Newer
Older

Alois Dirnaichner
committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
---
title: "Compare scenarios Transport"
output:
html_document:
df_print: paged
---
```{r, echo=FALSE, message=FALSE, warning=FALSE}
require(ggplot2)
require(moinput)
require(data.table)
require(dplyr)
require(remind)
require(gdxdt)
require(gdx)
require(rmndt)
require(data.table)
require(edgeTrpLib)
```
```{r, echo=FALSE, warning=FALSE}
dem_shares <- list()
intensity <- list()
demand_km <- list()
demand_ej <- list()
sw_tech <- list()
prices_FV <- list()
datapath <- function(fname){
file.path("./input_EDGE/", fname)
}
mapspath <- function(fname, scenariopath=""){
file.path("../../modules/35_transport/edge_esm/input", fname)
}
## Load mappings
EDGE2CESmap <- fread(mapspath("mapping_CESnodes_EDGE.csv"))
REMIND2ISO_MAPPING <- fread("../../config/regionmappingH12.csv")[, .(iso = CountryCode,
region = RegionCode)]
EDGE2teESmap <- fread(mapspath("mapping_EDGE_REMIND_transport_categories.csv"))
years <- c(1990,
seq(2005, 2060, by = 5),
seq(2070, 2110, by = 10),
2130, 2150)
REMINDyears <- c(1990,
seq(2005, 2060, by = 5),
seq(2070, 2110, by = 10),
2130, 2150)
## include the paths to the scenarios you want to compare
output_folders <- "./"
for(output_folder in output_folders){
## load gdx for fuel prices and demand
gdx = file.path(output_folder, "fulldata.gdx")
## load policy scenario
load(file.path(output_folder, "config.Rdata"))
REMIND_scenario <- cfg$gms$cm_GDPscen
EDGE_scenario <- cfg$gms$cm_EDGEtr_scen
policy_scenario <- cfg$gms$c_expname
scen <- paste0(REMIND_scenario, "-", EDGE_scenario, "-", policy_scenario)
## load demand
ES_demand = readREMINDdemand(gdx, REMIND2ISO_MAPPING, EDGE2teESmap, years)
## load input data
int_dat <- readRDS(datapath("harmonized_intensities.RDS"))
nonfuel_costs <- readRDS(datapath("UCD_NEC_iso.RDS"))
sw_data <- readRDS(datapath("SW.RDS"))
vot_data <- readRDS(datapath("VOT_iso.RDS"))
logit_params <- readRDS(datapath("logit_exp.RDS"))
price_nonmot <- readRDS(datapath("price_nonmot.RDS"))
## FIXME: hotfix to make the (empty) vot_data$value_time_VS1 with the right column types. Probably there is another way to do that, did not look for it.
vot_data$value_time_VS1$iso = as.character(vot_data$value_time_VS1$iso)
vot_data$value_time_VS1$subsector_L1 = as.character(vot_data$value_time_VS1$subsector_L1)
vot_data$value_time_VS1$vehicle_type = as.character(vot_data$value_time_VS1$vehicle_type)
vot_data$value_time_VS1$year = as.numeric(vot_data$value_time_VS1$year)
vot_data$value_time_VS1$time_price = as.numeric(vot_data$value_time_VS1$time_price)
## calculate prices
REMIND_prices <- merge_prices(
gdx = gdx,
REMINDmapping = REMIND2ISO_MAPPING,
REMINDyears = REMINDyears,
intensity_data = int_dat,
nonfuel_costs = nonfuel_costs)
## calculates logit
logit_data <- calculate_logit(
REMIND_prices[tot_price > 0],
REMIND2ISO_MAPPING,
vot_data = vot_data,
sw_data = sw_data,
logit_params = logit_params,
intensity_data = int_dat,
price_nonmot = price_nonmot)
shares <- logit_data[["share_list"]] ## shares of alternatives for each level of the logit function
mj_km_data <- logit_data[["mj_km_data"]] ## energy intensity at a technology level
