Newer
Older
library(lucode, quietly = TRUE,warn.conflicts =FALSE)

David Klein
committed
library(dplyr, quietly = TRUE,warn.conflicts =FALSE)
require(gdx)
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
getReportData <- function(rep,inputpath_mag="magpie",inputpath_acc="costs") {
require(lucode, quietly = TRUE,warn.conflicts =FALSE)
require(magclass, quietly = TRUE,warn.conflicts =FALSE)
.bioenergy_price <- function(mag){
notGLO <- getRegions(mag)[!(getRegions(mag)=="GLO")]
if("Demand|Bioenergy|++|2nd generation (EJ/yr)" %in% getNames(mag)) {
# MAgPIE 4
out <- mag[,,"Prices|Bioenergy (US$05/GJ)"]*0.0315576 # with transformation factor from US$2005/GJ to US$2005/Wa
} else {
# MAgPIE 3
out <- mag[,,"Price|Primary Energy|Biomass (US$2005/GJ)"]*0.0315576 # with transformation factor from US$2005/GJ to US$2005/Wa
}
out["JPN",is.na(out["JPN",,]),] <- 0
dimnames(out)[[3]] <- NULL #Delete variable name to prevent it from being written into output file
write.magpie(out[notGLO,,],paste0("./modules/30_biomass/",inputpath_mag,"/input/p30_pebiolc_pricemag_coupling.csv"),file_type="csvr")
}
.bioenergy_costs <- function(mag){
notGLO <- getRegions(mag)[!(getRegions(mag)=="GLO")]
if ("Production Cost|Agriculture|Biomass|Energy Crops (million US$2005/yr)" %in% getNames(mag)) {
out <- mag[,,"Production Cost|Agriculture|Biomass|Energy Crops (million US$2005/yr)"]/1000/1000 # with transformation factor from 10E6 US$2005 to 10E12 US$2005
}
else {
# in old MAgPIE reports the unit is reported to be "billion", however the values are in million
out <- mag[,,"Production Cost|Agriculture|Biomass|Energy Crops (billion US$2005/yr)"]/1000/1000 # with transformation factor from 10E6 US$2005 to 10E12 US$2005
}
out["JPN",is.na(out["JPN",,]),] <- 0
dimnames(out)[[3]] <- NULL
write.magpie(out[notGLO,,],paste0("./modules/30_biomass/",inputpath_mag,"/input/p30_pebiolc_costsmag.csv"),file_type="csvr")
}
.bioenergy_production <- function(mag){
notGLO <- getRegions(mag)[!(getRegions(mag)=="GLO")]
if("Demand|Bioenergy|2nd generation|++|Bioenergy crops (EJ/yr)" %in% getNames(mag)) {
# MAgPIE 4
out <- mag[,,"Demand|Bioenergy|2nd generation|++|Bioenergy crops (EJ/yr)"]/31.536 # EJ to TWa
} else {
# MAgPIE 3
out <- mag[,,"Primary Energy Production|Biomass|Energy Crops (EJ/yr)"]/31.536 # EJ to TWa
}
out[which(out<0)] <- 0 # set negative values to zero since they cause errors in GMAS power function
out["JPN",is.na(out["JPN",,]),] <- 0
dimnames(out)[[3]] <- NULL
write.magpie(out[notGLO,,],paste0("./modules/30_biomass/",inputpath_mag,"/input/p30_pebiolc_demandmag_coupling.csv"),file_type="csvr")
}
.emissions_mac <- function(mag) {
# define three columns of dataframe:
# emirem (remind emission names)
# emimag (magpie emission names)
# factor_mag2rem (factor for converting magpie to remind emissions)
# 1/1000*28/44, # kt N2O/yr -> Mt N2O/yr -> Mt N/yr
# 28/44, # Tg N2O/yr = Mt N2O/yr -> Mt N/yr
# 1/1000*12/44, # Mt CO2/yr -> Gt CO2/yr -> Gt C/yr
map <- data.frame(emirem=NULL,emimag=NULL,factor_mag2rem=NULL,stringsAsFactors=FALSE)
if("Emissions|N2O|Land|Agriculture|+|Animal Waste Management (Mt N2O/yr)" %in% getNames(mag)) {
# MAgPIE 4
map <- rbind(map,data.frame(emimag="Emissions|CO2|Land (Mt CO2/yr)", emirem="co2luc", factor_mag2rem=1/1000*12/44,stringsAsFactors=FALSE))
map <- rbind(map,data.frame(emimag="Emissions|N2O|Land|Agriculture|+|Animal Waste Management (Mt N2O/yr)", emirem="n2oanwstm", factor_mag2rem=28/44,stringsAsFactors=FALSE))
map <- rbind(map,data.frame(emimag="Emissions|N2O|Land|Agriculture|Agricultural Soils|+|Inorganic Fertilizers (Mt N2O/yr)", emirem="n2ofertin", factor_mag2rem=28/44,stringsAsFactors=FALSE))
map <- rbind(map,data.frame(emimag="Emissions|N2O|Land|Agriculture|Agricultural Soils|+|Manure applied to Croplands (Mt N2O/yr)", emirem="n2oanwstc", factor_mag2rem=28/44,stringsAsFactors=FALSE))
map <- rbind(map,data.frame(emimag="Emissions|N2O|Land|Agriculture|Agricultural Soils|+|Decay of Crop Residues (Mt N2O/yr)", emirem="n2ofertcr", factor_mag2rem=28/44,stringsAsFactors=FALSE))
map <- rbind(map,data.frame(emimag="Emissions|N2O|Land|Agriculture|Agricultural Soils|+|Soil Organic Matter Loss (Mt N2O/yr)", emirem="n2ofertsom",factor_mag2rem=28/44,stringsAsFactors=FALSE))
map <- rbind(map,data.frame(emimag="Emissions|N2O|Land|Agriculture|Agricultural Soils|+|Pasture (Mt N2O/yr)", emirem="n2oanwstp", factor_mag2rem=28/44,stringsAsFactors=FALSE))
map <- rbind(map,data.frame(emimag="Emissions|CH4|Land|Agriculture|+|Rice (Mt CH4/yr)", emirem="ch4rice", factor_mag2rem=1,stringsAsFactors=FALSE))
