Newer
Older
Alois Dirnaichner
committed
library(optparse)
opt_parser = OptionParser(
description = "Coupled version of EDGE-T, to be run within a REMIND output folder.",
option_list = list(
make_option(
"--reporting", action="store_true",
help="Store output files in subfolder EDGE-T")));
opt = parse_args(opt_parser);
library(data.table)
library(gdx)
library(gdxdt)
library(edgeTrpLib)
library(rmndt)
library(moinput)
## use cached input data for speed purpose
setConfig(forcecache=T)
data_folder <- "EDGE-T"
mapspath <- function(fname){
file.path("../../modules/35_transport/edge_esm/input", fname)
}
datapath <- function(fname){
file.path(data_folder, fname)
}
REMINDpath <- function(fname){
file.path("../../", fname)
}
REMINDyears <- c(1990,
seq(2005, 2060, by = 5),
seq(2070, 2110, by = 10),
2130, 2150)
gdx <- "input.gdx"
if(file.exists("fulldata.gdx"))
gdx <- "fulldata.gdx"
load("config.Rdata")
scenario <- cfg$gms$cm_GDPscen
EDGE_scenario <- cfg$gms$cm_EDGEtr_scen
EDGEscenarios <- fread("../../modules/35_transport/edge_esm/input/EDGEscenario_description.csv")[scenario_name == EDGE_scenario]
merge_traccs <<- EDGEscenarios[options == "merge_traccs", switch]
addvintages <<- EDGEscenarios[options == "addvintages", switch]
inconvenience <<- EDGEscenarios[options == "inconvenience", switch]
selfmarket_taxes <<- EDGEscenarios[options == "selfmarket_taxes", switch]
selfmarket_policypush <<- EDGEscenarios[options == "selfmarket_policypush", switch]
selfmarket_acceptancy <<- EDGEscenarios[options == "selfmarket_acceptancy", switch]
if (EDGE_scenario == "Conservative_liquids") {
techswitch <<- "Liquids"
} else if (EDGE_scenario %in% c("Electricity_push", "Smart_lifestyles_Electricity_push")) {
techswitch <<- "BEV"
} else if (EDGE_scenario == "Hydrogen_push") {
techswitch <<- "FCEV"
} else {
print("You selected a not allowed scenario. Scenarios allowed are: Conservative_liquids, Hydrogen_push, Electricity_push, Smart_lifestyles_Electricity_push")
exit()
}
endogeff <<- EDGEscenarios[options== "endogeff", switch]
enhancedtech <<- EDGEscenarios[options== "enhancedtech", switch]
rebates_febates <<- EDGEscenarios[options== "rebates_febates", switch] ##NB THEY ARE ONLY IN PSI! ONLY WORKING IN EUROPE
Alois Dirnaichner
committed
savetmpinput <<- opt$reporting
smartlifestyle <<- EDGEscenarios[options== "smartlifestyle", switch]
REMIND2ISO_MAPPING <- fread(REMINDpath(cfg$regionmapping))[, .(iso = CountryCode, region = RegionCode)]
EDGE2teESmap <- fread(mapspath("mapping_EDGE_REMIND_transport_categories.csv"))
## input data loading
input_folder = paste0("../../modules/35_transport/edge_esm/input/")
if (length(list.files(path = data_folder, pattern = "RDS")) < 8) {
createRDS(input_folder, data_folder,
SSP_scenario = scenario,
EDGE_scenario = EDGE_scenario)
}
inputdata <- loadInputData(data_folder)
vot_data = inputdata$vot_data
sw_data = inputdata$sw_data
inco_data = inputdata$inco_data
logit_params = inputdata$logit_params
int_dat = inputdata$int_dat
nonfuel_costs = inputdata$nonfuel_costs
price_nonmot = inputdata$price_nonmot
## add learning optional
setlearning = TRUE
## add optional vintages
addvintages = TRUE
## optional average of prices
average_prices = FALSE
## inconvenience costs instead of preference factors
inconvenience = TRUE
if (setlearning | addvintages){
ES_demand = readREMINDdemand(gdx, REMIND2ISO_MAPPING, EDGE2teESmap, REMINDyears)
## select from total demand only the passenger sm
ES_demand = ES_demand[sector == "trn_pass",]
}

Alois Dirnaichner
committed
if (setlearning & file.exists("demand_previousiter.RDS")) {
## load previous iteration number of cars
demand_BEVtmp = readRDS("demand_BEV.RDS")
## load previous iteration demand
ES_demandpr = readRDS("demand_previousiter.RDS")

Alois Dirnaichner
committed
## calculate non fuel costs and
nonfuel_costs = applylearning(gdx,REMINDmapping,EDGE2teESmap, demand_BEVtmp, ES_demandpr)
saveRDS(nonfuel_costs, "nonfuel_costs_learning.RDS")
}
## load price
REMIND_prices <- merge_prices(
gdx = gdx,
REMINDmapping = REMIND2ISO_MAPPING,
REMINDyears = REMINDyears,
intensity_data = int_dat,
nonfuel_costs = nonfuel_costs)
## save prices
## read last iteration count
keys <- c("iso", "year", "technology", "vehicle_type")
setkeyv(REMIND_prices, keys)
pfile <- "EDGE_transport_prices.rds"
iter <- as.vector(gdxrrw::rgdx(gdx, list(name="o_iterationNumber"))$val)
REMIND_prices[, iternum := iter]
## save REMIND prices (before dampening)
saveRDS(REMIND_prices, paste0("REMINDprices", iter, ".RDS"))
if(average_prices){