prices_FV[[scen]] <- REMIND_prices[, EDGE_scenario := scen] ## prices at each level of the logit function, 1990USD/pkm
## calculate energy intensity and FE demand at a REMIND-region level for the desired level of aggregation
res <- shares_intensity_and_demand(
logit_shares=shares,
MJ_km_base=mj_km_data,
REMIND2ISO_MAPPING=REMIND2ISO_MAPPING,
EDGE2CESmap=EDGE2CESmap,
REMINDyears=REMINDyears,
demand_input=ES_demand)
dem_shares[[scen]] <- res$demand[, EDGE_scenario := scen]
intensity[[scen]] <- res$demandI[, EDGE_scenario := scen]
demand_km[[scen]] <- res$demandF_plot_pkm[, EDGE_scenario := scen]
demand_ej[[scen]] <- res$demandF_plot_EJ[, EDGE_scenario := scen]
sw_tech[[scen]] <- sw_data$FV_final_SW[, EDGE_scenario := scen]
}
dem_shares <- rbindlist(dem_shares)
intensity <- rbindlist(intensity)
demand_km <- rbindlist(demand_km)
demand_ej <- rbindlist(demand_ej)
sw_tech <- rbindlist(sw_tech)
prices_FV <- rbindlist(prices_FV)
```
```{r, echo=FALSE}
## plot settings
years_plot = c(2010,2015,2020,2025,2030,2040,2050) ## in bar charts, these are the time steps that are represented
year_single = 2050
region_plot = "NEU" ## in case is a region specific plot, this region is represented
sector_plot ="trn_pass" ## in case is a sector specific plot, this sector is represented
##conversion rate 2005->1990 USD
CONV_2005USD_1990USD=0.67
# print(paste0("Scenario: ", REMIND_scenario))
print(paste0("Regional plots are about ",region_plot))
print(paste0("Sectoral plots are about ",sector_plot))
## maps
cesmap <- data.table(CES_parent=c("_p_sm", "_p_lo", "_f_lo", "_f_sm"),
CES_label=c("Passenger, Short-to-Medium Distances",
"Passenger, Long Distances",
"Freight, Long Distances",
"Freight, Short-to-Medium Distances"))
EDGE_sectormap <- data.table(sector=c("trn_pass", "trn_freight", "trn_aviation_intl", "trn_shipping_intl"),
CES_label=c("Passenger, Short-to-Medium Distances",
"Passenger, Long Distances",
"Freight, Long Distances",
"Freight, Short-to-Medium Distances"))
```
```{r, echo=FALSE}
## aggregate demands to REMIND regions
demandF_plot_EJ <- demand_ej[,c("EDGE_scenario", "sector","subsector_L3","subsector_L2",
"subsector_L1","vehicle_type","technology", "iso","year","demand_EJ")]
demandF_plot_pkm <- demand_km[,c("EDGE_scenario", "sector","subsector_L3","subsector_L2",
"subsector_L1","vehicle_type","technology","iso","year","demand_F")]
demandF_plot_EJ=aggregate_dt(demandF_plot_EJ,REMIND2ISO_MAPPING,
datacols = c("EDGE_scenario", "sector", "subsector_L3", "subsector_L2", "subsector_L1",
"vehicle_type", "technology"),
valuecol = "demand_EJ")
demandF_plot_pkm=aggregate_dt(demandF_plot_pkm,REMIND2ISO_MAPPING,
datacol = c("EDGE_scenario", "sector","subsector_L3","subsector_L2",
"subsector_L1","vehicle_type","technology"),
valuecol = "demand_F")
## add GLO
glo <- demandF_plot_pkm[,.(region="GLO", demand_F=sum(demand_F)),
by=eval(names(demandF_plot_pkm)[2:9])]
demandF_plot_pkm <- rbind(demandF_plot_pkm, glo)
glo <- demandF_plot_EJ[,.(region="GLO", demand_EJ=sum(demand_EJ)),
by=eval(names(demandF_plot_EJ)[2:9])]
demandF_plot_EJ <- rbind(demandF_plot_EJ, glo)
```
## ES
```{r, echo=FALSE}
##chunk of code that plots the ES
ES_modes_bar1=function(demandpkm){
#group by subsector_L3 and summarise the demand
