Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found

Target

Select target project
  • foresee/4C
  • gutsch/4C
2 results
Show changes
Showing
with 13043 additions and 0 deletions
!*****************************************************************!
!* *!
!* 4C (FORESEE) *!
!* *!
!* *!
!* Subroutines for: *!
!* Calculation of daily NPP *!
!* *!
!* SR OPT_PS: optimum photosynthesis & conductance calculation *!
!* SR NPP: determination of realized net primary production *!
!* *!
!* Copyright (C) 1996-2018 *!
!* Potsdam Institute for Climate Impact Reserach (PIK) *!
!* Authors and contributors see AUTHOR file *!
!* This file is part of 4C and is licensed under BSD-2-Clause *!
!* See LICENSE file or under: *!
!* http://www.https://opensource.org/licenses/BSD-2-Clause *!
!* Contact: *!
!* https://gitlab.pik-potsdam.de/foresee/4C *!
!* *!
!*****************************************************************!
!***********************!
!* SUBROUTINE OPT_PS *!
!***********************!
! calculates optimum photosynthesis following Haxeltine & Prentice (1996)
SUBROUTINE OPT_PS(temp, dayl, PAR, ApPa)
!*** Declaration part ***!
USE data_species
USE data_stand
USE data_simul
USE data_climate
USE data_par
IMPLICIT NONE
! input variables
REAL :: temp, & ! temperature
dayl, & ! day length
PAR ! total available PAR
! auxiliary variables
REAL :: ApPa, & ! atmospheric pressure [Pa], input [hPa]
VmOpt = 0., &
VmMax = 0., & ! nitrogen limited carboxylation rate
Jc = 0., & ! Rubisco limited rate of photosynthesis
Je = 0., & ! photosynthetic response under light limitation
assiSpe = 0., & ! specific gross photosynthesis [gC m-2 canopy projection d-1]
respSpe = 0., & ! specific leaf respiration [gC m-2 canopy projection d-1]
assDt, & ! net daytime assimilation rate
PHIT = 0., &
XHELP = 0., &
kco2, &
ko2, &
tau, & ! Rubisco specificity
piCO2, & ! leaf internal CO2 partial pressure [Pa]
gammas, & ! CO2 compensation point in absence of mitochondrial respiration [Pa]
delta, &
sigma, &
c1, &
c2, &
vmspe, &
redn_h, &
h_age
! variables required for technical reasons
! INTEGER :: nl ! loop variable for crown layers
integer ntr, i, j
TYPE(coh_obj), POINTER :: p
!*** Calculation part ***!
! conversion of pressure from [kPa] to [P]
ApPa = ApPa * 100. ! hPa ==> Pa
! initialization of canopy conductance
gp_can = 0.
gp_tot = 0.
phot_C=0.
! polar night
if (dayl .lt. zero) then
p => pt%first
DO WHILE (ASSOCIATED(p))
p%coh%LUE = 0.0
p%coh%assi = 0.0
p%coh%resp = 0.0
p%coh%gp = 0.0
p%coh%Ndemc_d = 0.0
p => p%next
enddo
return
endif
! Determination of photosynthesis nitrogen reduction factor RedN for species
select case (flag_limi)
case (11)
do j=1,anrspec
i = nrspec(j)
redn_h = svar(i)%RedN
if(svar(i)%Ndem .gt. 0) then
svar(i)%RedN = svar(i)%Nupt / svar(i)%Ndem
if (svar(i)%RedN .gt. 1.) svar(i)%RedN=1.
else
svar(i)%RedN = redn_h
endif
enddo
case (12)
do j=1,anrspec
i = nrspec(j)
redn_h = svar(i)%RedN
if(svar(i)%Ndem .gt. 0) then
if (svar(i)%Nupt .gt. svar(i)%Ndem) then
svar(i)%RedN = 1
else
svar(i)%RedN = exp((svar(i)%Nupt / svar(i)%Ndem) -1.)
endif
else
svar(i)%RedN = redn_h
endif
enddo
case (13,14)
do j=1,anrspec
i = nrspec(j)
redn_h = svar(i)%RedN
if(svar(i)%Ndem .gt. 0) then
xhelp = svar(i)%Nupt / svar(i)%Ndem
svar(i)%RedN = 2.*(xhelp+0.01) / (xhelp+1.)
else
svar(i)%RedN = redn_h
endif
if(svar(i)%Nupt .le. zero) svar(i)%RedN = redn_h
enddo
case (15)
do j=1,anrspec
i = nrspec(j)
redn_h = svar(i)%RedN
if(svar(i)%Ndem .gt. zero) then
xhelp = svar(i)%Nupt / svar(i)%Ndem
select case (i)
case (3) ! pine
if (xhelp .gt. 10.) then
svar(i)%RedN=1.
else
svar(i)%RedN = exp(xhelp -0.7) - 0.5
endif
case (10, 14) ! dougfir, ground vegetation
continue ! annual calculation in RedN_calc
case default
svar(i)%RedN = 2.*(xhelp+0.01) / (xhelp+1.)
end select
if (svar(i)%RedN .gt. 1.) svar(i)%RedN=1.
if (svar(i)%RedN .lt. 0.1) svar(i)%RedN=0.1
else
svar(i)%RedN = redn_h
endif
if(svar(i)%Nupt .le. zero) svar(i)%RedN = redn_h
if (i.eq.nspec_tree+2) then
svar(i)%RedN=1.
