Skip to content
Snippets Groups Projects
EDGETransportReport.Rmd 24.3 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
---
title: "Compare scenarios Transport"
output:
  html_document:
    df_print: paged
---

```{r, echo=FALSE, message=FALSE, warning=FALSE}
require(ggplot2)
require(moinput)
require(data.table)
require(dplyr)
require(remind)
require(gdxdt)
require(gdx)
require(rmndt)
require(data.table)

require(edgeTrpLib)
```


```{r, echo=FALSE, warning=FALSE}

dem_shares <- list()
intensity <- list()
demand_km <- list()
demand_ej <- list()
sw_tech <- list()
prices_FV <- list()

datapath <- function(fname){
  file.path("./input_EDGE/", fname)
}

mapspath <- function(fname, scenariopath=""){
    file.path("../../modules/35_transport/edge_esm/input", fname)
}

## Load mappings
EDGE2CESmap <- fread(mapspath("mapping_CESnodes_EDGE.csv"))

REMIND2ISO_MAPPING <- fread("../../config/regionmappingH12.csv")[, .(iso = CountryCode,
                                                                         region = RegionCode)]

EDGE2teESmap <- fread(mapspath("mapping_EDGE_REMIND_transport_categories.csv"))

years <- c(1990,
           seq(2005, 2060, by = 5),
           seq(2070, 2110, by = 10),
           2130, 2150)

REMINDyears <- c(1990,
           seq(2005, 2060, by = 5),
           seq(2070, 2110, by = 10),
           2130, 2150)

## include the paths to the scenarios you want to compare
output_folders <- "./"

for(output_folder in output_folders){
  ## load gdx for fuel prices and demand
  gdx = file.path(output_folder, "fulldata.gdx")
  ## load policy scenario
  load(file.path(output_folder, "config.Rdata"))
  REMIND_scenario <- cfg$gms$cm_GDPscen
  EDGE_scenario <- cfg$gms$cm_EDGEtr_scen
  policy_scenario <- cfg$gms$c_expname
  
  scen <- paste0(REMIND_scenario, "-", EDGE_scenario, "-", policy_scenario)
  
  ## load demand
  ES_demand = readREMINDdemand(gdx, REMIND2ISO_MAPPING, EDGE2teESmap, years)

  ## load input data
  int_dat <- readRDS(datapath("harmonized_intensities.RDS"))
  nonfuel_costs <- readRDS(datapath("UCD_NEC_iso.RDS"))
  sw_data <- readRDS(datapath("SW.RDS"))
  vot_data <- readRDS(datapath("VOT_iso.RDS"))
  logit_params <- readRDS(datapath("logit_exp.RDS"))
  price_nonmot <- readRDS(datapath("price_nonmot.RDS"))
  
    ## FIXME: hotfix to make the (empty) vot_data$value_time_VS1 with the right column types. Probably there is another way to do that, did not look for it.
  vot_data$value_time_VS1$iso = as.character(vot_data$value_time_VS1$iso)
  vot_data$value_time_VS1$subsector_L1 = as.character(vot_data$value_time_VS1$subsector_L1)
  vot_data$value_time_VS1$vehicle_type = as.character(vot_data$value_time_VS1$vehicle_type)
  vot_data$value_time_VS1$year = as.numeric(vot_data$value_time_VS1$year)
  vot_data$value_time_VS1$time_price = as.numeric(vot_data$value_time_VS1$time_price)
  
  ## calculate prices
  REMIND_prices <- merge_prices(
    gdx = gdx,
    REMINDmapping = REMIND2ISO_MAPPING,
    REMINDyears = REMINDyears,
    intensity_data = int_dat,
    nonfuel_costs = nonfuel_costs)

  ## calculates logit
  logit_data <- calculate_logit(
    REMIND_prices[tot_price > 0],
    REMIND2ISO_MAPPING,
    vot_data = vot_data,
    sw_data = sw_data,
    logit_params = logit_params,
    intensity_data = int_dat,
    price_nonmot = price_nonmot)


  shares <- logit_data[["share_list"]] ## shares of alternatives for each level of the logit function
  mj_km_data <- logit_data[["mj_km_data"]] ## energy intensity at a technology level
  prices_FV[[scen]] <- REMIND_prices[, EDGE_scenario := scen] ## prices at each level of the logit function, 1990USD/pkm