df=demandpkm[, .(demand_F=sum(demand_F)
), by = c("EDGE_scenario", "region", "year","sector","subsector_L1")]
df[,demand_F:=demand_F ## in millionkm
*1e-6 ## in trillion km
]
df=df[order(year)]
# #filter only 2020, 2050 and 2100
df=df[year %in% years_plot,]
#separate into passenger and freight categories
pass=c("trn_pass","trn_aviation_intl")
freight=c("trn_freight","trn_shipping_intl")
## give proper names to the categories
df=merge(df, edgeTrpLib::L1mapping, all.x=TRUE, by="subsector_L1")
#plot
plot_p=ggplot()+
geom_bar(data=df%>%filter(sector %in% pass, year %in% years_plot, region == region_plot),
aes(x=year,y=demand_F,group=mode,fill=mode),position=position_stack(),stat="identity")+
facet_wrap(~EDGE_scenario)+
ggtitle("Energy Services Demand - Passenger Transport Modes")+
theme_light()+
theme(axis.text.x = element_text(angle = 90, hjust = 1))+
scale_x_continuous(breaks=years_plot)+
xlab("Year")+
ylab("Energy Services Demand (trillion pkm)")+
guides(fill=guide_legend(title="Transport mode"))+
theme(axis.text.x = element_text(angle = 90, hjust = 1),
axis.text = element_text(size=13),
title = element_text(size=13),
legend.text = element_text(size=13))
plot_f=ggplot()+
geom_bar(data=df%>%filter(sector %in% freight,year %in% years_plot, region == region_plot),
aes(x=year,y=demand_F,group=mode,fill=mode),position=position_stack(),stat="identity")+
facet_wrap(~EDGE_scenario)+
ggtitle("Energy Services Demand - Freight Transport Modes")+
theme_light()+
theme(axis.text.x = element_text(angle = 90, hjust = 1))+
scale_x_continuous(breaks=years_plot)+
xlab("Year")+
ylab("Energy Services Demand (trillion tkm)")+
guides(fill=guide_legend(title="Transport mode"))+
theme(axis.text.x = element_text(angle = 90, hjust = 1),
axis.text = element_text(size=13),
title = element_text(size=13),
legend.text = element_text(size=13))
plot=list(plot_p,plot_f)
return(plot)
}
p=ES_modes_bar1(demandpkm=demandF_plot_pkm)
p[[1]]
p[[2]]
```
```{r, echo=FALSE}
##chunk of code that plots the ES
ES_modes_bar=function(demandpkm){
demandpkm[technology == "LA-BEV", technology := "BEV"]
## use proper non-fuel mode names
demandpkm[technology %in% c("Cycle_tmp_technology", "Walk_tmp_technology"), technology := "Human Powered"]
#group by subsector_L3 and summarise the demand
df=demandpkm[, .(demand_F=sum(demand_F)),
by = c("EDGE_scenario", "region", "year","sector","subsector_L1", "technology")]
df[,demand_F:=demand_F ## in millionkm
*1e-6 ## in trillion km
]
df=df[order(year)]
#separate into passenger and freight categories
pass=c("trn_pass","trn_aviation_intl")
freight=c("trn_freight","trn_shipping_intl")
## give proper names to the categories
df=merge(df, edgeTrpLib::L1mapping, all.x=TRUE, by="subsector_L1")
#plot
plot_p=ggplot()+
geom_bar(data=df%>%filter(sector %in% pass,year %in% years_plot,region==region_plot),
aes(x=year,y=demand_F,group=technology,fill=technology),
position=position_stack(),stat="identity")+
ggtitle("Energy Services Demand by Technology, Passenger Transport, EUR")+
theme_light()+
facet_wrap(~EDGE_scenario)+
scale_x_continuous(breaks=years_plot)+
xlab("Year")+
ylab("Energy Services Demand (trillion pkm)")+
guides(fill=guide_legend(title="Technology"))+