Alois Dirnaichner
committed
if(max(unique(REMIND_prices$iternum)) >= 20 & max(unique(REMIND_prices$iternum)) <= 30){
old_prices <- readRDS(pfile)
all_prices <- rbind(old_prices, REMIND_prices)
setkeyv(all_prices, keys)
## apply moving avg
REMIND_prices <- REMIND_prices[
all_prices[iternum >= 20, mean(tot_price), by=keys], tot_price := V1]
all_prices <- rbind(old_prices, REMIND_prices)
}else{
all_prices <- REMIND_prices
}
saveRDS(all_prices, pfile)
## save REMIND prices (after dampening)
saveRDS(REMIND_prices,paste0("REMINDpricesDampened", iter, ".RDS"))
}
REMIND_prices[, "iternum" := NULL]
## calculates logit
if (inconvenience) {

Alois Dirnaichner
committed
years=copy(REMINDyears)

Alois Dirnaichner
committed
logit_data <- calculate_logit_inconv_endog(
prices= REMIND_prices[tot_price > 0],
vot_data = vot_data,
inco_data = inco_data,
logit_params = logit_params,
intensity_data = int_dat,
price_nonmot = price_nonmot)
} else{
logit_data <- calculate_logit(
REMIND_prices[tot_price > 0],
REMIND2ISO_MAPPING,
vot_data = vot_data,
sw_data = sw_data,
logit_params = logit_params,
intensity_data = int_dat,
price_nonmot = price_nonmot)
}
shares <- logit_data[["share_list"]] ## shares of alternatives for each level of the logit function

Alois Dirnaichner
committed
## shares$VS1_shares=shares$VS1_shares[,-c("sector","subsector_L2","subsector_L3")]
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
mj_km_data <- logit_data[["mj_km_data"]] ## energy intensity at a technology level
prices <- logit_data[["prices_list"]] ## prices at each level of the logit function, 1990USD/pkm
if(addvintages){
## calculate vintages (new shares, prices, intensity)
vintages = calcVint(shares = shares,
totdem_regr = ES_demand,
prices = prices,
mj_km_data = mj_km_data,
years = REMINDyears)
shares$FV_shares = vintages[["shares"]]$FV_shares
prices = vintages[["prices"]]
mj_km_data = vintages[["mj_km_data"]]
}
## use logit to calculate shares and intensities (on tech level)
EDGE2CESmap <- fread(mapspath("mapping_CESnodes_EDGE.csv"))
shares_intensity_demand <- shares_intensity_and_demand(
logit_shares=shares,
MJ_km_base=mj_km_data,
EDGE2CESmap=EDGE2CESmap,
REMINDyears=REMINDyears,
scenario=scenario,
REMIND2ISO_MAPPING=REMIND2ISO_MAPPING)
demByTech <- shares_intensity_demand[["demand"]] ##in [-]
intensity <- shares_intensity_demand[["demandI"]] ##in million pkm/EJ
norm_demand <- shares_intensity_demand$demandF_plot_pkm ## total demand is 1, required for costs

Alois Dirnaichner
committed
if (setlearning) {
demand_BEV=calc_num_vehicles( norm_dem_BEV = norm_demand[technology == "BEV" & ## battery vehicles
subsector_L1 == "trn_pass_road_LDV_4W", ## only 4wheelers
c("iso", "year", "sector", "vehicle_type", "demand_F") ],
ES_demand = ES_demand)

Alois Dirnaichner
committed
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
## save number of vehicles for next iteration
saveRDS(demand_BEV, "demand_BEV.RDS")
## save the demand for next iteration renaming the column
setnames(ES_demand, old ="demand", new = "demandpr")
saveRDS(ES_demand, "demand_previousiter.RDS")
}
## use logit to calculate costs
budget <- calculate_capCosts(
base_price=prices$base,
Fdemand_ES = norm_demand,
EDGE2CESmap = EDGE2CESmap,
EDGE2teESmap = EDGE2teESmap,
REMINDyears = REMINDyears,
scenario = scenario,
REMIND2ISO_MAPPING=REMIND2ISO_MAPPING)
## full REMIND time range for inputs
REMINDtall <- c(seq(1900,1985,5),
seq(1990, 2060, by = 5),
seq(2070, 2110, by = 10),
2130, 2150)
## prepare the entries to be saved in the gdx files: intensity, shares, non_fuel_price. Final entries: intensity in [trillionkm/Twa], capcost in [2005USD/trillionpkm], shares in [-]
finalInputs <- prepare4REMIND(
demByTech = demByTech,
intensity = intensity,
capCost = budget,
EDGE2teESmap = EDGE2teESmap,
REMINDtall = REMINDtall,
REMIND2ISO_MAPPING=REMIND2ISO_MAPPING)

Alois Dirnaichner
committed
## add the columns of SSP scenario and EDGE scenario to the output parameters
for (i in names(finalInputs)) {
finalInputs[[i]]$SSP_scenario <- scenario
finalInputs[[i]]$EDGE_scenario <- EDGE_scenario
}
## calculate shares
finalInputs$shFeCes = finalInputs$demByTech[, value := value/sum(value), by = c("tall", "all_regi", "all_in")]
## CapCosts
writegdx.parameter("p35_esCapCost.gdx", finalInputs$capCost, "p35_esCapCost",
valcol="value", uelcols=c("tall", "all_regi", "SSP_scenario", "EDGE_scenario", "all_teEs"))
## Intensities
writegdx.parameter("p35_fe2es.gdx", finalInputs$intensity, "p35_fe2es",
valcol="value", uelcols = c("tall", "all_regi", "SSP_scenario", "EDGE_scenario", "all_teEs"))
## Shares: demand can represent the shares since it is normalized
writegdx.parameter("p35_shFeCes.gdx", finalInputs$shFeCes, "p35_shFeCes",
valcol="value",
uelcols = c("tall", "all_regi", "SSP_scenario", "EDGE_scenario", "all_enty", "all_in", "all_teEs"))