Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
!*****************************************************************!
!* *!
!* 4C (FORESEE) Simulation Model *!
!* *!
!* *!
!* Subroutine canopy for: *!
!* Calculation of canopy geometry & light absorption *!
!* with *!
!* CALC_LA *!
!* LIGHT_GROWTH *!
!* COV_AREA *!
!* Light_1 *!
!* Light_2 *!
!* Light_3 *!
!* Light_4 *!
!* L_3_COH_LOOP *!
!* L_4_COH_LOOP *!
!* LIGHT_OUT_2 *!
!* CROWN_PROJ *!
!* *!
!* Copyright (C) 1996-2018 *!
!* Potsdam Institute for Climate Impact Reserach (PIK) *!
!* Authors and contributors see AUTHOR file *!
!* This file is part of 4C and is licensed under BSD-2-Clause *!
!* See LICENSE file or under: *!
!* http://www.https://opensource.org/licenses/BSD-2-Clause *!
!* Contact: *!
!* https://gitlab.pik-potsdam.de/foresee/4C *!
!* *!
!*****************************************************************!
!**********************************!
!* SUBROUTINE CANOPY *!
!**********************************!
SUBROUTINE CANOPY
!*** Declaration part ***!
USE data_out
USE data_species
USE data_simul
USE data_stand
IMPLICIT NONE
integer i
! If no Cohorts on the patch, initialize properly
IF( anz_coh == 0 ) THEN
lowest_layer=0
highest_layer=0
vStruct%cumLAI= 0.
vStruct%Irel = 0.
vStruct%sumBG = 0.
Irelpool = 0.
BGpool = 0.
LAI = 0.
! full light on the ground (layer = 0)
! Lightroutine 1,2
vStruct(highest_layer)%Irel=1
! Lightroutine 3,4
Irelpool(highest_layer)=1
! the whole patch is availabe for recruitment
BGpool(highest_layer+1)=1
BGpool(highest_layer+2)=1
all_leaves_on=0
! Calculation of leaf area, lowest and highest layer, etc.
! for all cohorts in all respective layers
CALL CALC_LA ! leaf area etc. always calculate
RETURN
END IF
! Calculation of leaf area, lowest and highest layer, etc.
! for all cohorts in all respective layers
CALL CALC_LA
IF(flag_end.EQ.3) RETURN
IF( flag_light == 1 )THEN
CALL LIGHT_1
ELSE IF ( flag_light == 2 ) THEN
CALL LIGHT_2
ELSE IF ( flag_light == 3 ) THEN
CALL LIGHT_3
ELSE IF ( flag_light == 4 ) THEN
CALL LIGHT_4
END IF
DO i=1,anrspec
ns = nrspec(i)
IF(svar(ns)%act_sum_lai > svar(ns)%sum_lai) svar(ns)%sum_lai = svar(ns)%act_sum_lai
ENDDO
! Determine relative light in the middle of each cohort canopy, the sla
! and the totFPAR per square meter patch and the total FPAR on the patch
CALL LIGHT_GROWTH
! print relevant light parameters for the canopy for each layer and cohort
if (time_out.gt.0 .and. out_flag_light.ne.0) CALL LIGHT_OUT_2
!------------------------------------------------
!------------------- SUBROUTINES ----------------
!------------------------------------------------
CONTAINS
SUBROUTINE CALC_LA
! Calculation of leaf area, lowest and highest layer, etc.
! for all cohorts in all respective layers
!*** Declaration part ***!
USE data_species
USE data_simul
USE data_stand
IMPLICIT NONE
! variables required for technical reasons
INTEGER :: nl, i
TYPE(Coh_Obj), Pointer :: p ! pointer to cohort list
! auxiliary variable
REAL :: x ! leaf area per crown unit [m**2/cm]
vStruct%LA = 0.
