Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
!*****************************************************************!
!* *!
!* 4C (FORESEE) Simulation Model *!
!* *!
!* *!
!* Subroutines for: *!
!* Soil and Water - Programs *!
!* *!
!* contains: *!
!* SOIL *!
!* SOIL_INI *!
!* SOIL_WAT *!
!* UPT_WAT *!
!* FRED1 - ...11 *!
!* TAKE_WAT *!
!* BUCKET *!
!* SNOWPACK *!
!* HUM_ADD *!
!* BC_APPL: application of biochar *!
!* *!
!* Copyright (C) 1996-2018 *!
!* Potsdam Institute for Climate Impact Reserach (PIK) *!
!* Authors and contributors see AUTHOR file *!
!* This file is part of 4C and is licensed under BSD-2-Clause *!
!* See LICENSE file or under: *!
!* http://www.https://opensource.org/licenses/BSD-2-Clause *!
!* Contact: *!
!* https://gitlab.pik-potsdam.de/foresee/4C *!
!* *!
!*****************************************************************!
SUBROUTINE soil
! Soil processes (frame)
use data_climate
use data_depo
use data_out
use data_simul
use data_soil
use data_soil_cn
implicit none
call evapo
call intercep
call soil_wat
call soil_temp
if (flag_wurz .eq. 4 .or. flag_wurz .eq. 6) then
call soil_stress !calculate ground stress factors
call cr_depth !define root depth
endif
call soil_cn
call root_eff
END subroutine soil
!**************************************************************
SUBROUTINE soil_ini
! Initialisation of soil data and parameters
use data_inter
use data_evapo
use data_out
use data_par
use data_simul
use data_soil
use data_soil_cn
use data_species
use data_stand
implicit none
integer i,j,k
real d_0, t_0
! Table of quarz and clay content (mass%) versus wlam
real, dimension(17) :: xwlam = (/1.5, 1.15, 0.9, 0.67, 0.6, 0.5, 0.38, 0.37, 0.3, 0.29, 0.27, 0.26, 0.25, 0.24, 0.23, 0.22, 0.15/), &
yquarz = (/93.0,85.0,80.0, 82.0,76.0, 64.0, 65.0, 51.0,60.0, 30.0, 14.0, 10.0, 12.0, 20.0, 30.0, 43.0, 23.0/), &
yclay = (/3.0, 3.0, 3.0, 12.0, 6.0, 6.0, 10.0, 4.0,21.0, 12.0, 10.0, 37.0, 15.0, 40.0, 30.0, 35.0, 55.0/)
real value
real, dimension(nlay):: humush(nlay)
real, dimension(nlay):: xfcap, xwiltp, xpv ! output of addition for water capacities
! estimation of soil layer values
d_0 = 0.
do j = 1, nlay
t_0 = thick(j)
mid(j) = d_0 + 0.5*t_0
d_0 = d_0 + t_0
depth(j) = d_0
enddo
perc = 0.
wupt_r = 0.
wupt_ev = 0.
thick_1 = thick(1)
select case (flag_soilin)
case (0,2)
do i=1,nlay
if (i .gt. 1) then
call tab_int(xwlam, yquarz, 17, wlam(i), value)
sandv(i) = value / 100. ! Mass% of mineral fraction
call tab_int(xwlam, yclay, 17, wlam(i), value)
clayv(i) = value / 100.
siltv(i) = 1. - clayv(i) - sandv(i)
else
sandv(1) = 0.0
clayv(1) = 0.0
siltv(1) = 0.0
endif
enddo
case (1,3,4)
clayv = clayv / 100.
sandv = sandv / 100.
siltv = 1. - clayv - sandv
if ((sandv(1) .le. zero) .and. (clayv(1) .le. zero)) siltv(1) = 0.
skelv = skelv / 100.
humusv = humusv / 100.
end select
! Settings for subroutine take_wat
skelfact = 1.