endif
enddo
case (16)
svar%Ndemp = -1.*svar%Ndemp
svar%Nuptp = -1.*svar%Nuptp
zeig => pt%first
DO WHILE (ASSOCIATED(zeig))
ns = zeig%coh%species
ntr = zeig%coh%ntreea
svar(ns)%Ndemp = svar(ns)%Ndemp + ntr * zeig%coh%Ndemc_c
svar(ns)%Nuptp = svar(ns)%Nuptp + ntr * zeig%coh%Nuptc_c
zeig => zeig%next
ENDDO
do j=1,anrspec
i = nrspec(j)
redn_h = svar(i)%RedN
if(svar(i)%Ndemp .gt. 0) then
svar(i)%RedN = svar(i)%Nuptp / svar(i)%Ndemp
else
svar(i)%RedN = redn_h
endif
enddo
end select ! flag_limi
! internal partial pressure of CO2 (Eq A9)
piCO2 = ApPa * lambda * CO2
! temperature dependent damping function; orig pars: 0.2, 10.
PHIT = 1. / ( 1.+exp(0.4*(7.-temp)) )
! loop over all cohorts
p => pt%first
DO WHILE (ASSOCIATED(p))
ns = p%coh%species
! parameter variations with temperature (Eq A14)
KCO2 = spar(ns)%kCO2_25 * spar(ns)%q10_kCO2 ** ( (temp - 25.) / 10.)
KO2 = spar(ns)%kO2_25 * spar(ns)%q10_kO2 ** ( (temp - 25.) / 10.)
tau = spar(ns)%pc_25 * spar(ns)%q10_pc ** ( (temp - 25.) / 10.)
! CO2 compensation point in absence of mitochondrial respiration, O2 converted from kPa to Pa
gammas = O2*1000 / (2. * tau)
! slope for light response under PAR limitation (Eq A7)
C1 = PHIT*spar(ns)%phic*Cmass*QCO2*QCO2a * (piCO2 - gammas) / (piCO2 + 2.*gammas) ! 0.35
! slope for light response under Rubisco limitation (Eq A11)
C2 = (piCO2 - gammas) / ( piCO2 + KCO2 * (1. + O2 / KO2) )
! daylength-dependent term (original: s)
DELTA = (24. / dayL) * spar(ns)%pb
! optimal light use efficiency (Eq A17 and A17a)
SIGMA = AMAX1 (0.0001, 1. - (C2 - DELTA) / (C2 - PS * DELTA) ) ** 0.5 ! 0.25 - 0.45
VmSpe = (1. / spar(ns)%pb) * (C1 / C2) * ( (2.*PS - 1.) * &
DELTA - (2.*PS * DELTA - C2) * SIGMA)
! maximum carboxylation potential in gC m-2 d-1 ???
VmOpt = p%coh%totFPAR * PAR * VmSpe
! Determination of photosynthesis nitrogen reduction factor RedN
select case (flag_limi)
case (0,1)
p%coh%RedNc = 1.
case (2,3,10)
p%coh%RedNc = svar(ns)%RedN
case (4,5)
! N effect on photosynthesis
XHELP = PN * exp ( - 0.0693 * (temp - 25.) )
! calculate Vmax as function of metabolically active nitrogen per unit crown projection area first, is now in mymol m-2 s-1
VmMax = (p%coh%N_fol - Nc0*p%coh%x_fol) / p%coh%crown_area / XHELP
p%coh%RedNc = MIN (1., VmMax / VmOpt)
case (6,7)
if ((p%coh%Ndemc_d .gt. 1.E-6) .and. (p%coh%Nuptc_d .gt. 1.E-6)) then
p%coh%RedNc = p%coh%Nuptc_c / p%coh%Ndemc_c
else
p%coh%RedNc = svar(ns)%RedN
endif
case (8,9)
h_age = p%coh%x_age
if( h_age.lt.50.) then
redn_h =svar(ns)%RedN
else if( (h_age-time).lt.50) then
! age dependent reduction of redN
redn_h = svar(ns)%RedN*(1-max(0.,(h_age-50)*0.002))
else
redn_h = svar(ns)%RedN*(1-max(0.,(time)*0.002))
end if
p%coh%RedNc = redn_h
case (11,12,13,14,15,16) ! calculation of cohort loop
p%coh%RedNc = svar(p%coh%species)%RedN
end select
! limiting rates
Jc = C2 * VmSpe / 24.
Je = C1 / dayL
! gross assimilation and leaf respiration in [g C/(day*m2)]
p%coh%LUE = dayL * ( Je+Jc - SQRT( (Je+Jc) * (Je+Jc) - 4.*PS*Je*Jc) ) / (2.*PS) * p%coh%RedNc
assiSpe = p%coh%LUE * p%coh%totFPAR * PAR
if(p%coh%totFPAR.lt.0) then
continue
end if
respSpe = spar(ns)%pb * VmOpt * p%coh%RedNc
phot_C = phot_C + p%coh%ntreea*assiSpe !summation for output BE
p%coh%assi = assiSpe * kPatchSize / 1000. * (1/cpart) ! conversion g C/day*m2 -> kg DW/day*patch
p%coh%resp = respSpe * kPatchSize / 1000. * (1/cpart) ! conversion g C/day*m2 -> kg DW/day*patch
! optimum stomatal conductance (modified from Haxeltine & Prentice 1996) [mol/(m2*d)]
assDt = assiSpe - dayL/24.*respSpe
p%coh%gp = AMAX1( gmin, 1.56*assDt / (1.0-lambda) / CO2 / Cmass )
! update canopy conductance
IF (p%coh%species.le.nspec_tree .or. p%coh%species.eq.nspec_tree+2 ) then
gp_can = gp_can + p%coh%gp*p%coh%nTreeA
else
gp_tot = gp_tot + p%coh%gp*p%coh%nTreeA
endif
p => p%next
END DO
gp_tot = gp_tot + gp_can
END SUBROUTINE OPT_PS
!********************!