! structure of the canopy is determined once at the start of the year
! initialisation
IF(iday==1) THEN
lowest_layer=250
highest_layer=0
END IF
do i = 1, anrspec
svar(nrspec(i))%act_sum_lai = 0.
enddo
p => pt%first
DO WHILE (ASSOCIATED(p))
ns = p%coh%species
! cohort loop for determination of lowest and highest canopy layer of the tree crown
! structure of the canopy must only be determined once at the start of the year
IF(iday==1) THEN
! determine bottom of the crown in terms of number of layers
p%coh%botLayer = INT( p%coh%x_hbole / dz ) + 1
! determine top of the crown in terms of number of layers
IF (MODULO(p%coh%height,dz)==0.) THEN
p%coh%topLayer = INT( p%coh%height / dz )
ELSE
p%coh%topLayer = INT( p%coh%height / dz ) + 1
END IF
! remember the highest layer
IF(p%coh%topLayer > highest_layer .AND. p%coh%toplayer < 250) THEN
highest_layer=p%coh%topLayer
ELSE IF(p%coh%toplayer >= 250) THEN
if (.not.flag_mult8910) then
CALL stop_mess(time,'FATAL EXCEPTION RAISED IN CANOPY CALC_LA')
CALL error_mess(time,'maximal tree height of 125 m reached by cohort No.',REAL(p%coh%ident))
endif
flag_end=3
RETURN
END IF
!remember the lowest layer of the stand
IF(p%coh%botLayer < lowest_layer) THEN
lowest_layer=p%coh%botLayer
END IF
END IF
p%coh%leafarea = 0.
! total leaf area of a tree in this cohort [m**2]
IF((iday >= p%coh%day_bb) .AND. (iday <= spar(ns)%end_bb)) THEN
p%coh%t_leaf = p%coh%med_sla * p%coh%x_fol
! amount of leaf area per tree in layers
IF (p%coh%topLayer-p%coh%botLayer.GE.1) THEN
! now calculate leaf area per crown unit of this tree [m**2/cm]
x = p%coh%t_leaf / ( p%coh%height - p%coh%x_hbole )
p%coh%leafArea( p%coh%botLayer ) = ( dz - MODULO( p%coh%x_hbole, dz ) ) * x
IF (MODULO(p%coh%height,dz)==0.) THEN
p%coh%leafArea( p%coh%topLayer ) = dz * x
ELSE
p%coh%leafArea( p%coh%topLayer ) = MODULO( p%coh%height, dz ) * x
END IF
DO nl = p%coh%botLayer+1, p%coh%topLayer-1
p%coh%leafArea(nl) = x * dz
END DO
ELSE
p%coh%leafArea(p%coh%botLayer) = p%coh%t_leaf
END IF
! Update vertical patch leaf area profile of the canopy
DO nl = p%coh%botLayer, p%coh%topLayer
vStruct(nl)%LA = vStruct(nl)%LA + p%coh%leafArea(nl) * p%coh%nTreeA
END DO
ELSE
p%coh%leafArea=0.
ENDIF
IF(iday<=spar(ns)%end_bb) svar(ns)%act_sum_lai = svar(ns)%act_sum_lai + p%coh%ntreea*p%coh%t_leaf/kpatchsize
p => p%next
END DO
END SUBROUTINE CALC_LA
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
SUBROUTINE LIGHT_GROWTH
! Determine relative light in the middle of each cohort canopy, the sla,
! the total FPAR on the patch
!*** Declaration part ***!
USE data_species
USE data_simul
USE data_stand
IMPLICIT NONE
integer help
TYPE(Coh_Obj), Pointer :: p ! pointer to cohort list
totFPARsum=0 ! sum of all totFPAR's
totFPARcan=0 ! sum of all totFPAR's for the canopy
p => pt%first
DO WHILE (ASSOCIATED(p))
ns=p%coh%species
! the new average specific leaf area per cohort depends
! on the light regime in the middle of the canopy
! this is the SLA which is used for the leaf area distr. in the next year
! the new average specific leaf area per cohort depends on the
! mean light regime in the middle in the canopy
! IrelCan modifies the growthfunction
IF(all_leaves_on==1) THEN
select case (flag_light)
case (1,2)
p%coh%med_sla = spar(ns)%psla_min+spar(ns)%psla_a*&
(1-(vStruct(p%coh%toplayer)%Irel+vStruct(p%coh%botlayer)%Irel)/2.)