pv = skelfact * pv_v * thick * 0.1 ! mm
wilt_p = skelfact * wilt_p_v * thick * 0.1 ! mm
field_cap = skelfact * f_cap_v * thick * 0.1 ! mm
wats = field_cap ! mm
watvol = f_cap_v ! vol%
n_ev_d = nlay
nlgrw = nlay+1
do i=1,nlay
if (w_ev_d .gt. depth(i)) n_ev_d = i
if (grwlev .gt. depth(i)) nlgrw = i+1
vol(i) = thick(i) * 10000.
enddo
! dry mass of first layer
dmass = vol * dens
rmass1 = dmass(1) - (C_hum(1) + C_opm(1)) / cpart ! corection term of first layer
humush = humusv
if (2.*C_hum(1) .lt. humusv(1)*dmass(1)) then
humusv(1) = C_hum(1) / (dmass(1) * cpart)
endif
do i=2, nlay
humusv(i) = C_hum(i) / (dmass(i) * cpart)
enddo
if (flag_bc .gt. 0) y_bc_n = 1 ! actual number of biochar application
! calculation of additions for water capacities
call hum_add(xfcap, xwiltp, xpv)
fcaph = f_cap_v - xfcap
wiltph = wilt_p_v - xwiltp
pvh = pv_v - xpv
! ground water
do i = nlgrw, nlay
wats(i) = pv(i)
enddo
interc_can = 0.
int_st_can = 0.
interc_sveg = 0.
int_st_sveg = 0.
aev_i = 0.
wat_tot = SUM(wats)
END subroutine soil_ini
!**************************************************************
SUBROUTINE soil_wat
use data_out
! soil water balance
use data_climate
use data_evapo
use data_inter
use data_out
use data_par
use data_simul
use data_soil
use data_species
use data_stand
implicit none
real :: eva_dem ! evaporation demand of soil
real :: p_inf = 0. ! infiltrated water
real :: pev ! local: soil evaporation
real :: watot, wetot ! total water content at start and end
real :: wutot ! total water uptake from the soil
real :: wutot_ev ! total water uptake by soil evaporation
real :: wutot_r ! total water uptake by roots
real, allocatable, dimension(:) :: upt ! local array for uptake
real, external :: wat_new
real enr, wa, we, percolnl, snow_sm, buckdepth
integer j
allocate (upt(nlay))
wupt_ev = 0.
aev_s = 0.
prec_stand = MAX(0., prec - interc_can - interc_sveg) ! stand precipitation
if (flag_int .gt. 1000) then
prec_stand = prec_stand * prec_stand_red / 100.
endif
call snowpack(snow_sm, p_inf, pev)
if (anz_coh .le. 0) pev = pet
eva_dem = MAX(0., p_inf) - pev ! evaporation demand of soil
! if all stand precipitation is evaporated and there is still a demand
! there is an uptake from soil layers (up to an certain depth)
if (eva_dem .lt. 0.) then
if (snow .le. 0) call take_wat(eva_dem, cover)
aev_s = aev_s + p_inf + SUM(wupt_ev)
else
aev_s = aev_s + pev
endif ! eva_dem
aet = aev_s + aev_i
p_inf = MAX(eva_dem, 0.)
upt = wupt_ev
watot = SUM(wats) ! total initial water content
do j = 1, nlgrw-1
enr = p_inf - upt(j)
wa = wats(j) - field_cap(j)
we = wat_new(wa, enr, j)
p_inf = enr + wa - we
perc(j) = MAX(p_inf, 0.)
wats(j) = MAX(we+field_cap(j), wilt_p(j))
enddo
do j = nlgrw, nlay
enr = p_inf - upt(j)
wa = wats(j) - field_cap(j)
we = pv(j) - field_cap(j) ! ground water level is constant!
p_inf = enr + wa - we
perc(j) = MAX(p_inf, 0.)
