Skip to content
Snippets Groups Projects
Commit a8a11d44 authored by Petra Lasch-Born's avatar Petra Lasch-Born
Browse files

Delete sr_forska.f

parent c243acb8
No related branches found
No related tags found
No related merge requests found
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!
! Subroutines used only with flag flag_forska
!
! cetbl_4c
! CGTSPE_4c
! CLIMEF_4c
! gsdr_cal
! tmp_mean
! therm
!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
SUBROUTINE CETBL_4c
use data_effect
use data_taxa
use data_simul
use data_stand
! function declarations
REAL RAND
! local variables
real :: PMX
INTEGER :: I,J,K
integer,dimension(17) :: nsap= 0
real,dimension(17) :: amdest = 0., &
amdest1 = 0.
if (flag_light.eq.1.or.flag_light.eq.2) then
PMX= Vstruct(lowest_layer)%Irel
else if (flag_light.eq.3.OR.flag_light.EQ.4) then
PMX = Bgpool(lowest_layer+1)
end if
! amend the EST for climate according to the climate multipliers
do i=1,17
AMDEST(I)=EST(I)*GDDMX(I)*DRMX(I)*TCMX(I)*TWMX(I)*PMX &
*XTFTMX(I)*TWARMX(I)
AMDEST1(I)=EST(I)*AMIN1(GDDMX(I),DRMX(I),TCMX(I),TWMX(I), &
PMX,XTFTMX(I),TWARMX(I))
IF(GSC(I).EQ.0.0)GOTO 301
301 CONTINUE
end do
RETURN
END subroutine cetbl_4c
SUBROUTINE CGTSPE_4c
! input of species data for regeneration
! reads species parameters
use data_simul
use data_taxa
! local variables
INTEGER:: I,J,K,nowunit,ntax
! reads number of taxa (NTAX)
nowunit=getunit()
open(unit=nowunit,file= '/data/safe/4C/4C_input/par/param_4c.dat', status='old')
READ(nowunit,*) NTAX
! reads for each taxon:
! NAM(I): name (8 characters)
! HMX(I): max height (m)
! HDS(I): initial slope of diameter vs height (m/cm)
! hgro(I): maximum height growth per year (m)
! ALP(I): half-saturation point (umol/m**2/s)
! LCP(I): compensation point (umol/m**2/s)
! GSC(I): growth constant (cm**2/m/yr)
! EST(I): sapling establishment rate (/ha/yr)
! TDI(I): threshold relative growth efficiency for increased mortality
! UMN(I): intrinsic mortality rate (/yr)
! UMX(I): suppressed mortality rate (/yr)
! SPR(I): number of sprouts per tree (0.0 or greater)
! SMN(I): minimum diameter for sprouting (cm)
! LAC(I): initial leaf area/D2 ratio (m**2/cm**2)
! LAF(I): sapwood turnover rate (/yr)
! BCF(I): stemwood biomass conversion factor (kg/cm**2/m)
! R(I): volumetric sapwood maintenance cost (/yr)
! Q10(I): rate of increase of respiration
! TMIN(I): minimum temperature for assimilation
! TMAX(I): maximum temperature for assimilation
! CCP(I): species compensation point
! DRI(I): maximum tolerated drought-index
!MINGDD(I): minimum growing degree-days
! MINTC(I): minimum temperature of coldest month (degrees C)
! MAXTC(I): maximum temperature of coldest month (degrees C)
! MINTW(I): minimum temperature of warmest month (degrees C)
! DORE(I): deciduous or evergreen 0=deciduous,1=evergreen
! ntc(I): nitrogen tolerance class (1,2,3,4,5)
! e1(I): Parameter smin of haadee height growth function
! e2(I): Second Parameter of haadee height growth function
! geff(I): growth efficiency factor of shaded trees
DO I=1,ntax
READ(nowunit,1) NAM(I)
READ(nowunit,*) HMX(I),HDS(I),hgro(I),ALP(I),LCP(I),GSC(I), &
EST(I),TDI(I),UMN(I),UMX(I),SPR(I),SMN(I),LAC(I),LAF(I),BCF(I), &
R(I),Q10(I),TMIN(I),TMAX(I),CCP(I),DRI(I),MINGDD(I),MINTC(I), &
MAXTC(I),MINTW(I),DORE(I),ntc(I)
IF(SPR(I).EQ.0)SMN(I)=0.0
DRI(I)=DRI(I)+0.3
end do
RETURN
! format statements
1 FORMAT(A8)
END subroutine cgtspe_4c
SUBROUTINE CLIMEF_4c
use data_taxa
use data_effect
use data_simul
! computes the growth multipliers.
! checks to see if GDD, temp coldest month below minimum for species
! if so multipliers = 0 else equals 1.
! computes drought effect multipliers as per ICP
! sets max.temp of coldest month multiplier to 0 or 1 for ESTBL routine
! checks if warmest month exceeds species limit
! averages light intensity (INS) over time step.
! local parameters
INTEGER :: I,J,K
REAL ::TOTGDD= 0, &
TGSDRT=0., &
TM4DRT=0.
real,dimension(17) :: tottft=0.
! gives growth multiplier for each species to be applied in subroutine
! TVXT or ETBL - growing degree days, growing/-4 drought index, temps.