p%coh%IrelCan = vStruct(p%coh%toplayer)%Irel
case default
p%coh%med_sla = spar(ns)%psla_min+spar(ns)%psla_a*&
(1-(p%coh%Irel(p%coh%topLayer)+p%coh%Irel(p%coh%botLayer))/2.)
select case (ns)
case (10) ! Douglas fir
help = p%coh%botLayer+2*(p%coh%toplayer - p%coh%botLayer) / 3
p%coh%IrelCan = p%coh%Irel(help)
case default
help = vStruct(p%coh%toplayer)%SumBG
if (help .gt. 0.) then
p%coh%IrelCan = p%coh%Irel(p%coh%toplayer)*MIN(kpatchsize/help, 1.)
else
p%coh%IrelCan = p%coh%Irel(p%coh%toplayer)
endif
end select ! ns
end select ! flag_light
END IF
totFPARsum = totFPARsum + p%coh%totFPAR*p%coh%nTreeA
IF (p%coh%species .le. nspec_tree .or. p%coh%species.eq.nspec_tree+2) totFPARcan = totFPARcan + p%coh%totFPAR*p%coh%nTreeA
p => p%next
END DO
END SUBROUTINE LIGHT_GROWTH
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
SUBROUTINE COV_AREA
! calculate coverage-area as fraction of the patchsize per tree and layer
!*** Declaration part ***!
USE data_climate
USE data_par
USE data_stand
USE data_site
IMPLICIT NONE
! variables required for technical reasons
INTEGER :: i
! Variables to test restriction in light model 4
REAL :: y ! potential shadow cast of the cohort [m]
REAL :: w ! effective shadow cast of the cohort [m]
REAL :: l ! side length of a coort layer [m]
REAL :: reqarea ! area of the patch required for the shadow cast for all cohorts per layer
INTEGER :: layer_flag ! remember the highest layer where first LM4 restriction occurs
TYPE(Coh_Obj), Pointer :: p ! pointer to cohort list
y = dz/100/TAN(beta)
lm3layer=0
layer_flag=0
DO i = highest_layer, lowest_layer, -1
reqarea=0.
p => pt%first
DO WHILE (ASSOCIATED(p))
p%coh%BG(i) = 0.
! only those trees that have leaves
IF((iday >= p%coh%day_bb) .AND. (iday <= spar(p%coh%species)%end_bb) .AND. &
i <= p%coh%topLayer .AND. i >= p%coh%botLayer) THEN
IF (vStruct(i)%sumBG > kpatchsize) THEN
p%coh%BG(i)=p%coh%crown_area/vStruct(i)%sumBG
ELSE
p%coh%BG(i)=p%coh%crown_area/kpatchsize
END IF
l = SQRT(p%coh%BG(i)*kpatchsize)
reqarea = reqarea + l*y*p%coh%nTreeA
END IF
p => p%next
END DO ! cohorts
IF( kpatchsize > vStruct(i)%sumBG .AND. reqarea /= 0) THEN
w = y*(kpatchsize-vStruct(i)%sumBG)/reqarea
ELSE
w = 0
END IF
p => pt%first
DO WHILE (ASSOCIATED(p) .AND. layer_flag.EQ.0)
! only those trees that have leaves
IF((iday >= p%coh%day_bb) .AND. (iday <= spar(p%coh%species)%end_bb) .AND. &
i <= p%coh%topLayer .AND. i >= p%coh%botLayer) THEN
l = SQRT(p%coh%BG(i)*kpatchsize)
! layer from that on light model 3 is used instead of light model 4
! because of LM4 restrictions
IF( y-w > w+l ) THEN
layer_flag=1
lm3layer = i
EXIT ! do loop
END IF
END IF
p => p%next
END DO
END DO ! layers
END SUBROUTINE COV_AREA
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
SUBROUTINE LIGHT_1
!*** Declaration part ***!