wats(j) = MAX(we+field_cap(j), wilt_p(j))
enddo
if (flag_wred .le. 10) then
call upt_wat
else
call upt_wat1
endif
! root uptake balanced imediate after calculation
upt = upt + wupt_r
wats = wats - wupt_r
watvol = 10.*wats/(thick * skelfact) ! estimation for complete layer in Vol% without skeleton (only soil substrate)
! total water quantities
wetot = SUM(wats) ! total final water content
wutot_ev = SUM(wupt_ev) ! total water uptake by soil evaporation
wutot_r = SUM(wupt_r) ! total water uptake by roots
wutot = wutot_ev + wutot_r ! total water uptake
aet = aet + wutot_r ! daily total aet
percolnl = perc(nlay)
trans_tree = 0.
trans_sveg = 0.
zeig => pt%first
do while (associated(zeig))
if (zeig%coh%species .le. nspec_tree) then
trans_tree = trans_tree + zeig%coh%supply
else
trans_sveg = trans_sveg + zeig%coh%supply
endif
zeig => zeig%next
enddo ! zeig (cohorts)
! cumulative water quantities
perc_cum = perc_cum + perc(nlay)
wupt_r_c = wupt_r_c + wutot_r
wupt_e_c = wupt_e_c + wutot_ev
wupt_cum = wupt_cum + wutot
aet_cum = aet_cum + aet
dew_cum = dew_cum + dew_rime
tra_tr_cum = tra_tr_cum + trans_tree
tra_sv_cum = tra_sv_cum + trans_sveg
call bucket(bucks_100, bucks_root, buckdepth)
! number of drought days per layer
where ((wats-0.2) .le. wilt_p) s_drought = s_drought+1
if (flag_dayout .ge. 2) then
write (unit_wat, '(2I5, 7F7.2, 24F8.2)') time_cur, iday, airtemp, prec, interc_can, int_st_can, &
interc_sveg, int_st_sveg, snow, snow_sm, pet, trans_dem, &
pev, aev_s, aev_i, perc(nlay), watot, wetot, wutot, wutot_ev, wutot_r,&
trans_tree,trans_sveg, eva_dem, gp_can, aet, ceppot_can, ceppot_sveg
endif
deallocate (upt)
END subroutine soil_wat
!**************************************************************
SUBROUTINE upt_wat
! Water uptake by roots
use data_simul
use data_evapo
use data_soil
use data_stand
use data_par
use data_species
use data_climate
implicit none
real, dimension(1:anz_coh) :: tr_dem ! auxiliary arrays for cohorts
real wat_ava, hdem, frtrel, frtrel_1, hupt, hupt_c, totfrt_2, hv, demand_mistletoe_canopy
real wat_at ! total available water per layer
real wat_ar ! total available water per layer with uptake resistance
real hred ! resistance coefficient
real, external :: fred1, fred2, fred3, fred4, fred5, fred6, fred7, fred11
integer i, ianz, j, nroot3
! Calculation of Water Demand
ianz = anz_coh
tr_dem = 0
hdem = 0
hv = pet-aev_i-pev_s
if (hv .lt. 0.) hv = 0.
select case (flag_eva)
case (0,1,3)
if((pet .gt. 0.) .and. (hv .gt. 0.)) then
trans_dem = hv * alfm * (1. - exp(-gp_tot/gpmax)) ! pet (potential evapotranspiration) is reduced by intereption evaporation and potential ground evaporation
else
trans_dem = 0.0
endif
if (gp_tot .gt. zero) then
hdem = trans_dem / gp_tot
else
hdem= 0.
endif
case (8)
! potential transpiration demand of each cohort
if ((gp_tot .gt. zero) .and. (hv .gt. 0.)) then
hdem = (pet-aev_i-aev_s) / gp_tot
else
hdem= 0.
endif
case (2,4)
trans_dem = 0.
case (6,16,36)
! Eucalyptus
hv = pet
if((pet .gt. 0.) .and. (hv .gt. 0.)) then
trans_dem = hv * alfm * (1. - exp(-gp_tot/gpmax))
else
trans_dem = 0.
endif
! preparation: potential transpiration demand of each cohort
if (gp_tot .gt. zero) then
hdem = trans_dem / gp_tot
else
hdem= 0.
endif
case (7,17,37)
trans_dem = hv
! potential transpiration demand of each cohort
if (gp_tot .gt. zero) then
hdem = trans_dem / gp_tot
else
hdem= 0.
endif
end select
hdem = max(0., hdem)
! Distribution of total Demand into Demands of Cohorts
!extraction of demand of mistletoe cohort (for case flag eva = 1,3,6,7...)
zeig => pt%first
do while (associated(zeig))
if (zeig%coh%species.eq.nspec_tree+2) then
demand_mistletoe_canopy=zeig%coh%gp * zeig%coh%ntreea * hdem
end if
zeig => zeig%next
enddo
zeig => pt%first
i = 1
do while (associated(zeig))
select case (flag_eva)
case (0, 1, 3, 6, 7, 16, 17, 36, 37)
!uppermost tree cohort (with flag mistletoe) gets additinal demand of mistletoe
if (zeig%coh%mistletoe.eq.1) then
zeig%coh%demand = zeig%coh%gp * zeig%coh%ntreea * hdem + demand_mistletoe_canopy
elseif (zeig%coh%species.eq.nspec_tree+2) then ! set demand of mistletoe to zero as it will be fullfilled by the tree
zeig%coh%demand=0. ! set to zero because demand has been added to the infested tree cohort
else
zeig%coh%demand = zeig%coh%gp * zeig%coh%ntreea * hdem ! all other cohorts get their demand
end if
case (2,4)
!uppermost tree cohort (with flag mistletoe) gets additinal demand, that of mistletoe
if (zeig%coh%mistletoe.eq.1) then
zeig%coh%demand = (max(0., zeig%coh%demand - zeig%coh%aev_i) + demand_mistletoe_cohort)
endif
if (zeig%coh%species.eq.nspec_tree+2) then ! set demand of mistletoe to zero as it will be fullfilled by the tree
zeig%coh%demand=0.
endif
if (zeig%coh%mistletoe.ne.1 .AND. zeig%coh%species.ne.nspec_tree+2) then
zeig%coh%demand = max(0., zeig%coh%demand - zeig%coh%aev_i)
end if
trans_dem = trans_dem + zeig%coh%demand
end select
tr_dem(i) = zeig%coh%demand ! demand of transpiration per cohort
i = i + 1
zeig => zeig%next
enddo ! zeig (cohorts)
! Calculation of Water Supply
frtrel_1 = 1.
select case (flag_wurz)
case (0)
if (nroot_max .gt. 5) then
nroot3 = 5
else
nroot3 = nroot_max
endif
case default
nroot3=nroot_max
end select
! layers with seedlings
do j = 1,nroot3
! determination of resisctance coefficient
select case (flag_wred)
case(1)
hred = fred1(j)
case(2)
hred = fred2(j)
case(3)
hred = fred3(j)
case(4)
hred = fred4(j)
case(5)
hred = 1.
case(6)
hred = 0.5
case(7)
hred = 0.25
case(8)
hred = fred6(j)
case(10)
hred = fred7(j)
case(11)
hred = fred11(j)
end select
wat_res(j) = hred
if (temps(j) .gt. -0.3) then
wat_at = max(wats(j) - wilt_p(j), 0.) ! total available water per layer
wat_ar = hred * wat_at ! total available water per layer with uptake resistance
hupt = 0.
else
wat_ar = 0. ! frost
wat_at = 0.
hupt = 0.
endif
! Distribution of Water Supply into the Cohorts
! Distribution of Fine Roots
zeig => pt%first
i = 1 ! cohort index
do while (associated(zeig))
if (zeig%coh%species .ne. nspec_tree+2) then ! not for mistletoe
frtrel = zeig%coh%frtrelc(j)
wat_ava = frtrel * wat_ar ! available water per tree cohort and layer
if (wat_ava .ge. tr_dem(i)) then
hupt_c = tr_dem(i)
tr_dem(i) = 0.