map <- rbind(map,data.frame(emimag="Emissions|CH4|Land|Agriculture|+|Animal waste management (Mt CH4/yr)", emirem="ch4anmlwst",factor_mag2rem=1,stringsAsFactors=FALSE))
map <- rbind(map,data.frame(emimag="Emissions|CH4|Land|Agriculture|+|Enteric fermentation (Mt CH4/yr)", emirem="ch4animals",factor_mag2rem=1,stringsAsFactors=FALSE))
} else {
# MAgPIE 3
map <- rbind(map,data.frame(emimag="Emissions|CO2|Land Use (Mt CO2/yr)", emirem="co2luc", factor_mag2rem=1/1000*12/44,stringsAsFactors=FALSE))
map <- rbind(map,data.frame(emimag="Emissions|N2O|Land Use|Agriculture|AWM (kt N2O/yr)", emirem="n2oanwstm", factor_mag2rem=1/1000*28/44,stringsAsFactors=FALSE))
map <- rbind(map,data.frame(emimag="Emissions|N2O|Land Use|Agriculture|Cropland Soils|Inorganic Fertilizers (kt N2O/yr)", emirem="n2ofertin", factor_mag2rem=1/1000*28/44,stringsAsFactors=FALSE))
map <- rbind(map,data.frame(emimag="Emissions|N2O|Land Use|Agriculture|Cropland Soils|Manure applied to Croplands (kt N2O/yr)", emirem="n2oanwstc", factor_mag2rem=1/1000*28/44,stringsAsFactors=FALSE))
map <- rbind(map,data.frame(emimag="Emissions|N2O|Land Use|Agriculture|Cropland Soils|Decay of crop residues (kt N2O/yr)", emirem="n2ofertcr", factor_mag2rem=1/1000*28/44,stringsAsFactors=FALSE))
map <- rbind(map,data.frame(emimag="Emissions|N2O|Land Use|Agriculture|Cropland Soils|Soil organic matter loss (kt N2O/yr)", emirem="n2ofertsom",factor_mag2rem=1/1000*28/44,stringsAsFactors=FALSE))
map <- rbind(map,data.frame(emimag="Emissions|N2O|Land Use|Agriculture|Cropland Soils|Lower N2O emissions of rice (kt N2O/yr)", emirem="n2ofertrb", factor_mag2rem=1/1000*28/44,stringsAsFactors=FALSE))
map <- rbind(map,data.frame(emimag="Emissions|N2O|Land Use|Agriculture|Pasture (kt N2O/yr)", emirem="n2oanwstp", factor_mag2rem=1/1000*28/44,stringsAsFactors=FALSE))
map <- rbind(map,data.frame(emimag="Emissions|N2O|Land Use|Biomass Burning|Forest Burning (kt N2O/yr)", emirem="n2oforest", factor_mag2rem=1/1000*28/44,stringsAsFactors=FALSE))
map <- rbind(map,data.frame(emimag="Emissions|N2O|Land Use|Biomass Burning|Savannah Burning (kt N2O/yr)", emirem="n2osavan", factor_mag2rem=1/1000*28/44,stringsAsFactors=FALSE))
map <- rbind(map,data.frame(emimag="Emissions|N2O|Land Use|Biomass Burning|Agricultural Waste Burning (kt N2O/yr)", emirem="n2oagwaste",factor_mag2rem=1/1000*28/44,stringsAsFactors=FALSE))
map <- rbind(map,data.frame(emimag="Emissions|CH4|Land Use|Agriculture|Rice (Mt CH4/yr)", emirem="ch4rice", factor_mag2rem=1,stringsAsFactors=FALSE))
map <- rbind(map,data.frame(emimag="Emissions|CH4|Land Use|Agriculture|AWM (Mt CH4/yr)", emirem="ch4anmlwst",factor_mag2rem=1,stringsAsFactors=FALSE))
map <- rbind(map,data.frame(emimag="Emissions|CH4|Land Use|Agriculture|Enteric Fermentation (Mt CH4/yr)", emirem="ch4animals",factor_mag2rem=1,stringsAsFactors=FALSE))
map <- rbind(map,data.frame(emimag="Emissions|CH4|Land Use|Biomass Burning|Forest Burning (Mt CH4/yr)", emirem="ch4forest", factor_mag2rem=1,stringsAsFactors=FALSE))
map <- rbind(map,data.frame(emimag="Emissions|CH4|Land Use|Biomass Burning|Savannah Burning (Mt CH4/yr)", emirem="ch4savan", factor_mag2rem=1,stringsAsFactors=FALSE))
map <- rbind(map,data.frame(emimag="Emissions|CH4|Land Use|Biomass Burning|Agricultural Waste Burning (Mt CH4/yr)", emirem="ch4agwaste",factor_mag2rem=1,stringsAsFactors=FALSE))
}
# Read data from MAgPIE report and convert to REMIND data, collect in 'out' object
out<-NULL
for (i in 1:nrow(map)) {
tmp<-setNames(mag[,,map[i,]$emimag],map[i,]$emirem)
tmp<-tmp*map[i,]$factor_mag2rem
#tmp["JPN",is.na(tmp["JPN",,]),] <- 0
# preliminary fix 20160111
#cat("Preliminary quick fix: filtering out NAs for all and negative values for almost all landuse emissions except for co2luc and n2ofertrb\n")
#tmp[is.na(tmp)] <- 0
# preliminary 20160114: filter out negative values except for co2luc and n2ofertrb
#if (map[i,]$emirem!="co2luc" && map[i,]$emirem!="n2ofertrb") {
# tmp[tmp<0] <- 0
#}
out<-mbind(out,tmp)
}
# Write REMIND input file
notGLO <- getRegions(mag)[!(getRegions(mag)=="GLO")]
filename <- paste0("./core/input/f_macBaseMagpie_coupling.cs4r")
write.magpie(out[notGLO],filename)
write(paste0("*** EOF ",filename," ***"),file=filename,append=TRUE)
}
.agriculture_costs <- function(mag){
notGLO <- getRegions(mag)[!(getRegions(mag)=="GLO")]
out <- mag[,,"Costs|MainSolve w/o GHG Emissions (million US$05/yr)"]/1000/1000 # with transformation factor from 10E6 US$2005 to 10E12 US$2005
out["JPN",is.na(out["JPN",,]),] <- 0
dimnames(out)[[3]] <- NULL #Delete variable name to prevent it from being written into output file
write.magpie(out[notGLO,,],paste0("./modules/26_agCosts/",inputpath_acc,"/input/p26_totLUcost_coupling.csv"),file_type="csvr")