USE data_species
USE data_simul
USE data_stand
IMPLICIT NONE
! variables required for technical reasons
INTEGER :: i, nl
TYPE(Coh_Obj), Pointer :: p ! pointer to cohort list
! auxiliary variables
REAL :: radSum ! sum of absorbed radiation (help variable)
REAL :: pfext=0.6 ! extinction coefficient. Only for one specie.
!*** Calculation part ***!
! Intialization radiation summator
radSum = 0.
vStruct%cumLAI = 0.
vStruct%Irel = 0.
! Calculate cumulative leaf area index and absorbed radiation per layer
! using Lambert-Beer
vStruct(highest_layer)%Irel=1
DO i = highest_layer, lowest_layer, -1
vStruct(i)%cumLAI = vStruct(i)%LA/kPatchsize + vStruct(i+1)%cumLAI
vStruct( i )%radFrac = 1. - Exp(-pfext * vStruct(i)%cumLAI) - radSum
radSum = radSum + vStruct(i)%radFrac
vStruct(i-1)%Irel=vStruct(i)%Irel-vStruct(i)%radFrac
END DO
! Light intensitiy unto the ground
DO i = lowest_layer - 2, 0, -1
vStruct(i)%Irel=vStruct(i+1)%Irel
END DO
! total LAI is simply the value of cumLAI at the forest floor
LAI = vStruct(lowest_layer)%cumLAI
IF(lai>laimax) laimax=lai
! Determine layer-specific & total fraction of PAR absorbed by this tree
p => pt%first
DO WHILE (ASSOCIATED(p))
p%coh%totFPAR = 0.
p%coh%FPAR = 0.
DO nl = p%coh%botLayer, p%coh%topLayer
p%coh%FPAR(nl) = p%coh%leafArea(nl) / vStruct(nl)%LA * vStruct(nl)%radFrac
p%coh%totFPAR = p%coh%totFPAR + p%coh%FPAR(nl)
END DO
p => p%next
END DO
IF(all_leaves_on==1) THEN
p => pt%first
DO WHILE (ASSOCIATED(p))
DO i = highest_layer, lowest_layer, -1
p%coh%antFPAR(i)=p%coh%FPAR(i)/p%coh%totFPAR
p%coh%sleafarea(i)=p%coh%leafarea(i)
END DO ! end layer loop
p => p%next
END DO ! cohort loop
ENDIF
END SUBROUTINE LIGHT_1
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
SUBROUTINE LIGHT_2
!*** Declaration part ***!
USE data_species
USE data_simul
USE data_stand
IMPLICIT NONE
! variables required for technical reasons
INTEGER :: i
real :: help
TYPE(Coh_Obj), Pointer :: p ! pointer to cohort list
!*** Calculation part ***!
vStruct%cumLAI = 0.
vStruct%Irel = 0.
! cohort loop
p => pt%first
DO WHILE (ASSOCIATED(p))
p%coh%FPAR = 0.
p%coh%totFPAR = 0.
p => p%next
END DO ! cohort loop
! Now calculate crown projection per tree and layer and
! the coverage sum over all layers
CALL CROWN_PROJ
! now calculate coverage-area as fraction of the patchsize per tree and layer
CALL COV_AREA
vStruct(highest_layer)%Irel=1
DO i = highest_layer, lowest_layer, -1
p => pt%first
help=0.
vStruct(i)%cumLAI = vStruct(i)%LA/kpatchsize + vStruct(i+1)%cumLAI
DO WHILE (ASSOCIATED(p))
ns=p%coh%species
IF (p%coh%BG(i).ne.0.) THEN
! faction of absorbed light rel. to the light at the top of this layer
! the reference area is the whole patch (weighted by BG(i))!
p%coh%FPAR(i)=(1-exp(-spar(ns)%pfext*p%coh%leafArea(i)/&
kpatchsize/p%coh%BG(i)))*p%coh%BG(i)
! sum up the total absorbed fraction of this cohort,
! the total fraction of absorbed light in this layer
! is the fraction absorbed* fraction of light*BG
! the reference area is the whole patch!
p%coh%totFPAR=p%coh%totFPAR+vStruct(i)%Irel*p%coh%FPAR(i)*&
(1+(0.5-vStruct(i)%Irel)*spar(ns)%fpar_mod/0.5)
! at first sum all the absorbed light fractions over the cohorts
help=help+p%coh%FPAR(i)*p%coh%nTreeA
ELSE
p%coh%FPAR(i)=0.