  ## calculate energy intensity and FE demand at a REMIND-region level for the desired level of aggregation
  res <- shares_intensity_and_demand(
    logit_shares=shares,
    MJ_km_base=mj_km_data,
    REMIND2ISO_MAPPING=REMIND2ISO_MAPPING,
    EDGE2CESmap=EDGE2CESmap,
    REMINDyears=REMINDyears,
    demand_input=ES_demand)

  dem_shares[[scen]] <- res$demand[, EDGE_scenario := scen]
  intensity[[scen]] <- res$demandI[, EDGE_scenario := scen]
  demand_km[[scen]] <- res$demandF_plot_pkm[, EDGE_scenario := scen]
  demand_ej[[scen]] <- res$demandF_plot_EJ[, EDGE_scenario := scen]
  sw_tech[[scen]] <- sw_data$FV_final_SW[, EDGE_scenario := scen]
}

dem_shares <- rbindlist(dem_shares)
intensity <- rbindlist(intensity)
demand_km <- rbindlist(demand_km)
demand_ej <- rbindlist(demand_ej)
sw_tech <- rbindlist(sw_tech)
prices_FV <- rbindlist(prices_FV)
```



```{r, echo=FALSE}
## plot settings
years_plot = c(2010,2015,2020,2025,2030,2040,2050) ## in bar charts, these are the time steps that are represented
year_single = 2050
region_plot = "NEU" ## in case is a region specific plot, this region is represented
sector_plot ="trn_pass" ## in case is a sector specific plot, this sector is represented


##conversion rate 2005->1990 USD
CONV_2005USD_1990USD=0.67

# print(paste0("Scenario: ", REMIND_scenario))
print(paste0("Regional plots are about ",region_plot))
print(paste0("Sectoral plots are about ",sector_plot))

## maps
cesmap <- data.table(CES_parent=c("_p_sm", "_p_lo", "_f_lo", "_f_sm"),
                     CES_label=c("Passenger, Short-to-Medium Distances",
                                 "Passenger, Long Distances",
                                 "Freight, Long Distances",
                                 "Freight, Short-to-Medium Distances"))

EDGE_sectormap <- data.table(sector=c("trn_pass", "trn_freight", "trn_aviation_intl", "trn_shipping_intl"),
                     CES_label=c("Passenger, Short-to-Medium Distances",
                                 "Passenger, Long Distances",
                                 "Freight, Long Distances",
                                 "Freight, Short-to-Medium Distances"))

```


```{r, echo=FALSE}
## aggregate demands to REMIND regions
demandF_plot_EJ <- demand_ej[,c("EDGE_scenario", "sector","subsector_L3","subsector_L2",
                                "subsector_L1","vehicle_type","technology", "iso","year","demand_EJ")]
demandF_plot_pkm <- demand_km[,c("EDGE_scenario", "sector","subsector_L3","subsector_L2",
                                 "subsector_L1","vehicle_type","technology","iso","year","demand_F")]

demandF_plot_EJ=aggregate_dt(demandF_plot_EJ,REMIND2ISO_MAPPING,
                             datacols = c("EDGE_scenario", "sector", "subsector_L3", "subsector_L2", "subsector_L1",
                                          "vehicle_type", "technology"),
                             valuecol = "demand_EJ")

demandF_plot_pkm=aggregate_dt(demandF_plot_pkm,REMIND2ISO_MAPPING,
                              datacol = c("EDGE_scenario", "sector","subsector_L3","subsector_L2",
                                          "subsector_L1","vehicle_type","technology"),
                              valuecol = "demand_F")
## add GLO
glo <- demandF_plot_pkm[,.(region="GLO", demand_F=sum(demand_F)),
                        by=eval(names(demandF_plot_pkm)[2:9])]
demandF_plot_pkm <- rbind(demandF_plot_pkm, glo)
glo <- demandF_plot_EJ[,.(region="GLO", demand_EJ=sum(demand_EJ)),
                        by=eval(names(demandF_plot_EJ)[2:9])]