}
.agriculture_tradebal <- function(mag){
notGLO <- getRegions(mag)[!(getRegions(mag)=="GLO")]
out <- mag[,,"Trade|Agriculture|Trade Balance (billion US$2005/yr)"]/1000 # with transformation factor from 10E9 US$2005 to 10E12 US$2005
out["JPN",is.na(out["JPN",,]),] <- 0
dimnames(out)[[3]] <- NULL
write.magpie(out[notGLO,,],paste0("./modules/26_agCosts/",inputpath_acc,"/input/trade_bal_reg.rem.csv"),file_type="csvr")
}
rep <- read.report(rep,as.list=FALSE)
if (length(getNames(rep,dim="scenario"))!=1) stop("getReportData: MAgPIE data contains more or less than 1 scenario.")
rep <- collapseNames(rep) # get rid of scenrio and model dimension if they exist
years <- 2000+5*(1:30)
mag <- time_interpolate(rep,years)
.bioenergy_price(mag)
#.bioenergy_costs(mag) # Obsolete since bioenergy costs are not calculated by MAgPIE anymore but by integrating the supplycurve
.bioenergy_production(mag)
.emissions_mac(mag)
.agriculture_costs(mag)
# need to be updated to MAgPIE 4 interface
#.agriculture_tradebal(mag)
}
###############################################################################
###############################################################################
###############################################################################

David Klein
committed
# Load libraries
require(lucode, quietly = TRUE,warn.conflicts =FALSE)
require(magclass, quietly = TRUE,warn.conflicts =FALSE)
require(tools, quietly = TRUE,warn.conflicts =FALSE)
require(remind, quietly = TRUE,warn.conflicts =FALSE)
require(moinput)
require(mrvalidation)
.copy.fromlist <- function(filelist,destfolder) {
if(is.null(names(filelist))) names(filelist) <- rep("",length(filelist))
for(i in 1:length(filelist)) {
if(!is.na(filelist[i])) {
to <- paste0(destfolder,"/",names(filelist)[i])
if(!file.copy(filelist[i],to=to,recursive=dir.exists(to),overwrite=T))
cat(paste0("Could not copy ",filelist[i]," to ",to,"\n"))
}
}
}
load("config.Rdata")
# Store results folder of current scenario

David Klein
committed
on.exit(setwd(cfg$results_folder))
# change to REMIND main folder

David Klein
committed
setwd(cfg$remind_folder)
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
# Check configuration for consistency
cfg <- check_config(cfg, reference_file="config/default.cfg", settings_config = "config/settings_config.csv")
###-------- do update of input files based on previous runs if applicable ------###
if(!is.null(cfg$gms$carbonprice) && (cfg$gms$carbonprice == "NDC2018")){
source("scripts/input/prepare_NDC2018.R")
prepare_NDC2018(as.character(cfg$files2export$start["input_ref.gdx"]))
}
## the following is outcommented because by now it has to be done by hand ( currently only one gdx is handed to the next run, so it is impossible to fix to one run and use the tax from another run)
## Update CO2 tax information for exogenous carbon price runs with the same CO2 price as a previous run
#if(!is.null(cfg$gms$carbonprice) && (cfg$gms$carbonprice == "ExogSameAsPrevious")){
# source("scripts/input/create_ExogSameAsPrevious_CO2price_file.R")
# create_ExogSameAsPrevious_CO2price_file(as.character(cfg$files2export$start["input_ref.gdx"]))
#}
#AJS
if ( (cfg$gms$optimization != 'nash') & (cfg$gms$subsidizeLearning == 'globallyOptimal') ) {
cat("Only optimization='nash' is compatible with subsudizeLearning='globallyOptimal'. Switching subsidizeLearning to 'off' now. \n")
cfg$gms$subsidizeLearning = 'off'
}
# reportCEScalib only works with the calibrate module
if ( cfg$gms$CES_parameters != "calibrate" ) cfg$output <- setdiff(cfg$output,"reportCEScalib")
#AJS quit if title is too long - GAMS can't handle that
if( nchar(cfg$title) > 75 | grepl("\\.",cfg$title) ) {
stop("This title is too long or the name contains dots - GAMS would not tolerate this, and quit working at a point where you least expect it. Stopping now. ")
}
# Calculate CES configuration string
cfg$gms$cm_CES_configuration <- paste0("stat_",cfg$gms$stationary,"-",
"indu_",cfg$gms$industry,"-",
"buil_",cfg$gms$buildings,"-",
"tran_",cfg$gms$transport,"-",
"POP_", cfg$gms$cm_POPscen, "-",
"GDP_", cfg$gms$cm_GDPscen, "-",
"Kap_", cfg$gms$capitalMarket, "-",
"Reg_", substr(regionscode(cfg$regionmapping),1,10))
# write name of corresponding CES file to datainput.gms
replace_in_file(file = "./modules/29_CES_parameters/load/datainput.gms",
content = paste0('$include "./modules/29_CES_parameters/load/input/',cfg$gms$cm_CES_configuration,'.inc"'),
subject = "CES INPUT")
# adjust GDPpcScen based on GDPscen
cfg$gms$c_GDPpcScen <- gsub("gdp_","",cfg$gms$cm_GDPscen)