!* SUBROUTINE NPP *!
!********************!
! determines realized assimilation rate by taking into account water stress, and
! calculates growth and maintenance respiration, plus overall net primary production
SUBROUTINE NPP( temp, dayL, PAR, jx )
!*** Declaration part ***!
USE data_par
USE data_stand
USE data_species
USE data_simul
USE data_soil_cn
IMPLICIT NONE
! input variables
REAL:: temp, &
dayL, &
PAR
! auxiliary variables
REAL :: netAsspot, & ! daily potential (= no water and nutrient limitation) net assimilation rate [= dimension of p%coh%assi]
netAss, & ! daily net assimilation rate [= dimension of p%coh%assi]
maintResp, & ! daily maintenance respiration costs
dailypotNPP, & ! daily potential (= no water and nutrient limitation) net primary productivity per tree
dailyNPP, & ! daily net primary productivity per tree [gC tree-1]
drLimF, & ! drought factor limiting the assimilation rate
grass = 0, & ! gross daily assimilation rate
respfol, &
prms, &
prmr, &
NPP_mistletoe,& ! NPP of mistletoe
pq10, & ! q10 value for maint. respiration stem, fine root
help, presp
INTEGER :: jx ! time step length of PS/NPP model
TYPE(coh_obj), POINTER :: p
pq10=2.0
!*** Calculation part ***!
!extraction of theor. produced NPP of mistletoe cohort
p => pt%first
do while (associated(p))
if (p%coh%species.eq.nspec_tree+2) then
NPP_mistletoe=p%coh%NPP
NPP_demand_mistletoe=0.3*NPP_mistletoe ! NPP that mistletoe demands from host (30% heterotroph carbon gain (Richter 1992)
p%coh%NPP=0.7*NPP_mistletoe ! rest of NPP stays with mistletoe (autotroph)
end if
p => p%next
enddo
dailypotNPP_C=0.
dailyNPP_C=0.
dailyautresp_C = 0.
dailygrass_C = 0.
dailynetass_C = 0.
respr_day = 0.
dailyrespfol_C = 0.
! loop over all cohorts
p => pt%first
DO WHILE (ASSOCIATED(p))
! reduction of NPP of mistletoe infected tree cohort
if (p%coh%mistletoe.eq.1) then
p%coh%NPP = p%coh%NPP-NPP_demand_mistletoe
endif
ns = p%coh%species
IF ( p%coh%drIndPS .lt. 0.0 ) THEN
continue
endif
! drought index
IF ( p%coh%nDaysPS /= 0. ) THEN
p%coh%drIndPS = p%coh%drIndPS / p%coh%nDaysPS
ELSE
p%coh%drIndPS = 0. ! -> npp = 0
END IF
! limiting function
select case(flag_limi)
case(0,2,4,6,8,14)
drLimF = 1.0
case default
drLimF = p%coh%drIndPS
end select
! total net assimilation, maintenance respiration and NPP of this tree
if (p%coh%RedNc .gt. 1.E-6) then
netAsspot = (p%coh%assi - p%coh%resp) / p%coh%RedNc
else
netAsspot = 0.
endif
netAss = drLimF * (p%coh%assi - p%coh%resp)
grass = drLimF * p%coh%assi
p%coh%respfol = grass -netAss
respfol = p%coh%respfol
IF (flag_resp==1) THEN
! calculate temperature dependant rates
prmr=spar(ns)%prmr*pq10**((temp-15)/10)
prms=spar(ns)%prms*pq10**((temp-15)/10)
! leaf maintenance respiration added
maintResp = prms * p%coh%x_sap + prmr * p%coh%x_frt + respfol
! for complete outputs of respiration components:
p%coh%respsap = prms * p%coh%x_sap
p%coh%respfrt = prmr * p%coh%x_frt
p%coh%respbr = prms * p%coh%x_tb
dailypotNPP = (1.-spar(ns)%prg) * (netAsspot - maintResp)
dailyNPP = (1.-spar(ns)%prg) * (netAss - maintResp)
help = spar(ns)%prg * (netAss - maintResp)
ELSEIF (flag_resp==2) THEN
presp=0.03
maintResp = (p%coh%x_sap*cpart/spar(ns)%cnr_stem + p%coh%x_crt*cpart/spar(ns)%cnr_crt + p%coh%x_tb*cpart/spar(ns)%cnr_tbc + p%coh%x_frt*cpart/spar(ns)%cnr_frt)*presp