TOTGDD=GDD(time)
TGSDRT=GSDRI(time)
TM4DRT=M4DRI(time)
! totals and then averages species specific multipliers etc. over timestep
! that is sapres, mutmx, tftmx
do i=1,17
xtftmx(i) = tftmx(i,time)
end do
! set multipliers to 1 before checking on environment
do i=1,17
GDDMX(I)=1.0
TWARMX(I)=1.0
TCMX(I)=1.0
TWMX(I)=1.0
TWARMX(I)=1.0
! check to see is a deciduous species
IF(DORE(I).EQ.0)THEN
DRMX(I)=1-((TGSDRT/DRI(I))**2)
IF(DRMX(I).LT.0.0)DRMX(I)=0.0
ELSE
! must be an evergreen
DRMX(I)=1-((TM4DRT/DRI(I))**2)
IF(DRMX(I).LT.0.0)DRMX(I)=0.0
ENDIF
! check if environment exceeds species limits - step functions
! if so set multiplier to zero
IF(TOTGDD.LT.MINGDD(I))GDDMX(I)=0.0
IF(TCOLD.LT.MINTC(I))TCMX(I)=0.0
IF(TCOLD.GT.MAXTC(I))TWMX(I)=0.0
IF(TWARM.LT.MINTW(I))TWARMX(I)=0.0
! write out to screen and forcli.out multipliers for each species
! keep these commented as they use a lot of paper <--M.B was ist damit gemeint? ist das relevant fr den nutzer.
end do
do i=1,17
end do
end subroutine climef_4c
SUBROUTINE gsdr_cal
! calculation of gsdri and m4dri for FORSKA regeneration
use data_climate
use data_effect
use data_simul
use data_evapo
if(tp(iday,time).ge.-4.) then
foudpt = foudpt + pet
foudae = foudae + aet
end if
if(tp(iday,time).ge.4.) then
tgsdpt = tgsdpt + pet
tgsdae = tgsdae + aet
end if
if(iday.eq. recs(time)) then
gsdri(time) = (tgsdpt-tgsdae)/tgsdpt
m4dri(time) = (foudpt-foudae)/foudpt
end if
END SUBROUTINE gsdr_cal
SUBROUTINE tmp_mean
! calculation of environmental variables twarm, tcold and long-term monthly
! mean of temperature
USE data_effect
USE data_climate
USE data_simul
real,dimension(12) :: tmph = 0.
integer :: i,l,m,dayc
allocate( tpmean(12))
allocate (gdd(year))
allocate (tftmx(17,year))
monrec=(/31,28,31,30,31,30,31,31,30,31,30,31/)
tpmean = 0
if (recs(time).eq.366) then
monrec(2)=29
else
monrec(2)=28
endif
do k = 1, year
! call calculation of env. variables
call therm(k)
dayc = 1
do l= 1,12
tmph(l) = 0.
do m=1,monrec(l)
tmph(l) = tmph(l) + tp( dayc,k)
dayc = dayc + 1
end do
tmph(l) = tmph(l)/monrec(l)
tpmean(l) = tpmean(l) + tmph(l)
end do
end do
do l=1,12
tpmean(l) = tpmean(l)/year
end do
! work out which is temperature of coldest month
! and warmest month for year
tcold = 50.0
twarm = -50.0
do k=1,12
if(tpmean(k).lt.tcold) tcold = tpmean(k)
if(tpmean(k).gt.twarm) twarm = tpmean(k)
end do
END SUBROUTINE tmp_mean
SUBROUTINE therm(ktime)
! therm - calculation of environmental variables (annual and species specific)
! gdd - growing degress day
! tftmx - thermal multiplier - species specific
use data_climate
use data_simul
use data_effect
use data_taxa
implicit none
! local variables
integer :: j,k,m4day,gdday1,ktime
real,dimension(17) :: tft,tresft
gdd(ktime) = 0.
m4day=0
gdday1=0
do j=1,17
tft(j)=0.0
tresft(j)=0.0
end do
! calculate ft values for each day of the year
! for each species upto number of taxa
do k=1,17
do j=1,recs(ktime)
! add up mutmx multiplier
tresft(k) = tresft(k)+(q10(k)**((tp(j,ktime) - tref)*0.1))
if(k.eq.1) then
if (tp(j,ktime).ge.tref) gdd(ktime) = gdd(ktime) + (tp(j,ktime)-tref)
end if
! first check to see if deciduous or not
if(dore(k).eq.0)then
! totalling daily deciduous multipliers for growing season only
if(tp(j,ktime).ge.5.0) then
tft(k) = tft(k)+(4*(tp(j,ktime)-tmin(k))*(tmax(k)-tp(j,ktime))/(tmin(k)-tmax(k))**2)
endif
else
! must be evergreen so produce daily values
! do not allow below zero
! checks for temperature greater than -4 oC for evergreen species
if(tp(j,ktime).ge.-4.0)then
tft(k)=tft(k)+(4*((tp(j,ktime)-tmin(k))*(tmax(k)-tp(j,ktime))) &
/(tmin(k)-tmax(k))**2)
endif
endif
if(tft(k).lt.0.0)tft(k)=0.0
end do
end do
do j=1,recs(ktime)
if(tp(j,ktime).ge.5.0) then
gdday1=gdday1+1
end if
if(tp(j,ktime).ge.-4.0) then
m4day=m4day+1
end if
end do
do k=1,17
if(dore(k).eq.0) then
tftmx(k,ktime) = tft(k)/gdday1
else
tftmx(k,ktime) = tft(k)/m4day
end if
end do
END SUBROUTINE therm
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment