes(x = year, y = gCO2_km_ave))+
labs(title = "gCO2/km average", y = "Average gCO2/km LDVs new additions")+
facet_wrap(~region, nrow = 4)+
theme_minimal()
return(p)
}

Alois Dirnaichner
committed
shares_source_liquids = miffile[variable %in% c("FE|Transport|Liquids|Biomass", "FE|Transport|Liquids|Coal", "FE|Transport|Liquids|Oil"),]
Marianna Rottoli
committed
CO2km_intensity_newsalesplotf(annual_sales, mj_km_data, sharesVS1 = shares$VS1_shares, shares_source_liquids)