demandF_plot_EJ <- rbind(demandF_plot_EJ, glo)

```

## ES


```{r, echo=FALSE}
##chunk of code that plots the ES
ES_modes_bar1=function(demandpkm){
  #group by subsector_L3 and summarise the demand
  df=demandpkm[, .(demand_F=sum(demand_F)
                   ), by = c("EDGE_scenario", "region", "year","sector","subsector_L1")]
  df[,demand_F:=demand_F   ## in millionkm
     *1e-6                 ## in trillion km
     ]
  df=df[order(year)]
  # #filter only 2020, 2050 and 2100
  df=df[year %in% years_plot,]
  #separate into passenger and freight categories
  pass=c("trn_pass","trn_aviation_intl")
  freight=c("trn_freight","trn_shipping_intl")
  ## give proper names to the categories  
  df=merge(df, edgeTrpLib::L1mapping, all.x=TRUE, by="subsector_L1")
  #plot
  plot_p=ggplot()+
    geom_bar(data=df%>%filter(sector %in% pass, year %in% years_plot, region == region_plot),
             aes(x=year,y=demand_F,group=mode,fill=mode),position=position_stack(),stat="identity")+
    facet_wrap(~EDGE_scenario)+
    ggtitle("Energy Services Demand - Passenger Transport Modes")+
    theme_light()+
    theme(axis.text.x = element_text(angle = 90, hjust = 1))+
    scale_x_continuous(breaks=years_plot)+
    xlab("Year")+
    ylab("Energy Services Demand (trillion pkm)")+ 
    guides(fill=guide_legend(title="Transport mode"))+
    theme(axis.text.x = element_text(angle = 90, hjust = 1),
          axis.text = element_text(size=13),
          title = element_text(size=13),
          legend.text = element_text(size=13))
  
  plot_f=ggplot()+
    geom_bar(data=df%>%filter(sector %in% freight,year %in% years_plot, region == region_plot),
             aes(x=year,y=demand_F,group=mode,fill=mode),position=position_stack(),stat="identity")+
    facet_wrap(~EDGE_scenario)+
    ggtitle("Energy Services Demand - Freight Transport Modes")+
    theme_light()+
    theme(axis.text.x = element_text(angle = 90, hjust = 1))+
    scale_x_continuous(breaks=years_plot)+
    xlab("Year")+
    ylab("Energy Services Demand (trillion tkm)")+ 
    guides(fill=guide_legend(title="Transport mode"))+
    theme(axis.text.x = element_text(angle = 90, hjust = 1),
          axis.text = element_text(size=13),
          title = element_text(size=13),
          legend.text = element_text(size=13))
  
  plot=list(plot_p,plot_f)
  return(plot)
}

p=ES_modes_bar1(demandpkm=demandF_plot_pkm)
p[[1]]
p[[2]]

```

```{r, echo=FALSE}
##chunk of code that plots the ES
ES_modes_bar=function(demandpkm){
  demandpkm[technology == "LA-BEV", technology := "BEV"]
  ## use proper non-fuel mode names
  demandpkm[technology %in% c("Cycle_tmp_technology", "Walk_tmp_technology"), technology := "Human Powered"]
  #group by subsector_L3 and summarise the demand
  df=demandpkm[, .(demand_F=sum(demand_F)),
               by = c("EDGE_scenario", "region", "year","sector","subsector_L1", "technology")]
  df[,demand_F:=demand_F   ## in millionkm
     *1e-6                 ## in trillion km
     ]
  df=df[order(year)]
  #separate into passenger and freight categories
  pass=c("trn_pass","trn_aviation_intl")
  freight=c("trn_freight","trn_shipping_intl")
  ## give proper names to the categories
  df=merge(df, edgeTrpLib::L1mapping, all.x=TRUE, by="subsector_L1")
  #plot
  plot_p=ggplot()+
    geom_bar(data=df%>%filter(sector %in% pass,year %in% years_plot,region==region_plot),
             aes(x=year,y=demand_F,group=technology,fill=technology),
             position=position_stack(),stat="identity")+
    ggtitle("Energy Services Demand by Technology, Passenger Transport, EUR")+
    theme_light()+