maintresp=maintresp*exp(308.56*((1/56.02)-(1/(temp+46.02))))
dailypotNPP = (1.-spar(ns)%prg) * (netAsspot - maintResp)
dailyNPP = (1.-spar(ns)%prg) * (netAss - maintResp)
ELSE
dailypotNPP=netAsspot*(1-spar(ns)%respcoeff)
dailyNPP=netAss*(1-spar(ns)%respcoeff)
maintResp = netAss*spar(ns)%respcoeff
ENDIF
IF(p%coh%species <= nspec_tree) THEN
dailypotNPP_C = dailypotNPP_C + p%coh%ntreea*dailypotNPP*cpart*kg_in_g / (kPatchSize) !conversion in gC/m2
dailyNPP_C = dailyNPP_C + p%coh%ntreea*dailyNPP*cpart*kg_in_g / (kPatchSize) !conversion in gC/m2
if (flag_resp.eq.1) then
dailyautresp_C = dailyautresp_C + p%coh%ntreea*(maintresp+help)*cpart*kg_in_g / (kPatchSize)
ELSE ! flag_resp=0
dailyautresp_C = dailyautresp_C + p%coh%ntreea*(respfol+maintresp)*cpart*kg_in_g / (kPatchSize)
end if
dailygrass_C = dailygrass_C + p%coh%ntreea*grass*cpart*kg_in_g / (kPatchSize)
dailynetass_C = dailynetass_C + p%coh%ntreea*netass*cpart*kg_in_g / (kPatchSize)
dailyrespfol_C = dailyrespfol_C + p%coh%ntreea*respfol*cpart*kg_in_g / (kPatchSize)
ENDIF
if (dailyNPP .gt. 10000.) then
continue
end if
! update annual net assimilation and NPP sum
p%coh%netAss = p%coh%netAss + netAss * jx
p%coh%grossass = p%coh%grossass + grass * jx
if (flag_resp.eq.1)then
p%coh%maintres = p%coh%maintres + (maintresp + help) * jx
else
p%coh%maintres = p%coh%maintres + (maintresp + respfol) * jx
end if
select case (flag_dis) !phloem disturbance
case (1,2)
dailyNPP = dailyNPP * phlo_feed
case (0)
dailyNPP = dailyNPP
end select
p%coh%NPP = p%coh%NPP + dailyNPP * jx
p%coh%weekNPP = dailyNPP * jx
IF (time_out .gt. 0 .and. flag_cohout .eq. 2) THEN
CALL OUT_ASS( p%coh%ident, PAR, p%coh%NPP, p%coh%totFPAR, p%coh%LUE, p%coh%netAss, p%coh%grossass, p%coh%nDaysPS)
ENDIF
! remove Mistletoe from N demand calculation
if (p%coh%species.ne.nspec_tree+2) then
p%coh%Ndemc_d=dailyNPP*1000.*spar(ns)%pcnr
end if
IF((flag_limi==4 .OR. flag_limi==5) .AND. 1. > p%coh%RedNc .AND. &
p%coh%N_fol/p%coh%t_leaf <= 4.5 .AND. p%coh%N_pool > 0.) THEN
IF(p%coh%N_pool > p%coh%N_fol*(1./p%coh%RedNc - 1.)) THEN
p%coh%N_fol = p%coh%N_fol / p%coh%RedNc
p%coh%N_pool = p%coh%N_pool - p%coh%N_fol*(1./p%coh%RedNc - 1.)
ELSE
p%coh%N_fol = p%coh%N_fol + p%coh%N_pool
p%coh%N_pool = 0.0
ENDIF
ENDIF
p => p%next
END DO
END SUBROUTINE NPP
!*****************************************************************!
!* *!
!* 4C (FORESEE) Simulation Model *!
!* *!
!* *!
!* Subroutines for: *!
!* - output routines - *!
!* Specific files written from model subroutines *!
!* *!
!* contains *!
!* OLD_OUT: Initialization of output files ("private") *!
!* OUT_ASS: file output ("private") *!
!* OUT_ALL: output for monitoring allocation *!
!* OUTTEST: test of output flags *!
!* OUTTEST_YEAR: test of output flags - yearly output *!
!* OUTTEST_DAY: test of output flags - daily output *!
!* OUTTEST_COH: test of output flags - cohort output *!
!* *!
!* Copyright (C) 1996-2018 *!
!* Potsdam Institute for Climate Impact Reserach (PIK) *!
!* Authors and contributors see AUTHOR file *!
!* This file is part of 4C and is licensed under BSD-2-Clause *!
!* See LICENSE file or under: *!
!* http://www.https://opensource.org/licenses/BSD-2-Clause *!
!* Contact: *!
!* https://gitlab.pik-potsdam.de/foresee/4C *!
!* *!
!*****************************************************************!