END IF
p => p%next
END DO
! then calculate the fraction of light which is available for the next layer
vStruct(i-1)%Irel=vStruct(i)%Irel*(1-help)
END DO
! Light intensitiy unto the ground
DO i = lowest_layer - 2, 0, -1
vStruct(i)%Irel=vStruct(i+1)%Irel
END DO
IF(all_leaves_on==1) THEN
p => pt%first
DO WHILE (ASSOCIATED(p))
DO i = highest_layer, lowest_layer, -1
p%coh%antFPAR(i)=vStruct(i)%Irel*p%coh%FPAR(i)*(1+(0.5-vStruct(i)%Irel)*spar(ns)%fpar_mod/0.5)/p%coh%totFPAR
p%coh%sleafarea(i)=p%coh%leafarea(i)
END DO ! end layer loop
p => p%next
END DO ! cohort loop
ENDIF
! total LAI is simply the value of cumLAI at the forest floor
LAI = vStruct(lowest_layer)%cumLAI
IF(lai>laimax) laimax=lai
END SUBROUTINE LIGHT_2
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
SUBROUTINE L_3_COH_LOOP(i,j)
!*** Declaration part ***!
USE data_species
USE data_simul
USE data_stand
IMPLICIT NONE
! variables required for technical reasons
TYPE(Coh_Obj), Pointer :: p ! pointer to cohort list
INTEGER :: i, j ! i= Schicht, j= Variante
REAL :: help
p => pt%first
! cohort loop in layer i
DO WHILE (ASSOCIATED(p))
ns=p%coh%species
IF((iday < p%coh%day_bb) .OR. (iday > spar(ns)%end_bb)) GOTO 1313
IF (i<=p%coh%toplayer.AND.i>=p%coh%botlayer) THEN
p%coh%FPAR(i)=1-exp(-spar(ns)%pfext*p%coh%leafArea(i)/&
kpatchsize/p%coh%BG(i))
! FPAR is related to the projection area and has to be modified
! by the same factor by that the projection area is being modified
! in case sumBG > patchsize
p%coh%FPAR(i)=p%coh%FPAR(i)*MIN(kpatchsize/vStruct(i)%sumBG,1.)
! test wether the cohort is new, was there before or will not be
! represented in the next layer
IF (i == p%coh%toplayer) THEN
p%coh%Irel(i)=Irelpool(i)
! totFPAR per patch! Since the projection area changes totFPAR has to
! be related to the patch in each layer
p%coh%totFPAR=p%coh%totFPAR+p%coh%Irel(i)*p%coh%FPAR(i)*p%coh%BG(i)
! light available for this cohort in the next layer
p%coh%Irel(i-1)=p%coh%Irel(i)*(1-p%coh%FPAR(i))
ELSE IF (i == p%coh%botlayer) THEN
IF( j == 2 ) THEN
help=p%coh%BG(i)-p%coh%BG(i+1)
p%coh%Irel(i)=(1/(p%coh%BG(i)))*&
(p%coh%Irel(i)*p%coh%BG(i+1)+Irelpool(i)*help)
END IF
! totFPAR per patch! Since the projection area changes totFPAR has to
! be related to the patch in each layer
p%coh%totFPAR=p%coh%totFPAR+p%coh%Irel(i)*p%coh%FPAR(i)*p%coh%BG(i)
! light available for this cohort in the next layer
p%coh%Irel(i-1)=p%coh%Irel(i)*(1-p%coh%FPAR(i))
! The light which leaves the cohort is fed into the pool
! the light intensitiy is weighted by the overall BG of this cohort
Irelpool(i-1)=(1/(p%coh%BG(i)*p%coh%nTreeA+BGpool(i)))*&
(p%coh%BG(i)*p%coh%nTreeA*p%coh%Irel(i-1)+BGpool(i)*Irelpool(i-1))
! BG of the pool available for the next layer increases
BGpool(i)=BGpool(i)+p%coh%BG(i)*p%coh%nTreeA
ELSE
IF( j == 2 ) THEN
help=p%coh%BG(i)-p%coh%BG(i+1)
p%coh%Irel(i)=(1/(p%coh%BG(i)))*&