theme(axis.text.x = element_text(angle = 90, hjust = 1),
axis.text = element_text(size=13),
title = element_text(size=13),
legend.text = element_text(size=13))
plot_f=ggplot()+
geom_bar(data=df%>%filter(sector %in% freight,year %in% years_plot, region==region_plot),
aes(x=year,y=demand_F, group=technology, fill=technology),
position=position_stack(),stat="identity")+
ggtitle(paste0("Energy Services Demand by Technology, Freight Transport, ", region_plot))+
facet_wrap(~EDGE_scenario) +
theme_light()+
scale_x_continuous(breaks=years_plot)+
xlab("Year")+
ylab("Energy Services Demand (trllion tkm)")+
guides(fill=guide_legend(title="Technology"))+
theme(axis.text.x = element_text(angle = 90, hjust = 1),
axis.text = element_text(size=13),
title = element_text(size=13),
legend.text = element_text(size=13))
plot=list(plot_p,plot_f)
return(plot)
}
p=ES_modes_bar(demandpkm=demandF_plot_pkm)
p[[1]]
p[[2]]
```
```{r, echo=FALSE}
## plot ES for LDVs only divided by fuel
ES_modes_LDV_bar=function(demandpkm){
demandpkm[technology == "LA-BEV", technology := "BEV"]
## use proper non-fuel mode names
demandpkm[technology %in% c("Cycle_tmp_technology", "Walk_tmp_technology"), technology := "Human Powered"]
#group by subsector_L3 and summarise the demand
df=demandpkm[, .(demand_F=sum(demand_F)),
by = c("EDGE_scenario", "region", "year","sector","subsector_L1", "technology")]
df[,demand_F:=demand_F ## in millionkm
*1e-6 ## in trillion km
]
df=df[order(year)]
## give proper names to the categories
df=merge(df, edgeTrpLib::L1mapping, all.x=TRUE, by="subsector_L1")
## select order of facets
df$technology = factor(df$technology, levels=c("Liquids","Hybrid Liquids","NG","BEV","FCEV"))
#plot
plot_LDV=ggplot()+
geom_bar(data=df%>%filter(year %in% years_plot,region==region_plot, mode %in% c("4W","2W")),
aes(x=year,y=demand_F,group=technology,fill=technology), alpha = 0.9,
position=position_stack(),stat="identity")+
ggtitle(paste0("Energy Services Demand by Technology, LDVs", region_plot))+
theme_light()+
facet_wrap(~EDGE_scenario)+
theme(axis.text.x = element_text(angle = 90, hjust = 1))+
xlab("Year")+
ylab("Energy Services Demand (trillion pkm)")+
guides(fill=guide_legend(title="Technology"))+
theme(axis.text.x = element_text(angle = 90, hjust = 1),
axis.text = element_text(size=13),
title = element_text(size=13),
legend.text = element_text(size=13),
strip.text.x = element_text(size = 13, color = "black"),
strip.background=element_rect(fill="white"))+
scale_x_continuous(breaks=years_plot)+
scale_fill_brewer(palette = "Set1")
return(plot_LDV)
}
p=ES_modes_LDV_bar(demandpkm=demandF_plot_pkm)
p
```
## FE
```{r, echo=FALSE}
FE_modes_bar=function(demandEJ){
#group by subsector_L1 and summarise the demand
df=demandEJ[, .(demand_EJ=sum(demand_EJ)),
by = c("EDGE_scenario", "region", "year","subsector_L1","subsector_L3","sector")]
df=df[order(year)]
df=df[year %in% years_plot,]
#separate into passenger and freight categories
pass=c("trn_pass","trn_aviation_intl")
freight=c("trn_freight","trn_shipping_intl")
## give proper names to the categories
df <- merge(df, edgeTrpLib::L1mapping, all.x=TRUE, by="subsector_L1")
#plot
plot_p=ggplot()+
geom_bar(data=df%>%filter(sector %in% pass, region==region_plot),