else
hupt_c = wat_ava
tr_dem(i) = tr_dem(i) - wat_ava
endif
select case (flag_dis) !xylem clogger disturbance
case (1,2)
hupt_c = hupt_c * xylem_dis
end select
xwatupt(i,j) = hupt_c ! water uptake per cohorte and layer
zeig%coh%supply = zeig%coh%supply + hupt_c
if (zeig%coh%supply .lt.0.) then
continue
endif
hupt = hupt + hupt_c
i = i + 1
end if ! exclusion of mistletoe
zeig => zeig%next
enddo ! zeig (cohorts)
wupt_r(j) = hupt
enddo ! j
! layers without seedlings
if (totfrt_p.gt.(seedlfrt+zero)) then
totfrt_2 = 1./(totfrt_p-seedlfrt)
do j = nroot3+1, nroot_max
! determination of resisctance coefficient
select case (flag_wred)
case(1)
hred = fred1(j)
case(2)
hred = fred2(j)
case(3)
hred = fred3(j)
case(4)
hred = fred4(j)
case(5)
hred = 1.
case(6)
hred = 0.5
case(7)
hred = 0.25
end select
wat_res(j) = hred
if (temps(j) .gt. -0.3) then
wat_at = max(wats(j) - wilt_p(j), 0.) ! total available water per layer
wat_ar = hred * wat_at ! total available water per layer with uptake resistance
hupt = 0.
else
wat_ar = 0.
endif
zeig => pt%first
i = 1 ! cohort index
do while (associated(zeig))
frtrel = zeig%coh%frtrelc(j)
wat_ava = frtrel * wat_ar ! available water per tree cohort and layer
if (wat_ava .ge. tr_dem(i)) then
hupt_c = tr_dem(i)
tr_dem(i) = 0.
else
hupt_c = wat_ava
tr_dem(i) = tr_dem(i) - wat_ava
endif
select case (flag_dis) !xylem clogger disturbance
case (1,2)
hupt_c = hupt_c * xylem_dis
end select
xwatupt(i,j) = hupt_c
zeig%coh%supply = zeig%coh%supply + hupt_c
hupt = hupt + hupt_c
i = i + 1
zeig => zeig%next
enddo ! zeig (cohorts)
wupt_r(j) = hupt
enddo ! j
endif
END subroutine upt_wat
!**************************************************************
SUBROUTINE upt_wat1
! Water uptake by roots
! 2. Version
use data_simul
use data_evapo
use data_soil
use data_stand
use data_par
implicit none
real, dimension(1:anz_coh) :: tr_dem,frt_rel ! help arrays for cohorts
real wat_ava, hdem, frtrel, frtrel_1, hupt, hupt_c, totfrt_2
real wat_at ! total available water per layer
real wat_ar ! total available water per layer with uptake resistance
real hred ! resistance coefficient
real, external :: fred1, fred2, fred3, fred4, fred5, fred6, fred7, fred11
integer i, ianz, j, nroot3
ianz = anz_coh
tr_dem=0
trans_dem = (pet-aev_i) * alfm * (1. - exp(-gp_can/gpmax)) ! pet NOT reduced by ground evaporation
if (trans_dem .lt. 0.) trans_dem = 0.
! potential transpiration demand of each cohort
if (gp_can .gt. zero) then
hdem = trans_dem / gp_can
else
hdem= 0.
endif
! Estimation of transpiration demand of tree cohorts and total fine root mass
! in layers with and without seedlings
zeig => pt%first
i = 1
do while (associated(zeig))
select case (flag_eva)
case (0, 1, 3)
zeig%coh%demand = zeig%coh%gp * zeig%coh%ntreea * hdem
case (2)
zeig%coh%demand = zeig%coh%demand - zeig%coh%aev_i
end select
tr_dem(i) = zeig%coh%demand
i = i + 1
zeig => zeig%next
enddo ! zeig (cohorts)
! uptake controlled by share of roots
frtrel_1 = 1.