    facet_wrap(~EDGE_scenario)+
    scale_x_continuous(breaks=years_plot)+
    xlab("Year")+
    ylab("Energy Services Demand (trillion pkm)")+ 
    guides(fill=guide_legend(title="Technology"))+
    theme(axis.text.x = element_text(angle = 90, hjust = 1),
          axis.text = element_text(size=13),
          title = element_text(size=13),
          legend.text = element_text(size=13))
  
  plot_f=ggplot()+
    geom_bar(data=df%>%filter(sector %in% freight,year %in% years_plot, region==region_plot),
             aes(x=year,y=demand_F, group=technology, fill=technology),
             position=position_stack(),stat="identity")+
    ggtitle(paste0("Energy Services Demand by Technology, Freight Transport, ", region_plot))+
    facet_wrap(~EDGE_scenario) +
    theme_light()+
    scale_x_continuous(breaks=years_plot)+
    xlab("Year")+
    ylab("Energy Services Demand (trllion tkm)")+ 
    guides(fill=guide_legend(title="Technology"))+
    theme(axis.text.x = element_text(angle = 90, hjust = 1),
          axis.text = element_text(size=13),
          title = element_text(size=13),
          legend.text = element_text(size=13))
  
  plot=list(plot_p,plot_f)
  return(plot)
}

p=ES_modes_bar(demandpkm=demandF_plot_pkm)
p[[1]]
p[[2]]

```

```{r, echo=FALSE}
## plot ES for LDVs only divided by fuel
ES_modes_LDV_bar=function(demandpkm){
  demandpkm[technology == "LA-BEV", technology := "BEV"]
  ## use proper non-fuel mode names
  demandpkm[technology %in% c("Cycle_tmp_technology", "Walk_tmp_technology"), technology := "Human Powered"]
  #group by subsector_L3 and summarise the demand
  df=demandpkm[, .(demand_F=sum(demand_F)),
               by = c("EDGE_scenario", "region", "year","sector","subsector_L1", "technology")]
  df[,demand_F:=demand_F   ## in millionkm
     *1e-6                 ## in trillion km
     ]
  df=df[order(year)]
  ## give proper names to the categories
  df=merge(df, edgeTrpLib::L1mapping, all.x=TRUE, by="subsector_L1")
  
  
  ## select order of facets
  df$technology = factor(df$technology, levels=c("Liquids","Hybrid Liquids","NG","BEV","FCEV"))
  
  #plot
  plot_LDV=ggplot()+
    geom_bar(data=df%>%filter(year %in% years_plot,region==region_plot, mode %in% c("4W","2W")),
             aes(x=year,y=demand_F,group=technology,fill=technology), alpha = 0.9,
             position=position_stack(),stat="identity")+
    ggtitle(paste0("Energy Services Demand by Technology, LDVs", region_plot))+
    theme_light()+
    facet_wrap(~EDGE_scenario)+
    theme(axis.text.x = element_text(angle = 90, hjust = 1))+
    xlab("Year")+
    ylab("Energy Services Demand (trillion pkm)")+ 
    guides(fill=guide_legend(title="Technology"))+
    theme(axis.text.x = element_text(angle = 90, hjust = 1),
          axis.text = element_text(size=13),
          title = element_text(size=13),
          legend.text = element_text(size=13),
          strip.text.x = element_text(size = 13, color = "black"),
          strip.background=element_rect(fill="white"))+
    scale_x_continuous(breaks=years_plot)+
    scale_fill_brewer(palette = "Set1")
    
  
  return(plot_LDV)
}

p=ES_modes_LDV_bar(demandpkm=demandF_plot_pkm)

p

```

## FE

```{r, echo=FALSE}
FE_modes_bar=function(demandEJ){
  #group by subsector_L1 and summarise the demand
  df=demandEJ[, .(demand_EJ=sum(demand_EJ)),
              by = c("EDGE_scenario", "region", "year","subsector_L1","subsector_L3","sector")]
  df=df[order(year)]
  df=df[year %in% years_plot,]
  #separate into passenger and freight categories
  pass=c("trn_pass","trn_aviation_intl")
  freight=c("trn_freight","trn_shipping_intl")
  ## give proper names to the categories
  df <- merge(df, edgeTrpLib::L1mapping, all.x=TRUE, by="subsector_L1")
  #plot
  plot_p=ggplot()+
    geom_bar(data=df%>%filter(sector %in% pass, region==region_plot),
             aes(x=year,y=demand_EJ,group=mode,fill=mode),position=position_stack(),stat="identity",color="black")+
    facet_wrap(~EDGE_scenario)+
    ylab("Energy (EJ)") +
    ggtitle(paste0("Final Energy Demand by Mode, Passenger, ", region_plot))+
    theme(axis.text.x = element_text(angle = 90))+
    scale_x_continuous(breaks=years_plot)
  
  plot_f=ggplot()+
    geom_bar(data=df%>%filter(sector %in% freight,region==region_plot),
             aes(x=year,y=demand_EJ,group=mode,fill=mode),position=position_stack(),stat="identity",color="black")+
    facet_wrap(~EDGE_scenario) +
    ggtitle(paste0("Final Energy Demand by Mode, Freight, ", region_plot))+
    ylab("Energy (EJ)") +
    theme(axis.text.x = element_text(angle = 90))+
    scale_x_continuous(breaks=years_plot)
  
  plot=list(plot_p,plot_f)
  return(plot)
}

p=FE_modes_bar(demandEJ = demandF_plot_EJ)
p[[1]]
p[[2]]
```

```{r, echo=FALSE}
## function that calculates FE split and splits out the liquids by source
FE_modes_bar_oilcomponent=function(demandEJ, msect="trn_pass", region_plot){
  if(msect == "trn_pass")
    sector_display = "Passenger"
  if(msect == "trn_freight")
    sector_display = "Freight"
    
  #group by subsector_L1 and summarise the demand
  df=demandEJ[, .(demand_EJ=sum(demand_EJ)),
              by = c("EDGE_scenario", "region", "year","subsector_L1","subsector_L3","sector","technology")]
  df=df[order(year)]
  df=df[year %in% years_plot,]
  ## give proper names to the categories
  df=merge(df, edgeTrpLib::L1mapping, all.x=TRUE, by="subsector_L1")
  
  df[,technology := ifelse(technology == "LA-BEV", "BEV", technology)]
  df[,technology := ifelse(technology == "Electric", "El. Trains", technology)]
  ## select order of facerts
  df$technology = factor(df$technology, levels=c("BEV","FCEV","Hybrid Liquids", "El. Trains", "NG","Liquids", "Coal"))

  #plot
  plot_psm = ggplot()+
    geom_bar(data=df%>%filter(sector == msect, region == region_plot),
             aes(x=year,y=demand_EJ,group=technology,fill=technology),
             position=position_stack(),stat="identity", alpha = 0.9)+
    theme_light()+
    ggtitle(paste0("Final Energy Demand by Tech, ", sector_display, ", ", region_plot))+
    theme(axis.text.x = element_text(angle = 90),
        strip.text.x = element_text(size = 13, color = "black"))+
    scale_x_continuous(breaks=years_plot)+
    scale_fill_brewer(palette = "Set1")+
    xlab("Year")+
    ylab("Final energy demand [EJ]")+ 
    facet_wrap(~EDGE_scenario) +
    guides(fill=guide_legend(title="Technology"))
  
    plot_psm_LDV = ggplot()+
    geom_bar(data=df%>%filter(sector == msect, region == region_plot, mode == "4W"),
             aes(x=year,y=demand_EJ,group=technology,fill=technology),
             position=position_stack(),stat="identity", alpha = 0.9)+
    theme_light()+
    ggtitle(paste0("Final Energy Demand by Tech, LDVs, ", region_plot))+
    theme(axis.text.x = element_text(angle = 90),
          strip.text.x = element_text(size = 13, color = "black"),
          strip.background=element_rect(fill="white"),
          axis.text = element_text(size=13),
          title = element_text(size=13),
          legend.text = element_text(size=13))+
    scale_x_continuous(breaks=years_plot)+
    scale_fill_brewer(palette = "Set1")+
    xlab("Year")+
    ylab("Final energy demand [EJ]")+ 