aes(x=year,y=demand_EJ,group=mode,fill=mode),position=position_stack(),stat="identity",color="black")+
facet_wrap(~EDGE_scenario)+
ylab("Energy (EJ)") +
ggtitle(paste0("Final Energy Demand by Mode, Passenger, ", region_plot))+
theme(axis.text.x = element_text(angle = 90))+
scale_x_continuous(breaks=years_plot)
plot_f=ggplot()+
geom_bar(data=df%>%filter(sector %in% freight,region==region_plot),
aes(x=year,y=demand_EJ,group=mode,fill=mode),position=position_stack(),stat="identity",color="black")+
facet_wrap(~EDGE_scenario) +
ggtitle(paste0("Final Energy Demand by Mode, Freight, ", region_plot))+
ylab("Energy (EJ)") +
theme(axis.text.x = element_text(angle = 90))+
scale_x_continuous(breaks=years_plot)
plot=list(plot_p,plot_f)
return(plot)
}
p=FE_modes_bar(demandEJ = demandF_plot_EJ)
p[[1]]
p[[2]]
```
```{r, echo=FALSE}
## function that calculates FE split and splits out the liquids by source
FE_modes_bar_oilcomponent=function(demandEJ, msect="trn_pass", region_plot){
if(msect == "trn_pass")
sector_display = "Passenger"
if(msect == "trn_freight")
sector_display = "Freight"
#group by subsector_L1 and summarise the demand
df=demandEJ[, .(demand_EJ=sum(demand_EJ)),
by = c("EDGE_scenario", "region", "year","subsector_L1","subsector_L3","sector","technology")]
df=df[order(year)]
df=df[year %in% years_plot,]
## give proper names to the categories
df=merge(df, edgeTrpLib::L1mapping, all.x=TRUE, by="subsector_L1")
df[,technology := ifelse(technology == "LA-BEV", "BEV", technology)]
df[,technology := ifelse(technology == "Electric", "El. Trains", technology)]
## select order of facerts
df$technology = factor(df$technology, levels=c("BEV","FCEV","Hybrid Liquids", "El. Trains", "NG","Liquids", "Coal"))
#plot
plot_psm = ggplot()+
geom_bar(data=df%>%filter(sector == msect, region == region_plot),
aes(x=year,y=demand_EJ,group=technology,fill=technology),
position=position_stack(),stat="identity", alpha = 0.9)+
theme_light()+
ggtitle(paste0("Final Energy Demand by Tech, ", sector_display, ", ", region_plot))+
theme(axis.text.x = element_text(angle = 90),
strip.text.x = element_text(size = 13, color = "black"))+
scale_x_continuous(breaks=years_plot)+
scale_fill_brewer(palette = "Set1")+
xlab("Year")+
ylab("Final energy demand [EJ]")+
facet_wrap(~EDGE_scenario) +
guides(fill=guide_legend(title="Technology"))
plot_psm_LDV = ggplot()+
geom_bar(data=df%>%filter(sector == msect, region == region_plot, mode == "4W"),
aes(x=year,y=demand_EJ,group=technology,fill=technology),
position=position_stack(),stat="identity", alpha = 0.9)+
theme_light()+
ggtitle(paste0("Final Energy Demand by Tech, LDVs, ", region_plot))+
theme(axis.text.x = element_text(angle = 90),
strip.text.x = element_text(size = 13, color = "black"),
strip.background=element_rect(fill="white"),
axis.text = element_text(size=13),
title = element_text(size=13),
legend.text = element_text(size=13))+
scale_x_continuous(breaks=years_plot)+
scale_fill_brewer(palette = "Set1")+
xlab("Year")+
ylab("Final energy demand [EJ]")+
facet_wrap(~EDGE_scenario) +
guides(fill=guide_legend(title="Technology"))
plot_list = list(plot_psm, plot_psm_LDV)
return(plot_list)
}