! layers with seedlings
do j = 1,nroot_max
! determination of resisctance coefficient
select case (flag_wred)
case(1)
hred = fred1(j)
case(2)
hred = fred2(j)
case(3)
hred = fred3(j)
case(4)
hred = fred4(j)
case(5)
hred = 1.
case(6)
hred = 0.5
case(7)
hred = 0.25
case(8) ! BKL, ArcEGMO
hred = fred6(j)
case(10)
hred = fred7(j)
end select
wat_at = max(wats(j) - wilt_p(j), 0.) ! total available water per layer
wat_ar = hred * wat_at ! total available water per layer with uptake resistance
hupt = 0.
zeig => pt%first
i = 1 ! cohort index
do while (associated(zeig))
frtrel = zeig%coh%frtrel(j) * zeig%coh%x_frt * zeig%coh%ntreea * totfrt_1
wat_ava = frtrel * wat_ar ! available water per tree cohort and layer
if (wat_ava .ge. tr_dem(i)) then
hupt_c = tr_dem(i)
tr_dem(i) = 0.
else
hupt_c = wat_ava
tr_dem(i) = tr_dem(i) - wat_ava
endif
select case (flag_dis) !xylem clogger disturbance
case (1,2)
hupt_c = hupt_c * xylem_dis
end select
xwatupt(i,j) = hupt_c
zeig%coh%supply = zeig%coh%supply + hupt_c
hupt = hupt + hupt_c
i = i + 1
zeig => zeig%next
enddo ! zeig (cohorts)
wupt_r(j) = hupt
enddo ! j
END subroutine upt_wat1
!**************************************************************
real FUNCTION fred1(j)
! Function for calculating uptake resistance
! from CHEN (1993)
! empirical relation between soil water content and resistance
! fred1=1 if (field_cap - 10%*field_cap) <= wats <= (field_cap + 10%*field_cap)
use data_par
use data_soil
implicit none
real hf, f09, f11, wc, diff
integer j
f09 = 0.9 * field_cap(j)
f11 = 1.1 * field_cap(j)
wc = wats(j)
if (wc .lt. wilt_p(j)) then
hf = 0.
else if (wc .lt. f09) then
diff = f09-wilt_p(j)
if (diff .lt. zero) diff = 0.001
hf = 1. - (f09-wc) / diff
else if (wc .gt. f11) then
diff = pv(j)-f11
if (diff .lt. zero) diff = 0.001
hf = 0.3 + 0.7 * (pv(j)-wc) / diff
if (hf .lt. zero) hf = 0.001
else
hf = 1.
endif
fred1 = hf
END function fred1
!**************************************************************
real FUNCTION fred2(j)
! Function for calculating uptake resistance
! from Aber and Federer (f=0.04 fuer Wasser in cm)
! only 40% of total available water are plant available per day
implicit none
integer j
fred2 = 0.05
END function fred2
!**************************************************************
real FUNCTION fred3(j)
! Function for calculating uptake resistance
! from CHEN (1993)
! modified to a profile defined in fred
! fred3 may be described by a function (old version):
! fred3 = 0.0004*j*j - 0.0107*j + 0.0735
! this case: set from a root profile, defined by input of root_fr
use data_par
use data_soil
implicit none
real hf, f09, f11, wc, diff
! hf is a reduction factor in dependence on water content
real fred(15)
integer j
! uptake reduction depending on water content
f09 = 0.9 * field_cap(j)
f11 = 1.1 * field_cap(j)
wc = wats(j)
if (wc .lt. wilt_p(j)) then
hf = 0.
else if (wc .lt. f09) then
diff = f09-wilt_p(j)
if (diff .lt. zero) diff = 0.001
hf = 1. - (f09-wc) / diff
else if (wc .gt. f11) then
diff = pv(j)-f11
if (diff .lt. zero) diff = 0.001
hf = 0.3 + 0.7 * (pv(j)-wc) / diff
if (hf .lt. zero) hf = 0.001
else
hf = 1.