SUBROUTINE old_out
use data_out
use data_simul
implicit none
INTEGER help_ip
CHARACTER(100) ::filename
IF(site_nr==1) THEN
help_ip=site_nr
ELSE
help_ip=ip
END IF
! open output files & write column headers
if (time_out .gt. 0) then
if (out_flag_light .ne. 0) then
unit_light=getunit()
filename = trim(site_name(help_ip))//'_light.res'//trim(anh)
OPEN (unit_light, file=trim(dirout)//filename, status = 'UNKNOWN')
WRITE (unit_light, '(A)') 'year coh totFAPR LAI '
endif
if (flag_cohout .eq. 2) then
unit_prod = getunit()
filename = trim(site_name(help_ip))//'_prod.res'//trim(anh)
OPEN (unit_prod, file=trim(dirout)// filename, status = 'UNKNOWN')
WRITE (unit_prod, '(A)') ' year day coh PAR totFPAR LUE NPP netAss grossAss nDaysPS'
unit_allo = getunit()
filename = trim(site_name(help_ip))//'_allo.res'//trim(anh)
OPEN (unit_allo, file=trim(dirout)//filename, status = 'UNKNOWN')
WRITE (unit_allo, '(A)') ' year coh ntree NPP dbh growthrate Fnew Fmax Htnew&
& lambdaf lambdas lambdar lambdac x1 x2&
& xnsc_sap_max xnsc_tb_max xnsc_crt_max xnsc_sap xnsc_tb xnsc_crt'
endif
endif
IF (flag_dayout .ge. 2) THEN
unit_wat = getunit()
filename = trim(site_name(help_ip))//'_water.res'//trim(anh)
OPEN (unit_wat, file=trim(dirout)//filename, status = 'UNKNOWN')
WRITE (unit_wat, '(A)') ' Year Iday Temp Prec Interc Int_st Int_s I_st_s Snow Snow_sm PET TRA_DEM&
& PEV AEV_s AEV_i Percol WAtot WEtot WUtot WUtot_e&
& WUtot_r Tratree Trasveg EVA_dem GP_can AET cep_can cep_sv'
unit_soicnd = getunit()
filename = trim(site_name(help_ip))//'_Nmin.res'//trim(anh)
OPEN (unit_soicnd, file=trim(dirout)//filename, status = 'UNKNOWN')
WRITE (unit_soicnd, '(A)') ' Year Iday N_min_1 N_min_2 N_min_3 N_min_4 N_min_5 N_min_6 ... '
unit_soicna = getunit()
filename = trim(site_name(help_ip))//'_remin.res'//trim(anh)
OPEN (unit_soicna, file=trim(dirout)// filename, status = 'UNKNOWN')
WRITE (unit_soicna, '(A)') ' Year Iday remin_1 remin_2 remin_3 remin_4 remin_5 remin_6'
unit_soicnr = getunit()
filename = trim(site_name(help_ip))//'_rmin.res'//trim(anh)
OPEN (unit_soicnr, file=trim(dirout)// filename, status = 'UNKNOWN')
WRITE (unit_soicnr, '(A)') ' Year Iday rmin_t rmin_w rmin_phv'
ENDIF
END SUBROUTINE old_out
!**************************************************************
SUBROUTINE OUT_ASS(ident,PAR,NPP,totFPAR,LUE,netass,grossass,ndaysps)
USE data_simul
USE data_out
IMPLICIT NONE
REAL :: temp, dayL, PAR, netAss, grossass, maintResp, NPP, totFPAR, sapresp, coarseresp, frtresp, assi, resp, LUE, ndaysps
integer :: ident
WRITE(unit_prod, '(3I5,6E12.4,F6.1)') time_cur,iday,ident, PAR,totFPAR,LUE,NPP,netAss,grossass, ndaysps
END SUBROUTINE OUT_ASS
!**************************************************************
SUBROUTINE OUT_ALL( ident, ntree, NPP, DBH, grate, Fnew,Fmax_old,Htnew, lf,ls,lr,lc,x1,x2,xnsc_sap_max, xnsc_tb_max, xnsc_crt_max, xnsc_sap, xnsc_tb, xnsc_crt)
!*** Declaration part ***!
USE data_out
USE data_simul
USE data_stand
IMPLICIT NONE
INTEGER :: ident
REAL :: ntree, NPP, DBH, lf, ls, lr, lc, x1, x2, grate,Fnew,Fmax_old,Htnew,xnsc_sap_max, xnsc_tb_max, xnsc_crt_max, xnsc_sap, xnsc_tb, xnsc_crt
!*** Calculation part ***!
WRITE( unit_allo, '(2I5,F8.0,18F11.4)' ) time_cur, ident, ntree, NPP, DBH,grate,Fnew,Fmax_old,Htnew, lf,ls,lr,lc,x1,x2,xnsc_sap_max, xnsc_tb_max, xnsc_crt_max, xnsc_sap, xnsc_tb, xnsc_crt
END SUBROUTINE out_all
!**************************************************************
SUBROUTINE outtest
use data_out
use data_simul
implicit none
integer hflag, j, i
logical testflag
character a
call outtest_year
call outtest_day
call outtest_coh
call outtest_end
END subroutine outtest
!**************************************************************
SUBROUTINE outtest_year
use data_out
use data_simul
implicit none
integer i, j
logical testflag
character a
IF (time_out > 0 ) then
if (nyvar .eq. 1) then
do i = 1,outy_n
SELECT CASE (outy(i)%kind_name)
CASE ('litter')
outy(i)%out_flag = 2
CASE ('soil')
outy(i)%out_flag = 2
CASE DEFAULT
outy(i)%out_flag = 1
end select
enddo
else
outy%out_flag = 0
do j = 1,nyvar-1
testflag = .TRUE.
do i = 1,outy_n
if (trim(outy_file(j)) .eq. trim(outy(i)%kind_name)) then
SELECT CASE (outy(i)%kind_name)
CASE ('litter')
outy(i)%out_flag = 2
CASE ('soil')
outy(i)%out_flag = 2
CASE DEFAULT
outy(i)%out_flag = 1
end select
testflag = .FALSE.
exit
endif
enddo
if (testflag .and. trim(outy_file(j)) .ne. 'end') then
print *
print *,' >>>FORESEE message: Invalid output file name: '//trim(outy_file(j))
print *
endif
enddo
endif ! nyvar
IF (year/time_out > 500) then
print *,' '
write(*,*)' Warning: Your choice of yearly output steps will create'
write(*,'(I8,A)') year/time_out, ' data records per file!'