# Is the run performed on the cluster?
on_cluster <- file.exists('/p')
# Make sure all MAGICC files have LF line endings, so Fortran won't crash
if (on_cluster)
system("find ./core/magicc/ -type f | xargs dos2unix -q")
# Set source_include so that loaded scripts know they are included as
# source (instead a load from command line)
source_include <- TRUE
################## M O D E L L O C K ###################################
# Lock the directory for other instances of the start scritps
lock_id <- model_lock(timeout1 = 1, oncluster=on_cluster)
on.exit(model_unlock(lock_id, oncluster=on_cluster))
################## M O D E L L O C K ###################################
# If report and scenname are supplied the data of this scenario in the report will be converted to REMIND input
# Used for REMIND-MAgPIE coupling
if (!is.null(cfg$pathToMagpieReport)) {
getReportData(path_to_report = cfg$pathToMagpieReport,inputpath_mag=cfg$gms$biomass,inputpath_acc=cfg$gms$agCosts)
}
# Update module paths in GAMS code
update_modules_embedding()
# Check all setglobal settings for consistency
settingsCheck()
# configure main model gms file (cfg$model) based on settings of cfg file
cfg$gms$c_expname <- cfg$title
# run main.gms if not further specified
if(is.null(cfg$model)) cfg$model <- "main.gms"
manipulateConfig(cfg$model, cfg$gms)
###########################################################################################################
############# PROCESSING INPUT DATA ###################### START ##########################################
###########################################################################################################
########## declare functions for updating information ################
update_info <- function(regionscode,revision) {
subject <- 'VERSION INFO'
content <- c('',
paste('Regionscode:',regionscode),
'',
paste('Input data revision:',revision),
'',
paste('Last modification (input data):',date()),
'')
replace_in_file(cfg$model,paste('*',content),subject)
}
update_sets <- function(map) {
.tmp <- function(x,prefix="", suffix1="", suffix2=" /", collapse=",", n=10) {
content <- NULL
tmp <- lapply(split(x, ceiling(seq_along(x)/n)),paste,collapse=collapse)
end <- suffix1
for(i in 1:length(tmp)) {
if(i==length(tmp)) end <- suffix2
content <- c(content,paste0(' ',prefix,tmp[[i]],end))
}
return(content)
}
modification_warning <- c(
'*** THIS CODE IS CREATED AUTOMATICALLY, DO NOT MODIFY THESE LINES DIRECTLY',
'*** ANY DIRECT MODIFICATION WILL BE LOST AFTER NEXT INPUT DOWNLOAD',
'*** CHANGES CAN BE DONE USING THE RESPECTIVE LINES IN scripts/start_functions.R')
content <- c(modification_warning,'','sets')
# write iso set with nice formatting (10 countries per line)
tmp <- lapply(split(map$CountryCode, ceiling(seq_along(map$CountryCode)/10)),paste,collapse=",")
regions <- levels(map$RegionCode)
content <- c(content, '',paste(' all_regi "all regions" /',paste(regions,collapse=','),'/',sep=''),'')
# Creating sets for H12 subregions
subsets <- toolRegionSubsets(map=cfg$regionmapping)
if(is.null(subsets[["EUR"]]))
subsets[["EUR"]] <- c("EUR")
content <- c(content, paste(' ext_regi "extended regions list (includes subsets of H12 regions)" / ', paste(c(paste0(names(subsets),"_regi"),regions),collapse=','),' /',sep=''),'')
content <- c(content, ' regi_group(ext_regi,all_regi) "region groups (regions that together corresponds to a H12 region)"')
content <- c(content, ' /')
for (i in 1:length(subsets)){
content <- c(content, paste0(' ', paste(c(paste0(names(subsets)[i],"_regi"))), ' .(',paste(subsets[[i]],collapse=','), ')'))
}
content <- c(content, ' /')
content <- c(content, ' ')
# iso countries set
content <- c(content,' iso "list of iso countries" /')
content <- c(content, .tmp(map$CountryCode, suffix1=",", suffix2=" /"),'')
content <- c(content,' regi2iso(all_regi,iso) "mapping regions to iso countries"',' /')
for(i in levels(map$RegionCode)) {
content <- c(content, .tmp(map$CountryCode[map$RegionCode==i], prefix=paste0(i," . ("), suffix1=")", suffix2=")"))
}
content <- c(content,' /')
content <- c(content, 'iso_regi "all iso countries and EU and greater China region" / EUR,CHA,')
content <- c(content, .tmp(map$CountryCode, suffix1=",", suffix2=" /"),'')
content <- c(content,' map_iso_regi(iso_regi,all_regi) "mapping from iso countries to regions that represent country" ',' /')
for(i in regions[regions %in% c("EUR","CHA",levels(map$CountryCode))]) {
content <- c(content, .tmp(i, prefix=paste0(i," . "), suffix1="", suffix2=""))
}
content <- c(content,' /',';')
replace_in_file('core/sets.gms',content,"SETS",comment="***")
}
############### download and distribute input data ###################
# check wheather the regional resolution and input data revision are outdated and update data if needed
if(file.exists("input/source_files.log")) {
input_old <- readLines("input/source_files.log")[1]
} else {