endif
fred3 = root_fr(j) * hf
END function fred3
!**************************************************************
real FUNCTION fred4(j)
! Function for calculating uptake resistance
! modified to a profile defined in fred
! profile at Beerenbusch
use data_soil
implicit none
real fred(15)
integer j
fred = (/ 0.0, 0.03, 0.03, 0.02, 0.02, 0.02, 0.02, 0.01, 0.01, 0.01, &
0.01, 0.01, 0.01, 0.01, 0.01 /) ! fred fuer Beerenbusch
fred4 = fred(j)
END function fred4
!**************************************************************
real FUNCTION fred6(j)
! Function for calculating uptake resistance
! from Kloecking (2006) simular to fred1
! empirical relation between soil water content and resistance
! fred6=1 if field_cap <= wats <= (field_cap + 10%*field_cap)
use data_soil
implicit none
real hf, f09, f11, wc
integer j
f09 = field_cap(j)
f11 = 1.1 * field_cap(j)
wc = wats(j)
if (wc .le. wilt_p(j)) then
hf = 0.
else if (wc .lt. f09) then
hf = 0.1 + (0.9 *(wc-wilt_p(j)) / (f09-wilt_p(j)))
else if (wc .gt. f11) then
hf = 0.3 + 0.7 * (pv(j)-wc) / (pv(j)-f11)
if (hf .lt. 0.) hf = 0.001
else
hf = 1.
endif
fred6 = hf
END function fred6
!**************************************************************
real FUNCTION fred7(j)
! Function for calculating uptake resistance
! from CHEN (1993)
! empirical relation between soil water content and resistance
! fred1=1 if (field_cap - 10%*field_cap) <= wats <= (field_cap + 10%*field_cap)
use data_par
use data_soil
implicit none
real hf, f09, f11, wc, diff
integer j
f09 = 0.9 * field_cap(j)
f11 = 1.1 * field_cap(j)
wc = wats(j)
if (wc .lt. wilt_p(j)) then
hf = 0.
else if (wc .lt. f09) then
diff = f09-wilt_p(j)
if (diff .lt. zero) diff = 0.001
hf = exp(-5.*(f09-wc) / diff)
else if (wc .gt. f11) then
diff = pv(j)-f11
if (diff .lt. zero) diff = 0.001
hf = 0.3 + 0.7 * (pv(j)-wc) / diff
if (hf .lt. zero) hf = 0.001
else
hf = 1.
endif
fred7 = hf
END function fred7
!**************************************************************
real FUNCTION fred11(j)
! Function for calculating uptake resistance, especially adapted for Mistletoe disturbance
! function after van Wijk, 2000
use data_par
use data_soil
implicit none
real hf, S, f11, wc, diff
integer j
f11 = 1.1 * field_cap(j)
wc = wats(j)
if (wc .lt. wilt_p(j)) then
hf = 0.
else if (wc .lt. field_cap(j)) then
S=(field_cap(j)-wc)/(field_cap(j)-wilt_p(j))
hf = exp(-30*S) !30 = strong reduction in water avail.
else if (wc .gt. f11) then
diff = pv(j)-f11
if (diff .lt. zero) diff = 0.001
hf = 0.3 + 0.7 * (pv(j)-wc) / diff
if (hf .lt. zero) hf = 0.001
else
hf = 1.
endif
fred11 = hf
END function fred11
!**************************************************************
SUBROUTINE take_wat(eva_dem, psi)
! Estimation of water taking out for uncovered soil
use data_soil
use data_simul
implicit none
!input:
real :: eva_dem ! evaporation demand
real :: psi ! covering
integer i, ii, j, ntag ! max. layer of taking out
real, allocatable, dimension(:) :: gj
real, external :: b_r, funcov
real diff, gj_j, depth_j, depth_n, rij, rmax, rr, rs, sr
allocate (gj(nlay))
do i=1,nlay
wupt_ev(i)=0.0
gj(i)=0.0
enddo
ntag = 0
rmax = 0.0
depth_n = depth(n_ev_d)
do i=1,n_ev_d
rij = 0.0
rr = depth_n/depth(i)
sr = 0.0
rs = 0.0
do j=1,i
! depth for uncovered take out
depth_j = depth(j)
gj(j) = FUNCOV(w_ev_d, rs*rr, rr*depth_j)
rs = depth_j
sr = sr + gj(j)
enddo ! i