write(*,'(A)',advance='no')' Do you really want to use this value (y/n)? '
read *,a
IF (a .eq. 'n' .or. a .eq. 'N') then
write(*,'(A)',advance='no')' New value of time distance for yearly output: '
read *, time_out
ENDIF
ENDIF
ELSE
do i = 1,outy_n
outy(i)%out_flag = 0
enddo
ENDIF ! time_out > 0
END SUBROUTINE outtest_year
!**************************************************************
SUBROUTINE outtest_day
use data_out
use data_simul
implicit none
integer i, j
logical testflag
character a
! daily output
IF (flag_dayout > 0 ) then
if (ndvar .eq. 1) then
do i = 1,outd_n
outd(i)%out_flag = 1
enddo
else
outd%out_flag = 0
do j = 1,ndvar-1
testflag = .TRUE.
do i = 1,outd_n
if (trim(outd_file(j)) .eq. trim(outd(i)%kind_name)) then
outd(i)%out_flag = 1
testflag = .FALSE.
exit
endif
enddo
if (testflag .and. trim(outd_file(j)) .ne. 'end') then
print *
print *,' >>>FORESEE message: Invalid output file name: '//trim(outd_file(j))
print *
endif
enddo
endif ! ndvar
else
do i = 1,outd_n
outd(i)%out_flag = 0
enddo
endif
END SUBROUTINE outtest_day
!**************************************************************
SUBROUTINE outtest_coh
use data_out
use data_simul
implicit none
integer i, j
logical testflag
! cohort output
SELECT CASE (flag_cohout)
CASE (0)
! flags of all daily cohort files
do i = 1,outcd_n
outcd(i)%out_flag = 0
enddo
! flags of all yearly cohort files
do i = 1,outcy_n
outcy(i)%out_flag = 0
enddo
flag_cohoutd = 0
flag_cohouty = 0
CASE (1,2)
if (ncvar .eq. 1) then
! yearly cohort output
if (time_out .gt. 0) then
do i = 1,outcy_n
select case (outcy(i)%kind_name)
case ('dtr')
outcy(i)%out_flag = 2
case ('trman')
outcy(i)%out_flag = 2
case default
outcy(i)%out_flag = 1
end select
enddo
flag_cohouty = 1
else
outcy%out_flag = 0
flag_cohouty = 0
endif
! daily cohort output
if (flag_dayout .gt. 0) then
do i = 1,outcd_n
select case (outcd(i)%kind_name)
case ('dips')
outcd(i)%out_flag = 2
case ('gsdps')
outcd(i)%out_flag = 2
case default
outcd(i)%out_flag = 1
end select
enddo
else
outcd%out_flag = 0
endif
else
outcy%out_flag = 0
outcd%out_flag = 0
flag_cohoutd = 0
flag_cohouty = 0
do j = 1,ncvar-1
testflag = .TRUE.
do i = 1,outcy_n
if (trim(outc_file(j)) .eq. trim(outcy(i)%kind_name)) then
select case (outcy(i)%kind_name)
case ('dtr')
outcy(i)%out_flag = 2
case ('trman')
outcy(i)%out_flag = 2
case default
outcy(i)%out_flag = 1
end select
testflag = .FALSE.
flag_cohouty = 1
exit
endif
enddo
if (testflag .and. flag_dayout .gt. 0) then
do i = 1,outcd_n
if (trim(outc_file(j)) .eq. trim(outcd(i)%kind_name)) then
select case (outcd(i)%kind_name)
case ('dips')
outcd(i)%out_flag = 2
case ('gsdps')
outcd(i)%out_flag = 2
case default
outcd(i)%out_flag = 1
end select
testflag = .FALSE.
flag_cohouty = 1
exit
endif
enddo
endif
if (testflag .and. trim(outd_file(j)) .ne. 'end') then
print *
print *,' >>>FORESEE message: Invalid output file name: '//trim(outd_file(j))
print *
endif
enddo
endif ! ncvar
END SELECT
if (flag_cohout .eq. 2) then
out_flag_light = 1
else
out_flag_light = 0
endif
END SUBROUTINE outtest_coh
!**************************************************************
SUBROUTINE outtest_end
use data_out
use data_simul
implicit none
integer i, j
if (flag_wpm == 1 .or. flag_wpm == 21 .or. flag_wpm == 11.or.flag_wpm== 5.or. flag_wpm == 4 .or. flag_wpm == 6) then
do i = 1,oute_n
select case (oute(i)%kind_name)
case ('wpm')
oute(i)%out_flag = 1
case ('wpm_inter')
oute(i)%out_flag = 1
end select
enddo
else if (flag_wpm == 2) then
do i = 1,oute_n
select case (oute(i)%kind_name)
case ('sea')
oute(i)%out_flag = 1
case ('sea_npv')
oute(i)%out_flag = 1
case ('sea_ms')
oute(i)%out_flag = 1
case ('sea_st')
oute(i)%out_flag = 1
end select
enddo
else if(flag_wpm.eq.3) then
do i = 1,oute_n
select case (oute(i)%kind_name)
case ('sea')
oute(i)%out_flag = 1
case ('sea_npv')
oute(i)%out_flag = 1
case ('sea_ms')
oute(i)%out_flag = 1
case ('sea_st')
oute(i)%out_flag = 1
case ('wpm')
oute(i)%out_flag = 1
case ('wpm_inter')
oute(i)%out_flag = 1
end select
enddo
else
do i = 1,oute_n
oute(i)%out_flag = 0
enddo
endif
END SUBROUTINE outtest_end
!*****************************************************************!