    facet_wrap(~EDGE_scenario) +
    guides(fill=guide_legend(title="Technology"))  
  
    plot_list = list(plot_psm, plot_psm_LDV)
  return(plot_list)
}



FE_modes_bar_oilcomponent(demandEJ = demandF_plot_EJ, msect="trn_pass", region=region_plot)
FE_modes_bar_oilcomponent(demandEJ = demandF_plot_EJ, msect="trn_pass", region="GLO")

```


```{r, echo=FALSE}
FE_modes_bar1=function(demandEJ, msect="trn_pass", region_plot){
  if(msect == "trn_pass")
    sector_display = "Passenger"
  if(msect == "trn_freight")
    sector_display = "Freight"

  ## group by subsector_L1 and summarise the demand
  df=demandEJ[, .(demand_EJ=sum(demand_EJ)),
              by = c("EDGE_scenario", "region", "year","subsector_L1","sector")]
  df=df[order(year) & year %in% years_plot]
  ## give proper names to the categories
  df=merge(df, edgeTrpLib::L1mapping, all.x=TRUE, by="subsector_L1")
  #plot
  plot_p=ggplot()+
    geom_bar(data=df%>%filter(sector == msect, region == region_plot),
             aes(x=year,y=demand_EJ,group=mode,fill=mode),
             position=position_stack(),stat="identity",color="black")+
    facet_wrap(~EDGE_scenario) +
    ylab("Energy (EJ)") +
    ggtitle(paste0("Final Energy Demand by Mode, ", sector_display, ", ", region_plot))+
    theme(axis.text.x = element_text(angle = 90))+
    scale_x_continuous(breaks=years_plot)
  
  return(plot_p)
}

FE_modes_bar1(demandEJ = demandF_plot_EJ, region_plot = region_plot)
```



```{r, echo=FALSE}
FE_modes_bar_oilVSelec=function(demandEJ, region_plot){
  sector_display = "Total transport"
  ## group by subsector_L1 and summarise the demand
  df=demandEJ[, .(demand_EJ=sum(demand_EJ)),
              by = c("EDGE_scenario", "region", "year","subsector_L1","sector","technology")]
  df[, tech_plot := ifelse(technology %in% c("BEV","Electric"), "Electriciy", NA)]
  df[, tech_plot := ifelse(technology %in% c("Liquids", "Hybrid Liquids"), "Liquids", tech_plot)]
  df=df[!is.na(tech_plot),] ## only liquids and electric driven entries interesting
  df=df[order(year) & year %in% years_plot]
  ## give proper names to the categories
  df=merge(df, edgeTrpLib::L1mapping, all.x=TRUE, by="subsector_L1")
  df[,short_names:=ifelse(mode %in% c("Buses","Rail Passenger","High Speed Rail"),"Other Passenger",NA)]
  df[,short_names:=ifelse(mode %in% c("2W","4W","Three Wheelers"),"LDV",short_names)]
  df[,short_names:=ifelse(mode %in% c("Domestic Aviation","International Aviation"),"Aviation",short_names)]
  df[,short_names:=ifelse(mode %in% c("International Shipping","Domestic Shipping"),"Shipping",short_names)]
  df[,short_names:=ifelse(mode %in% c("Road Freight","Rail Freight"),"Road and Rail Freight",short_names)]
  
  #plot
  plot_p=ggplot()+
    geom_bar(data=df%>%filter(region == region_plot, year ==2050),
             aes(x=tech_plot,y=demand_EJ,group=short_names,fill=short_names),
             position=position_stack(),stat="identity",alpha=0.95)+
    facet_wrap(~EDGE_scenario) +
    ylab("Energy (EJ)") +
    ggtitle(paste0("Final Energy Demand by Mode in 2050, total transport ", region_plot))+
    theme_light()+
    theme(axis.text.x = element_text(angle = 90),
          axis.title.x = element_blank(),
          strip.text.x = element_text(size = 13, color = "black"),
          strip.background=element_rect(fill="white"),
          axis.text = element_text(size=13),
          title = element_text(size=13),
          legend.text = element_text(size=13))+
    scale_fill_brewer(palette = "Set2")+
    guides(fill=guide_legend(title="Transport mode"))
  
  return(plot_p)
}