(p%coh%Irel(i)*p%coh%BG(i+1)+Irelpool(i)*help)
END IF
! totFPAR per patch! Since the projection area changes totFPAR has to
! be related to the patch in each layer
p%coh%totFPAR=p%coh%totFPAR+p%coh%Irel(i)*p%coh%FPAR(i)*p%coh%BG(i)
! light available for this cohort in the next layer
p%coh%Irel(i-1)=p%coh%Irel(i)*(1-p%coh%FPAR(i))
END IF
END IF ! Layer test
1313 CONTINUE
p => p%next
END DO ! cohort loop
END SUBROUTINE L_3_COH_LOOP
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
SUBROUTINE LIGHT_3
!*** Declaration part ***!
USE data_species
USE data_simul
USE data_stand
IMPLICIT NONE
! variables required for technical reasons
INTEGER :: i
REAL :: help
TYPE(Coh_Obj), Pointer :: p ! pointer to cohort list
!*** Calculation part ***!
vStruct%cumLAI = 0.
Irelpool = 0.
BGpool = 0.
vStruct%Irel = 0. ! test variable for the light balance in layers
vStruct%radFrac = 0. ! test variable for the light balance in layers
! cohort loop
p => pt%first
DO WHILE (ASSOCIATED(p))
p%coh%FPAR = 0.
p%coh%totFPAR = 0.
p%coh%Irel = 0.
p => p%next
END DO ! cohort loop
! Now calculate crown projection per tree and layer and
! the coverage sum over all layers
CALL CROWN_PROJ
! now calculate coverage-area as fraction of the patchsize per tree and layer
CALL COV_AREA
! -----------------------------------------------------------
! now calculate per tree and layer the effective LAI
! this gives the absorbed light per tree and layer
! this gives the total fraction absorbes light per tree
! further each tree and each layer has an individual light regime. The area
! which is not covered by trees is treated as a pool
!
! reference area for the total fracation absorbed is the patch area
! above the canopy there is 100 % rel. light
Irelpool(highest_layer)=1.
! the size of the pool is defined as the fraction of the patch
! which can potentially be used by new cohorts in the next layer.
! Therefore is is the patch-fraction which is free anyway plus the
! fraction coverd by cohorts that will not be present in the next layer
! this means, the light intensity Irelpool(i) is available on the
! area BGpool(i+1)
BGpool(highest_layer+1)=1.
DO i = highest_layer, lowest_layer, -1
vStruct(i)%cumLAI = vStruct(i)%LA/kpatchsize + vStruct(i+1)%cumLAI
! two cases:
! first case: sumBG increases in this layer or remains the same
IF (vStruct(i+1)%sumBG<=vStruct(i)%sumBG) THEN
! three subcases:
! first subcase of 'sumBG increases': sumBG stays below patchsize
! ( no BG modification) or does not change
IF ((vStruct(i+1)%sumBG.LT.kpatchsize.AND.vStruct(i)%sumBG.LE.kpatchsize).OR.&
vStruct(i+1)%sumBG == vStruct(i)%sumBG) THEN
! At the beginning the light intensity of the pool remains the same
! but it will be updated when cohorts drop out
Irelpool(i-1)=Irelpool(i)
! until there are cohorts dropping out
BGpool(i)=MAX((kpatchsize-vStruct(i)%sumBG)/kpatchsize,0.)