!* *!
!* 4C (FORESEE) Simulation Model *!
!* *!
!* *!
!* Subroutines for: *!
!* output of variables with statistics for climate scenarios *!
!* *!
!* contains *!
!* OUT_VAR_STAT compressing of output variables *!
!* CALC_STAT calculation of statistics *!
!* Copyright (C) 1996-2018 *!
!* Potsdam Institute for Climate Impact Reserach (PIK) *!
!* Authors and contributors see AUTHOR file *!
!* This file is part of 4C and is licensed under BSD-2-Clause *!
!* See LICENSE file or under: *!
!* http://www.https://opensource.org/licenses/BSD-2-Clause *!
!* Contact: *!
!* https://gitlab.pik-potsdam.de/foresee/4C *!
!* *!
!*****************************************************************!
SUBROUTINE out_var_stat(kind, act_real)
! compressing of output variables with statistics (multi run 9, 10)
use data_out
use data_par
use data_simul
use data_site
IMPLICIT NONE
integer kind ! 1 - aggregation per realisation (average)
! 2 - aggregation per climate scenario over all realisations with statistics
! 3 - statistics per month over all years
integer act_real ! number of actual realisation
integer i, j, k, unit_nr, ii
real varerr, help
character(50) :: filename ! complete name of output file
real, dimension(nrreal) :: helparr
real, dimension(year):: helpmon
character(30) :: helpvar
character(20) idtext, datei
character(150) htext
! mit Numerical Recipies
REAL:: adev,ave,var, &
curt=-99. , &
sdev=-99. , &
skew=0.
! Statistische Masszahlen fuer Klimaszen.-Realisierungen
real:: avcl, & ! Mittelwert
mincl, & ! Minimum
maxcl, & ! Maximum
median, & ! Median
stdevcl=-99. , & ! Standardabweichung
varicl, & ! Streuung
varcocl ! Variationskoeffizient
real quant05, quant95 ! 0.05 and 0.95 quantile
real, external :: mean, variance
if (flag_trace) write (unit_trace, '(I4,I10,A,2I5)') iday, time_cur, ' out_var_stat ',kind,act_real
select case (kind)
case (1,2)
if (output_unit_all .le.0) then
filename = trim(site_name1)//'_var_all.out'
output_unit_all = getunit()
open(output_unit_all,file=trim(dirout)//filename,status='replace')
write (output_unit_all, '(A)') '# Output of mean annual values for each site and each realization of climate scenarios'
write (output_unit_all, '(A, I6)') '# Simulation period (years): ', year
write (output_unit_all, '(A, I6)') '# Number of climate scenarios: ', nrclim
write (output_unit_all, '(A, I6)') '# Number of realizations: ', nrreal
write (output_unit_all, *)
write (output_unit_all, '(A)', advance='no') '# Type_clim.scen. Site_ip Real.'
do i = 1, nvar-1
select case (trim(outvar(i)))
case ('AET_year','cwb_year','GPP_year','NEP_year','NPP_year','perc_year','PET_year','temp_year','TER_year','prec_year','resps_year')
continue
case ('AET_mon','cwb_mon','GPP_mon','NEP_mon','NPP_mon','perc_mon','PET_mon','temp_mon','TER_mon','prec_mon','resps_mon')
continue
case ('AET_week','cwb_week','GPP_week','NEP_week','NPP_week','perc_week','PET_week','temp_week','TER_week','prec_week','resps_week')
continue
case default
write (output_unit_all, '(A12)', advance='no') trim(outvar(i))
end select
enddo
write (output_unit_all, '(A)') ''
endif
case (3)
do i = 1, nvar-1
if (output_unit_mon(i) .le.0) then ! for monthly values
filename = trim(site_name1)//'_'//trim(outvar(i))//'_stat.res'
output_unit_mon(i) = getunit()
open(output_unit_mon(i),file=trim(dirout)//filename,status='replace')
write (output_unit_mon(i), '(A)') '# Output of mean monthly values for '//trim(outvar(i))
write (output_unit_mon(i), '(A, I6)') '# Simulation period (years): ', year
varerr = 0
endif
enddo
end select
select case (kind)
case (1) ! after each realisation
write (output_unit_all, '(2X, A15, 1X, A10, I5,2X)', advance = 'no') trim(typeclim(iclim)), sitenum(ip), act_real
do i = 1, nvar-1
select case (trim(outvar(i)))
case ('AET_year','cwb_year','GPP_year','NEP_year','NPP_year','perc_year','PET_year','temp_year','TER_year','prec_year','resps_year')
ii = output_var(i,1,0)
do j = 1, year
climszenyear(ii,ip,iclim,act_real,j) = output_var(i,1,j)
enddo
case ('AET_mon','cwb_mon','GPP_mon','NEP_mon','NPP_mon','perc_mon','PET_mon','temp_mon','TER_mon','prec_mon','resps_mon')
ii = output_var(i,1,0)
do k = 1,12
help = 0.