input_old <- "no_data"
}
input_new <- paste0("rev",cfg$revision,"_", regionscode(cfg$regionmapping),"_", tolower(cfg$model_name),".tgz")
if(!setequal(input_new, input_old) | cfg$force_download) {
cat("Your input data are outdated or in a different regional resolution. New data are downloaded and distributed. \n")
download_distribute(files = input_new,
repositories = cfg$repositories, # defined in your local .Rprofile or on the cluster /p/projects/rd3mod/R/.Rprofile
modelfolder = ".",
debug = FALSE)
}
##################### update information #############################
# update_info, which regional resolution and input data revision in cfg$model
update_info(regionscode(cfg$regionmapping),cfg$revision)
# update_sets, which is updating the region-depending sets in core/sets.gms
#-- load new mapping information
map <- read.csv(cfg$regionmapping,sep=";")
update_sets(map)
###########################################################################################################
############# PROCESSING INPUT DATA ###################### END ############################################
###########################################################################################################
############# ADD MODULE INFO IN SETS ###################### START ##########################################
content <- NULL
modification_warning <- c(
'*** THIS CODE IS CREATED AUTOMATICALLY, DO NOT MODIFY THESE LINES DIRECTLY',
'*** ANY DIRECT MODIFICATION WILL BE LOST AFTER NEXT MODEL START',
'*** CHANGES CAN BE DONE USING THE RESPECTIVE LINES IN scripts/start_functions.R')
content <- c(modification_warning,'','sets')
content <- c(content,'',' modules "all the available modules"')
content <- c(content,' /',paste0(" ",getModules("modules/")[,"name"]),' /')
content <- c(content,'','module2realisation(modules,*) "mapping of modules and active realisations" /')
content <- c(content,paste0(" ",getModules("modules/")[,"name"]," . %",getModules("modules/")[,"name"],"%"))
content <- c(content,' /',';')
replace_in_file('core/sets.gms',content,"MODULES",comment="***")
############# ADD MODULE INFO IN SETS ###################### END ############################################
# choose which conopt files to copy
cfg$files2export$start <- sub("conopt3",cfg$gms$cm_conoptv,cfg$files2export$start)
# Copy important files into output_folder (before REMIND execution)
.copy.fromlist(cfg$files2export$start,cfg$results_folder)
# Save configuration
save(cfg, file = path(cfg$results_folder, "config.Rdata"))
# Merge GAMS files
singleGAMSfile(mainfile=cfg$model,output = path(cfg$results_folder, "full.gms"))
# Collect run statistics (will be saved to central database in submit.R)
lucode::runstatistics(file = paste0(cfg$results_folder,"/runstatistics.rda"),
user = Sys.info()[["user"]],
date = Sys.time(),
version_management = "git",
revision = try(system("git rev-parse --short HEAD", intern=TRUE), silent=TRUE),
#revision_date = try(as.POSIXct(system("git show -s --format=%ci", intern=TRUE), silent=TRUE)),
status = try(system("git status", intern=TRUE), silent=TRUE))
################## M O D E L U N L O C K ###################################
# After full.gms was produced remind folders have to be unlocked to allow setting up the next run
model_unlock(lock_id, oncluster=on_cluster)
# Prevent model_unlock from being executed again at the end
on.exit()
# Repeat command since on.exit was cleared

David Klein
committed
on.exit(setwd(cfg$results_folder))
################## M O D E L U N L O C K ###################################
setwd(cfg$results_folder)

David Klein
committed
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
###########################################################################################################################################################
#################################################### Copied from submit.R #################################################################################
###########################################################################################################################################################
# Function to create the levs.gms, fixings.gms, and margs.gms files, used in
# delay scenarios.
create_fixing_files <- function(cfg, input_ref_file = "input_ref.gdx") {
# Start the clock.
begin <- Sys.time()
# Extract data from input_ref.gdx file and store in levs_margs_ref.gms.
system(paste("gdxdump",
input_ref_file,
"Format=gamsbas Delim=comma FilterDef=N Output=levs_margs_ref.gms",
sep = " "))
# Read data from levs_margs_ref.gms.
ref_gdx_data <- suppressWarnings(readLines("levs_margs_ref.gms"))
# Create fixing files.
cat("\n")
create_standard_fixings(cfg, ref_gdx_data)
# Stop the clock.
cat("Time it took to create the fixing files: ")
manipulate_runtime <- Sys.time()-begin
print(manipulate_runtime)
cat("\n")
# Delete file.
file.remove("levs_margs_ref.gms")