CALL L_3_COH_LOOP(i,1)
! second and third subcase of 'sumBG increases or remains the same'
! the BG's of the cohorts change because sumBG exceeds patchsize.
! second subcase: sumBG was < patchsize before
! third subcase: sumBG was > patchsize before
ELSE
! BG and light intensitiy of the pool for the next(!) layer
! is 0 as long as there are no cohorts dropping out
Irelpool(i-1)=0.
BGpool(i)=0.
p => pt%first
! cohort loop 1
DO WHILE (ASSOCIATED(p))
! calculate the new fraction covered by the pool
! which is the old pool plus the fractions which are lost
! by the old cohorts due to new BG's
! this also changes the light intensity of the pool
! This pool will all be used by the new cohorts
! consider only cohorts that have been there before (i<toplayer)
IF (i<p%coh%toplayer.AND.i>=p%coh%botlayer .AND.&
iday >= p%coh%day_bb .AND. iday <= spar(p%coh%species)%end_bb) THEN
help=BGpool(i+1)+(p%coh%BG(i+1)-p%coh%BG(i))*p%coh%nTreeA
Irelpool(i)=(1/help)*(Irelpool(i)*BGpool(i+1)+p%coh%Irel(i)*&
(p%coh%BG(i+1)-p%coh%BG(i))*p%coh%nTreeA)
BGpool(i+1)=help
END IF ! layer test
p => p%next
END DO ! cohort loop1
CALL L_3_COH_LOOP(i,1)
END IF ! subcases of 'sumBG increases
! second case: sumBG decreases
ELSE
! two subcases
! first subcase of 'sumBG decrease': sumBG < patchsize before and after
! i.e. BG's do not change
! i.e. all projection area requirements can be fulfilled in the next layer
IF (vStruct(i+1)%sumBG.LT.kpatchsize) THEN
! At the beginning the light intensity of the pool remains the same
! but it will be updated when cohorts drop out
Irelpool(i-1)=Irelpool(i)
! until there are cohorts dropping out
BGpool(i)=(kpatchsize-vStruct(i)%sumBG)/kpatchsize
CALL L_3_COH_LOOP(i,1)
! second subcase of 'sumBG decrease': sumBG remains > patchsize or
! sumBG was > patchsize, i.e. BG's do change
ELSE
! BG of the pool for the next layer as long as there are
! no cohorts dropping out
BGpool(i)=MAX((kpatchsize-vStruct(i)%sumBG)/kpatchsize,0.)
Irelpool(i-1)=Irelpool(i)
CALL L_3_COH_LOOP(i,2)
END IF ! subcases
END IF ! three main cases
END DO ! end layer loop
! -----------------------------------------------------------
IF(all_leaves_on==1) THEN
p => pt%first
DO WHILE (ASSOCIATED(p))
DO i = highest_layer, lowest_layer, -1
p%coh%antFPAR(i)=p%coh%Irel(i)*p%coh%FPAR(i)*p%coh%BG(i)/p%coh%totFPAR
p%coh%sleafarea(i)=p%coh%leafarea(i)
END DO ! end layer loop
p => p%next
END DO ! cohort loop
ENDIF
! total LAI is simply the value of cumLAI at the lowest layer
LAI = vStruct(lowest_layer)%cumLAI
IF(lai>laimax) laimax=lai
! light intensitiy and free patch space unto the ground
DO i = lowest_layer - 2, 0, -1
Irelpool(i)=Irelpool(i+1)
BGpool(i+1)=BGpool(i+2)
END DO
END SUBROUTINE LIGHT_3
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
SUBROUTINE L_4_COH_LOOP(i,j,beta,y)
!*** Declaration part ***!