FE_modes_bar_oilcomponent(demandEJ = demandF_plot_EJ, msect="trn_pass", region=region_plot)
FE_modes_bar_oilcomponent(demandEJ = demandF_plot_EJ, msect="trn_pass", region="GLO")
```
```{r, echo=FALSE}
FE_modes_bar1=function(demandEJ, msect="trn_pass", region_plot){
if(msect == "trn_pass")
sector_display = "Passenger"
if(msect == "trn_freight")
sector_display = "Freight"
## group by subsector_L1 and summarise the demand
df=demandEJ[, .(demand_EJ=sum(demand_EJ)),
by = c("EDGE_scenario", "region", "year","subsector_L1","sector")]
df=df[order(year) & year %in% years_plot]
## give proper names to the categories
df=merge(df, edgeTrpLib::L1mapping, all.x=TRUE, by="subsector_L1")
#plot
plot_p=ggplot()+
geom_bar(data=df%>%filter(sector == msect, region == region_plot),
aes(x=year,y=demand_EJ,group=mode,fill=mode),
position=position_stack(),stat="identity",color="black")+
facet_wrap(~EDGE_scenario) +
ylab("Energy (EJ)") +
ggtitle(paste0("Final Energy Demand by Mode, ", sector_display, ", ", region_plot))+
theme(axis.text.x = element_text(angle = 90))+
scale_x_continuous(breaks=years_plot)
return(plot_p)
}
FE_modes_bar1(demandEJ = demandF_plot_EJ, region_plot = region_plot)
```
```{r, echo=FALSE}
FE_modes_bar_oilVSelec=function(demandEJ, region_plot){
sector_display = "Total transport"
## group by subsector_L1 and summarise the demand
df=demandEJ[, .(demand_EJ=sum(demand_EJ)),
by = c("EDGE_scenario", "region", "year","subsector_L1","sector","technology")]
df[, tech_plot := ifelse(technology %in% c("BEV","Electric"), "Electriciy", NA)]
df[, tech_plot := ifelse(technology %in% c("Liquids", "Hybrid Liquids"), "Liquids", tech_plot)]
df=df[!is.na(tech_plot),] ## only liquids and electric driven entries interesting
df=df[order(year) & year %in% years_plot]
## give proper names to the categories
df=merge(df, edgeTrpLib::L1mapping, all.x=TRUE, by="subsector_L1")
df[,short_names:=ifelse(mode %in% c("Buses","Rail Passenger","High Speed Rail"),"Other Passenger",NA)]
df[,short_names:=ifelse(mode %in% c("2W","4W","Three Wheelers"),"LDV",short_names)]
df[,short_names:=ifelse(mode %in% c("Domestic Aviation","International Aviation"),"Aviation",short_names)]
df[,short_names:=ifelse(mode %in% c("International Shipping","Domestic Shipping"),"Shipping",short_names)]
df[,short_names:=ifelse(mode %in% c("Road Freight","Rail Freight"),"Road and Rail Freight",short_names)]
#plot
plot_p=ggplot()+
geom_bar(data=df%>%filter(region == region_plot, year ==2050),
aes(x=tech_plot,y=demand_EJ,group=short_names,fill=short_names),
position=position_stack(),stat="identity",alpha=0.95)+
facet_wrap(~EDGE_scenario) +
ylab("Energy (EJ)") +
ggtitle(paste0("Final Energy Demand by Mode in 2050, total transport ", region_plot))+
theme_light()+
theme(axis.text.x = element_text(angle = 90),
axis.title.x = element_blank(),
strip.text.x = element_text(size = 13, color = "black"),
strip.background=element_rect(fill="white"),
axis.text = element_text(size=13),
title = element_text(size=13),
legend.text = element_text(size=13))+
scale_fill_brewer(palette = "Set2")+
guides(fill=guide_legend(title="Transport mode"))
return(plot_p)
}
FE_modes_bar_oilVSelec(demandEJ = demandF_plot_EJ, region_plot = region_plot)
```