}
# Function to create the levs.gms, fixings.gms, and margs.gms files, used in
# the standard (i.e. the non-macro stand-alone) delay scenarios.
create_standard_fixings <- function(cfg, ref_gdx_data) {
# Declare empty lists to hold the strings for the 'manipulateFile' functions.
full_manipulateThis <- NULL
levs_manipulateThis <- NULL
fixings_manipulateThis <- NULL
margs_manipulateThis <- NULL
str_years <- c()
no_years <- (cfg$gms$cm_startyear - 2005) / 5
# Write level values to file
levs <- c()
for (i in 1:no_years) {
str_years[i] <- paste("L \\('", 2000 + i * 5, sep = "")
levs <- c(levs, grep(str_years[i], ref_gdx_data, value = TRUE))
}
writeLines(levs, "levs.gms")
# Replace fixing.gms with level values
file.copy("levs.gms", "fixings.gms", overwrite = TRUE)
fixings_manipulateThis <- c(fixings_manipulateThis, list(c(".L ", ".FX ")))
#cb q_co2eq is only "static" equation to be active before cm_startyear, as multigasscen could be different from a scenario to another that is fixed on the first
#cb therefore, vm_co2eq cannot be fixed, otherwise infeasibilities would result. vm_co2eq.M is meaningless, is never used in the code (a manipulateFile delete line command would be even better)
# manipulateFile("fixings.gms", list(c("vm_co2eq.FX ", "vm_co2eq.M ")))
# Write marginal values to file
margs <- c()
str_years <- c()
for (i in 1:no_years) {
str_years[i] <- paste("M \\('", 2000 + i * 5, sep = "")
margs <- c(margs, grep(str_years[i], ref_gdx_data, value = TRUE))
}

David Klein
committed
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
writeLines(margs, "margs.gms")
# temporary fix so that you can use older gdx for fixings - will become obsolete in the future and can be deleted once the next variable name change is done
margs_manipulateThis <- c(margs_manipulateThis, list(c("q_taxrev","q21_taxrev")))
# fixing for SPA runs based on ModPol input data
margs_manipulateThis <- c(margs_manipulateThis,
list(c("q41_emitrade_restr_mp.M", "!!q41_emitrade_restr_mp.M")),
list(c("q41_emitrade_restr_mp2.M", "!!q41_emitrade_restr_mp2.M")))
#AJS this symbol is not known and crashes the run - is it depreciated? TODO
levs_manipulateThis <- c(levs_manipulateThis,
list(c("vm_pebiolc_price_base.L", "!!vm_pebiolc_price_base.L")))
#AJS filter out nash marginals in negishi case, as they would lead to a crash when trying to fix on them:
if(cfg$gms$optimization == 'negishi'){
margs_manipulateThis <- c(margs_manipulateThis, list(c("q80_costAdjNash.M", "!!q80_costAdjNash.M")))
}
if(cfg$gms$subsidizeLearning == 'off'){
levs_manipulateThis <- c(levs_manipulateThis,
list(c("v22_costSubsidizeLearningForeign.L",
"!!v22_costSubsidizeLearningForeign.L")))
margs_manipulateThis <- c(margs_manipulateThis,
list(c("q22_costSubsidizeLearning.M", "!!q22_costSubsidizeLearning.M")),
list(c("v22_costSubsidizeLearningForeign.M",
"!!v22_costSubsidizeLearningForeign.M")),
list(c("q22_costSubsidizeLearningForeign.M",
"!!q22_costSubsidizeLearningForeign.M")))
fixings_manipulateThis <- c(fixings_manipulateThis,
list(c("v22_costSubsidizeLearningForeign.FX",
"!!v22_costSubsidizeLearningForeign.FX")))
}
#JH filter out negishi marginals in nash case, as they would lead to a crash when trying to fix on them:
if(cfg$gms$optimization == 'nash'){
margs_manipulateThis <- c(margs_manipulateThis,
list(c("q80_balTrade.M", "!!q80_balTrade.M")),
list(c("q80_budget_helper.M", "!!q80_budget_helper.M")))
}
#RP filter out module 40 techpol fixings
if(cfg$gms$techpol == 'none'){
margs_manipulateThis <- c(margs_manipulateThis,
list(c("q40_NewRenBound.M", "!!q40_NewRenBound.M")),
list(c("q40_CoalBound.M", "!!q40_CoalBound.M")),
list(c("q40_LowCarbonBound.M", "!!q40_LowCarbonBound.M")),
list(c("q40_FE_RenShare.M", "!!q40_FE_RenShare.M")),
list(c("q40_trp_bound.M", "!!q40_trp_bound.M")),
list(c("q40_TechBound.M", "!!q40_TechBound.M")),
list(c("q40_ElecBioBound.M", "!!q40_ElecBioBound.M")),
list(c("q40_PEBound.M", "!!q40_PEBound.M")),
list(c("q40_PEcoalBound.M", "!!q40_PEcoalBound.M")),
list(c("q40_PEgasBound.M", "!!q40_PEgasBound.M")),
list(c("q40_PElowcarbonBound.M", "!!q40_PElowcarbonBound.M")),
list(c("q40_EV_share.M", "!!q40_EV_share.M")),
list(c("q40_TrpEnergyRed.M", "!!q40_TrpEnergyRed.M")),
list(c("q40_El_RenShare.M", "!!q40_El_RenShare.M")),
list(c("q40_BioFuelBound.M", "!!q40_BioFuelBound.M")))
}
if(cfg$gms$techpol == 'NPi2018'){
margs_manipulateThis <- c(margs_manipulateThis,
list(c("q40_El_RenShare.M", "!!q40_El_RenShare.M")),
list(c("q40_CoalBound.M", "!!q40_CoalBound.M")))
}
# Include fixings (levels) and marginals in full.gms at predefined position
# in core/loop.gms.
full_manipulateThis <- c(full_manipulateThis,
list(c("cb20150605readinpositionforlevelfile",
paste("first offlisting inclusion of levs.gms so that level value can be accessed",
"$offlisting",
"$include \"levs.gms\";",
"$onlisting", sep = "\n"))))
full_manipulateThis <- c(full_manipulateThis, list(c("cb20140305readinpositionforfinxingfiles",
paste("offlisting inclusion of levs.gms, fixings.gms, and margs.gms",
"$offlisting",
"$include \"levs.gms\";",
"$include \"fixings.gms\";",
"$include \"margs.gms\";",
"$onlisting", sep = "\n"))))