USE data_species
USE data_simul
USE data_stand
IMPLICIT NONE
! variables required for technical reasons
TYPE(Coh_Obj), Pointer :: p ! pointer to cohort list
INTEGER :: i, j ! i= layer, j= type
REAL :: y ! potential shadow cast of a cohort layer [m]
REAL :: l ! side length of a cohort layer [m]
REAL :: w ! effective shadow cast of a cohort layer [m]
REAL :: helplai ! LAI per layer and cohort
REAL :: help
REAL :: beta ! sun inclination
REAL :: dropoutpool ! relative area covered by cohort dropping out
REAL :: f1,f2,f3,f4,f5,f6,f7,f8 ! average fraction of absorbed radiation in different
! regions of the tree layer according to the 4C description paper
REAL :: k ! extintion coefficient
REAL :: reqarea ! area of the patch required for the shadow cast for all cohorts per layer
reqarea=0.
! cohort loop
p => pt%first
DO WHILE (ASSOCIATED(p))
IF (i<=p%coh%toplayer.AND.i>=p%coh%botlayer) THEN
l = SQRT(p%coh%BG(i)*kpatchsize)
reqarea = reqarea + l*y*p%coh%nTreeA
END IF
p => p%next
END DO ! cohort loop
! the size of the pool is defined as the fraction of
! the patch which is not covered by cohorts. This is the
! area covered by the sum of the 'shadows' of the cohorts,
! i.e. y's or rather w's + the area of cohorts dropping out in the next layer +
! the are that exeeds the maximal required area by the shadow-cast.
! This is updated in each layer
! w is the width of the shadow-cast of the cohorts that is maximal y.
! This maximal y also defines the maximal required area for all shadows
! 'reqarea' = required area
! When the maximal y cannot be satisfied, then this area is reduced by the
! relative share of the available space not covered by cohorts to the
! maximal required area for shadow cast
IF( kpatchsize > vStruct(i)%sumBG ) THEN
if (reqarea .gt. 1E-08) then
w = y*(kpatchsize-vStruct(i)%sumBG)/reqarea
else
w = y*kpatchsize
endif
ELSE
w = 0
END IF
BGpool(i)=0.
dropoutpool=0
p => pt%first
! cohort loop in layer i
DO WHILE (ASSOCIATED(p))
ns=p%coh%species
IF((iday < p%coh%day_bb) .OR. (iday > spar(ns)%end_bb)) GOTO 1313
k = spar(ns)%pfext
IF (i<=p%coh%toplayer.AND.i>=p%coh%botlayer) THEN
l = SQRT(p%coh%BG(i)*kpatchsize)
if( p%coh%BG(i).ne.0) then
helplai=p%coh%leafArea(i)/kpatchsize/p%coh%BG(i)
if (helplai .le. 0.) then
continue
endif
else
helplai = 0.
end if
IF (i == p%coh%toplayer) THEN
p%coh%Irel(i)=Irelpool(i)
ELSE IF( j == 2 .AND. i /= p%coh%toplayer ) THEN
help=p%coh%BG(i)-p%coh%BG(i+1)
p%coh%Irel(i)=(1/(p%coh%BG(i)))*&
(p%coh%Irel(i)*p%coh%BG(i+1)+Irelpool(i)*help)
END IF
! two main cases:
! first case : all light from the side comes from the pool
! second case : light from the side comes partially from the cohort itself
IF( w >= y ) THEN
! subcases : 1.: light from the side of the layer
! does only leave at the bottom of the layer
! 2: light from the side does also leave on the other side
! totFPAR per patch! Since the projection area changes totFPAR has to
! be related to the patch in each layer
IF( y <= l ) THEN
f1 = 1-exp(-k*helplai/SIN(beta))
if (helplai .lt. 1.E-6) then
f2 = 0.
else
f2 = 1-SIN(beta)/(k*helplai)*f1
if (f2 .lt. 0.) then
continue
f2 = 0.
endif
endif
p%coh%totFPAR=p%coh%totFPAR+(1/kpatchsize)*&
((l-y)*l*p%coh%Irel(i)*f1+& ! max. LAI
! exits layer at the side
y*l*f2*p%coh%Irel(i)+&
! from the side to the next layer
y*l*f2*Irelpool(i))
p%coh%FPAR(i)=p%coh%totFPAR