FE_modes_bar_oilVSelec(demandEJ = demandF_plot_EJ, region_plot = region_plot)
```


## FE composition

```{r, echo=FALSE}

FE_modeshares_area=function(demandEJ){
  #group by subsector_L3 and summarise the demand
  df=demandEJ[, .(demand_EJ=sum(demand_EJ)),
              by = c("EDGE_scenario", "region", "year","subsector_L3")]
  #order by year
  df=df[order(year)]
  df=df[year>=2005,]
  #plot
  plot=ggplot()+
    geom_area(data=df %>% filter(year <= max(years_plot), region == region_plot),
              aes(x=year,y=demand_EJ,group=subsector_L3,fill=subsector_L3),
              color="black")+
    facet_wrap(~EDGE_scenario)+
    ylab("Energy (EJ)") +
    ggtitle("Final Energy Demand, Mode composition")+
    theme(axis.text.x = element_text(angle = 90, hjust = 1))
  
  return(plot)
}

p=FE_modeshares_area(demandEJ = demandF_plot_EJ)
p
## ggsave("FE_modeshares.png")
```



```{r, echo=FALSE}
## fuel use by sector
fuel_shares_area=function(demandEJ, msect="trn_pass", region_plot){
  if(msect == "trn_pass")
    sector_display = "Passenger"
  if(msect == "trn_freight")
    sector_display = "Freight"
  ##group by sector and technology and summarise demand
  df=demandEJ[, .(demand_EJ=sum(demand_EJ)),
              by = c("EDGE_scenario", "region", "year","technology","sector")]

  df=df[order(year) & year>=2005,]
  #plot
  plot1=ggplot()+
    geom_area(data=df%>%filter(sector == msect, year <= max(years_plot), region == region_plot),
              aes(x=year,y=demand_EJ,group=technology,fill=technology),position="fill")+
    facet_wrap(~EDGE_scenario)+
    ggtitle(paste0("Final Energy Demand, ", sector_display, ", Fuel Composition"))+
    ylab("Share")
    theme(axis.text.x = element_text(angle = 90, hjust = 1))
    
  return(plot1)
}

p=fuel_shares_area(demandEJ = demandF_plot_EJ, region_plot = region_plot)
p

```


```{r, echo=FALSE}

SW_trend_plot = function(FV_SW,sector_plot){
  if (sector_plot == "trn_pass") {
  FV_SW=FV_SW[iso=="DEU" & vehicle_type =="Large Car and SUV",]
  } else if (sector_plot =="trn_freight"){
  FV_SW=FV_SW[iso=="DEU" & vehicle_type =="Truck (16-32t)",]
  } else if (sector_plot =="trn_aviation_intl"){
  FV_SW=FV_SW[iso=="DEU" & subsector_L3 =="International Aviation",]
  } else if (sector_plot =="trn_shipping_intl"){
  FV_SW=FV_SW[iso=="DEU" & subsector_L3 =="International Ship",]
  }
  FV_SW[,type:=ifelse(technology=="Liquids", "Conventional ICE (Liquid fuels)",NA)]
  FV_SW[,type:=ifelse(technology=="NG", "Natural Gas ICE",type)]
  FV_SW[,type:=ifelse(technology=="BEV", "Alternative fuels: BEV",type)]
  FV_SW[,type:=ifelse(technology=="FCEV", "Alternative fuels: FCEV",type)]
  FV_SW[,type:=ifelse(technology=="Hybrid Liquids", "Unconventional ICE (Hybrid)",type)]
  
  p=ggplot()+
    geom_line(data=FV_SW%>%filter(year>= min(years_plot), year<=max(years_plot)),aes(x=year,y=sw,group=type,color=type),alpha = 0.8,size=1.5)+
    theme_light()+
    facet_wrap(~EDGE_scenario)+
    theme(axis.text.x = element_text(angle = 90, hjust = 1),
          axis.text = element_text(size=13),
          title = element_text(size=14),
          legend.text = element_text(size=13))+
    scale_x_continuous(breaks=years_plot)+
    xlab("Year")+
    ylab ("Preference factors tech. types [-]")+
    ggtitle(paste0("Preference factors trend for tech. types for ", sector_plot, " [-]"))+
    theme(strip.text.x = element_text(size=13,color="black"),
          strip.background = element_rect(fill="white",color = "black"))+
    scale_color_discrete(name="Technology type")
  return(p)
  }

p=SW_trend_plot(FV_SW=sw_tech,sector_plot)
p
```