# Perform actual manipulation on levs.gms, fixings.gms, and margs.gms in
# single, respective, parses of the texts.
manipulateFile("levs.gms", levs_manipulateThis)
manipulateFile("fixings.gms", fixings_manipulateThis)
manipulateFile("margs.gms", margs_manipulateThis)
# Perform actual manipulation on full.gms, in single parse of the text.
manipulateFile("full.gms", full_manipulateThis)
}

David Klein
committed
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
# Set value source_include so that loaded scripts know, that they are
# included as source (instead a load from command line)
source_include <- TRUE
# unzip all .gz files
system("gzip -d -f *.gz")
#AJS set MAGCFG file
magcfgFile = paste0('./magicc/MAGCFG_STORE/','MAGCFG_USER_',toupper(cfg$gms$cm_magicc_config),'.CFG')
if(!file.exists(magcfgFile)){
stop(paste('ERROR in MAGGICC configuration: Could not find file ',magcfgFile))
}
system(paste0('cp ',magcfgFile,' ','./magicc/MAGCFG_USER.CFG'))
# Prepare the files containing the fixings for delay scenarios (for fixed runs)
if ( cfg$gms$cm_startyear > 2005 & (!file.exists("levs.gms.gz") | !file.exists("levs.gms"))) {
create_fixing_files(cfg = cfg, input_ref_file = "input_ref.gdx")
}
# Print message
cat("\nStarting REMIND...\n")
# Save start time
begin <- Sys.time()
# Call GAMS
if (cfg$gms$CES_parameters == "load") {
system(paste0(cfg$gamsv, " full.gms -errmsg=1 -a=", cfg$action,
" -ps=0 -pw=185 -gdxcompress=1 -logoption=", cfg$logoption))
} else if (cfg$gms$CES_parameters == "calibrate") {
# Remember file modification time of fulldata.gdx to see if it changed
fulldata_m_time <- Sys.time();
# Save original input
file.copy("input.gdx", "input_00.gdx", overwrite = TRUE)
# Iterate calibration algorithm
for (cal_itr in 1:cfg$gms$c_CES_calibration_iterations) {
cat("CES calibration iteration: ", cal_itr, "\n")
# Update calibration iteration in GAMS file
system(paste0("sed -i 's/^\\(\\$setglobal c_CES_calibration_iteration ",
"\\).*/\\1", cal_itr, "/' full.gms"))
system(paste0(cfg$gamsv, " full.gms -errmsg=1 -a=", cfg$action,
" -ps=0 -pw=185 -gdxcompress=1 -logoption=", cfg$logoption))
# If GAMS found a solution
if ( file.exists("fulldata.gdx")
&& file.info("fulldata.gdx")$mtime > fulldata_m_time) {
#create the file to be used in the load mode
getLoadFile <- function(){
file_name = paste0(cfg$gms$cm_CES_configuration,"_ITERATION_",cal_itr,".inc")
ces_in = system("gdxdump fulldata.gdx symb=in NoHeader Format=CSV", intern = TRUE) %>% gsub("\"","",.) #" This comment is just to obtain correct syntax highlighting
expr_ces_in = paste0("(",paste(ces_in, collapse = "|") ,")")
tmp = system("gdxdump fulldata.gdx symb=pm_cesdata", intern = TRUE)[-(1:2)] %>%
grep("(quantity|price|eff|effgr|xi|rho|offset_quantity|compl_coef)", x = ., value = TRUE)
tmp = tmp %>% grep(expr_ces_in,x = ., value = T)
tmp %>%
sub("'([^']*)'.'([^']*)'.'([^']*)'.'([^']*)' (.*)[ ,][ /];?",
"pm_cesdata(\"\\1\",\"\\2\",\"\\3\",\"\\4\") = \\5;", x = .) %>%
write(file_name)
pm_cesdata_putty = system("gdxdump fulldata.gdx symb=pm_cesdata_putty", intern = TRUE)
if (length(pm_cesdata_putty) == 2){
tmp_putty = gsub("^Parameter *([A-z_(,)])+cesParameters\\).*$",'\\1"quantity") = 0;', pm_cesdata_putty[2])
} else {

David Klein
committed
tmp_putty = pm_cesdata_putty[-(1:2)] %>%
grep("quantity", x = ., value = TRUE) %>%
grep(expr_ces_in,x = ., value = T)
}

David Klein
committed
tmp_putty %>%
sub("'([^']*)'.'([^']*)'.'([^']*)'.'([^']*)' (.*)[ ,][ /];?",
"pm_cesdata_putty(\"\\1\",\"\\2\",\"\\3\",\"\\4\") = \\5;", x = .)%>% write(file_name,append =T)
}
getLoadFile()
# Store all the interesting output
file.copy("full.lst", sprintf("full_%02i.lst", cal_itr), overwrite = TRUE)
file.copy("full.log", sprintf("full_%02i.log", cal_itr), overwrite = TRUE)
file.copy("fulldata.gdx", "input.gdx", overwrite = TRUE)
file.copy("fulldata.gdx", sprintf("input_%02i.gdx", cal_itr),
overwrite = TRUE)
# Update file modification time
fulldata_m_time <- file.info("fulldata.gdx")$mtime
} else {
break
}

David Klein
committed
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
}
} else {
stop("unknown realisation of 29_CES_parameters")
}
# Calculate run time
gams_runtime <- Sys.time() - begin
# If REMIND actually did run
if (cfg$action == "ce" && cfg$gms$c_skip_output != "on") {
# Print Message
cat("\nREMIND run finished!\n")
# Create solution report for Nash runs
if (cfg$gms$optimization == "nash" && cfg$gms$cm_nash_mode != "debug" && file.exists("fulldata.gdx")) {
system("gdxdump fulldata.gdx Format=gamsbas Delim=comma Output=output_nash.gms")
file.append("full.lst", "output_nash.gms")
file.remove("output_nash.gms")
}
}
# Collect and submit run statistics to central data base
lucode::runstatistics(file = "runstatistics.rda",
modelstat = readGDX(gdx="fulldata.gdx","o_modelstat", format="first_found"),
config = cfg,
runtime = gams_runtime,
setup_info = lucode::setup_info(),
submit = cfg$runstatistics)
# Compress files with the fixing-information
if (cfg$gms$cm_startyear > 2005)
system("gzip -f levs.gms margs.gms fixings.gms")
# go up to the main folder, where the cfg files for subsequent runs are stored
setwd(cfg$remind_folder)
#====================== Subsequent runs ===========================
# 1. Save the path to the fulldata.gdx of the current run to the cfg files
# of the runs that use it as 'input_bau.gdx'
# Use the name to check whether it is a coupled run (TRUE if the name ends with "-rem-xx")
coupled_run <- grepl("-rem-[0-9]{1,2}$",cfg$title)
no_ref_runs <- identical(cfg$RunsUsingTHISgdxAsBAU,character(0)) | all(is.na(cfg$RunsUsingTHISgdxAsBAU)) | coupled_run
if(!no_ref_runs) {
source("scripts/start/submit_run.R")