## FE composition
```{r, echo=FALSE}
FE_modeshares_area=function(demandEJ){
#group by subsector_L3 and summarise the demand
df=demandEJ[, .(demand_EJ=sum(demand_EJ)),
by = c("EDGE_scenario", "region", "year","subsector_L3")]
#order by year
df=df[order(year)]
df=df[year>=2005,]
#plot
plot=ggplot()+
geom_area(data=df %>% filter(year <= max(years_plot), region == region_plot),
aes(x=year,y=demand_EJ,group=subsector_L3,fill=subsector_L3),
color="black")+
facet_wrap(~EDGE_scenario)+
ylab("Energy (EJ)") +
ggtitle("Final Energy Demand, Mode composition")+
theme(axis.text.x = element_text(angle = 90, hjust = 1))
return(plot)
}
p=FE_modeshares_area(demandEJ = demandF_plot_EJ)
p
## ggsave("FE_modeshares.png")
```
```{r, echo=FALSE}
## fuel use by sector
fuel_shares_area=function(demandEJ, msect="trn_pass", region_plot){
if(msect == "trn_pass")
sector_display = "Passenger"
if(msect == "trn_freight")
sector_display = "Freight"
##group by sector and technology and summarise demand
df=demandEJ[, .(demand_EJ=sum(demand_EJ)),
by = c("EDGE_scenario", "region", "year","technology","sector")]
df=df[order(year) & year>=2005,]
#plot
plot1=ggplot()+
geom_area(data=df%>%filter(sector == msect, year <= max(years_plot), region == region_plot),
aes(x=year,y=demand_EJ,group=technology,fill=technology),position="fill")+
facet_wrap(~EDGE_scenario)+
ggtitle(paste0("Final Energy Demand, ", sector_display, ", Fuel Composition"))+
ylab("Share")
theme(axis.text.x = element_text(angle = 90, hjust = 1))
return(plot1)
}
p=fuel_shares_area(demandEJ = demandF_plot_EJ, region_plot = region_plot)
p
```
```{r, echo=FALSE}
SW_trend_plot = function(FV_SW,sector_plot){
if (sector_plot == "trn_pass") {
FV_SW=FV_SW[iso=="DEU" & vehicle_type =="Large Car and SUV",]
} else if (sector_plot =="trn_freight"){
FV_SW=FV_SW[iso=="DEU" & vehicle_type =="Truck (16-32t)",]
} else if (sector_plot =="trn_aviation_intl"){
FV_SW=FV_SW[iso=="DEU" & subsector_L3 =="International Aviation",]
} else if (sector_plot =="trn_shipping_intl"){
FV_SW=FV_SW[iso=="DEU" & subsector_L3 =="International Ship",]
}
FV_SW[,type:=ifelse(technology=="Liquids", "Conventional ICE (Liquid fuels)",NA)]
FV_SW[,type:=ifelse(technology=="NG", "Natural Gas ICE",type)]
FV_SW[,type:=ifelse(technology=="BEV", "Alternative fuels: BEV",type)]
FV_SW[,type:=ifelse(technology=="FCEV", "Alternative fuels: FCEV",type)]
FV_SW[,type:=ifelse(technology=="Hybrid Liquids", "Unconventional ICE (Hybrid)",type)]
p=ggplot()+
geom_line(data=FV_SW%>%filter(year>= min(years_plot), year<=max(years_plot)),aes(x=year,y=sw,group=type,color=type),alpha = 0.8,size=1.5)+
theme_light()+
facet_wrap(~EDGE_scenario)+
theme(axis.text.x = element_text(angle = 90, hjust = 1),
axis.text = element_text(size=13),
title = element_text(size=14),
legend.text = element_text(size=13))+
scale_x_continuous(breaks=years_plot)+
xlab("Year")+
ylab ("Preference factors tech. types [-]")+
ggtitle(paste0("Preference factors trend for tech. types for ", sector_plot, " [-]"))+
theme(strip.text.x = element_text(size=13,color="black"),
strip.background = element_rect(fill="white",color = "black"))+
scale_color_discrete(name="Technology type")
return(p)
}
p=SW_trend_plot(FV_SW=sw_tech,sector_plot)
p
```