# Save the current cfg settings into a different data object, so that they are not overwritten
cfg_main <- cfg
for(run in seq(1,length(cfg_main$RunsUsingTHISgdxAsBAU))){
# for each of the runs that use this gdx as bau, read in the cfg, ...
cat("Writing the path for input_bau.gdx to ",paste0(cfg_main$RunsUsingTHISgdxAsBAU[run],".RData"),"\n")
load(paste0(cfg_main$RunsUsingTHISgdxAsBAU[run],".RData"))
# ...change the path_gdx_bau field of the subsequent run to the fulldata gdx of the current run ...
cfg$files2export$start['input_bau.gdx'] <- paste0(cfg_main$remind_folder,"/",cfg_main$results_folder,"/fulldata.gdx")
save(cfg, file = paste0(cfg_main$RunsUsingTHISgdxAsBAU[run],".RData"))
}
# Set cfg back to original
cfg <- cfg_main
}
# 2. Save the path to the fulldata.gdx of the current run to the cfg files
# of the subsequent runs that use it as 'input_ref.gdx' and start these runs
no_subsequent_runs <- identical(cfg$subsequentruns,character(0)) | identical(cfg$subsequentruns,NULL) | coupled_run
if(no_subsequent_runs){
cat('\nNo subsequent run was set for this scenario\n')
} else {

David Klein
committed
# Save the current cfg settings into a different data object, so that they are not overwritten
cfg_main <- cfg
source("scripts/start/submit_run.R")
for(run in seq(1,length(cfg_main$subsequentruns))){
# for each of the subsequent runs, read in the cfg, ...
cat("Writing the path for input_ref.gdx to ",paste0(cfg_main$subsequentruns[run],".RData"),"\n")
load(paste0(cfg_main$subsequentruns[run],".RData"))
# ...change the path_gdx_ref field of the subsequent run to the fulldata gdx of the current (preceding) run ...
cfg$files2export$start['input_ref.gdx'] <- paste0(cfg_main$remind_folder,"/",cfg_main$results_folder,"/fulldata.gdx")
save(cfg, file = paste0(cfg_main$subsequentruns[run],".RData"))
# Subsequent runs will be started in submit.R using the RData files written above
# after the current run has finished.
cat("Starting subsequent run ",cfg_main$subsequentruns[run],"\n")
submit_run(cfg)
}
# Set cfg back to original
cfg <- cfg_main
}

David Klein
committed
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
# 3. Create script file that can be used later to restart the subsequent runs manually.
# In case there are no subsequent runs (or it's coupled runs), the file contains only
# a small message.
subseq_start_file <- paste0(cfg$results_folder,"/start_subsequentruns.R")
if(no_subsequent_runs){
write("cat('\nNo subsequent run was set for this scenario\n')",file=subseq_start_file)
} else {
# go up to the main folder, where the cfg. files for subsequent runs are stored
filetext <- paste0("setwd('",cfg$remind_folder,"')\n")
filetext <- paste0(filetext,"source('scripts/start_functions.R')\n")
for(run in seq(1,length(cfg$subsequentruns))){
filetext <- paste0(filetext,"\n")
filetext <- paste0(filetext,"load('",cfg$subsequentruns[run],".RData')\n")
filetext <- paste0(filetext,"cat('",cfg$subsequentruns[run],"')\n")
filetext <- paste0(filetext,"start_run(cfg)\n")
}
# Write the text to the file
write(filetext,file=subseq_start_file)
}
#=================== END - Subsequent runs ========================
# Reload the REMIND run configuration
load(cfg$val_workspace)
# Print REMIND runtime
cat("\n gams_runtime is ", gams_runtime, "\n")
# Save runtime for REMIND validation
validation$technical$time$full.gms <- gams_runtime
save(validation, file = cfg$val_workspace)
# Remove unused variables
rm(gams_runtime, validation)
# Copy important files into output_folder (after REMIND execution)
for (file in cfg$files2export$end)
file.copy(file, cfg$results_folder, overwrite = TRUE)
# Postprocessing / Output Generation
output <- cfg$output
outputdir <- cfg$results_folder
sys.source("output.R",envir=new.env())
###########################################################################################################################################################
###########################################################################################################################################################
###########################################################################################################################################################
return(cfg$results_folder)

David Klein
committed
# on.exit sets working directory back to results folder
}
# call prepare and run (always without cfg, because cfg is always read from results folder, where it has been copied by submit_run(cfg))
prepare_and_run()