do j = 1, year
help = help + output_varm(ii,1,j,k)
enddo
help = help / year
climszenmon(ii,ip,iclim,act_real,k) = help
enddo
case ('AET_week','cwb_week','GPP_week','NEP_week','NPP_week','perc_week','PET_week','temp_week','TER_week','prec_week','resps_week')
ii = output_var(i,1,0)
do k = 1,52
help = 0.
do j = 1, year
help = help + output_varw(ii,1,j,k)
enddo
help = help / year
climszenweek(ii,ip,iclim,act_real,k) = help
enddo
case default
help = 0.
do j = 1, year
help = help + output_var(i,1,j)
enddo ! j
help = help / year
climszenres(i,ip,iclim,act_real) = help
write (output_unit_all, '(E12.4)', advance = 'no') help
end select ! outvar
end do ! i
write (output_unit_all, '(A)') ''
case (2) ! am Ende der Simulation
do i = 1, nvar-1
if (output_unit(i) .lt. 0) then
helpvar = outvar(i)
call out_var_select(helpvar, varerr, unit_nr)
if (varerr .ne. 0.) then
output_unit(i) = unit_nr
write (unit_nr, '(A, I6)') '# Simulation period (years): ', year
write (unit_nr, '(A, I6)') '# Number of climate scenarios: ', nrclim
write (unit_nr, '(A, I6)') '# Number of realizations: ', nrreal
select case (trim(outvar(i)))
case ('AET_year','cwb_year','GPP_year','NEP_year','NPP_year','perc_year','PET_year','temp_year','TER_year','prec_year','resps_year')
write (unit_nr, '(A)') '# Statistics over all realizations for each year '
write (unit_nr, '(A)') '# Type_clim.scen. Site_ip Year Mean Minimum Maximum Variance Var.Coeff. Std.Dev. Skewness Excess 0.05-Quant. 0.95-Quant. Median'
case ('AET_mon','cwb_mon','GPP_mon','NEP_mon','NPP_mon','perc_mon','PET_mon','temp_mon','TER_mon','prec_mon','resps_mon')
write (unit_nr, '(A)') '# Statistics over all realizations and all years for each month '
write (unit_nr, '(A)') '# Type_clim.scen. Site_ip Month Mean Minimum Maximum Variance Var.Coeff. Std.Dev. Skewness Excess 0.05-Quant. 0.95-Quant. Median'
case ('AET_week','cwb_week','GPP_week','NEP_week','NPP_week','perc_week','PET_week','temp_week','TER_week','prec_week','resps_week')
write (unit_nr, '(A)') '# Statistics over all realizations and all years for each week '
write (unit_nr, '(A)') '# Type_clim.scen. Site_ip Week Mean Minimum Maximum Variance Var.Coeff. Std.Dev. Skewness Excess 0.05-Quant. 0.95-Quant. Median'
case default
write (unit_nr, '(A)') '# Statistics over all realizations (mean of all years) '
write (unit_nr, '(A)') '# Type_clim.scen. Site_ip Mean Minimum Maximum Variance Var.Coeff. Std.Dev. Skewness Excess 0.05-Quant. 0.95-Quant. Median'
end select
else
write (*,*)
write (*,*) '*** 4C-error - output of variables (out_var_file): ', trim(outvar(i)), ' not found'
write (*,*)
write (unit_err,*)
write (unit_err,*) '*** 4C-error - no such output variable (out_var_file): ', trim(outvar(i))
endif
endif
if (output_unit(i) .ge. 0) then
select case (trim(outvar(i)))
case ('AET_year','cwb_year','GPP_year','NEP_year','NPP_year','perc_year','PET_year','temp_year','TER_year','prec_year','resps_year')
ii = output_var(i,1,0)
do k = 1, year
write (output_unit(i), '(2X, A15, 1X, A10, I7)', advance = 'no') trim(typeclim(iclim)), sitenum(ip), k
do j = 1, nrreal
helparr(j) = climszenyear(ii,ip,iclim,j,k)
enddo
call calc_stat(nrreal, helparr, output_unit(i))
enddo
case ('AET_mon','cwb_mon','GPP_mon','NEP_mon','NPP_mon','perc_mon','PET_mon','temp_mon','TER_mon','prec_mon','resps_mon')
ii = output_var(i,1,0)
do k = 1, 12
write (output_unit(i), '(2X, A15, 1X, A10, I7)', advance = 'no') trim(typeclim(iclim)), sitenum(ip), k
do j = 1, nrreal
helparr(j) = climszenmon(ii,ip,iclim,j,k)
enddo
call calc_stat(nrreal, helparr, output_unit(i))
enddo
case ('AET_week','cwb_week','GPP_week','NEP_week','NPP_week','perc_week','PET_week','temp_week','TER_week','prec_week','resps_week')
ii = output_var(i,1,0)
do k = 1, 52
write (output_unit(i), '(2X, A15, 1X, A10, I7)', advance = 'no') trim(typeclim(iclim)), sitenum(ip), k
do j = 1, nrreal
helparr(j) = climszenweek(ii,ip,iclim,j,k)
enddo
call calc_stat(nrreal, helparr, output_unit(i))
enddo
case default
write (output_unit(i), '(2X, A15, 1X, A10)', advance = 'no') trim(typeclim(iclim)), sitenum(ip)
do j = 1, nrreal
helparr(j) = climszenres(i,ip,iclim,j)
enddo
call calc_stat(nrreal, helparr, output_unit(i))
end select
endif
enddo
case (3) ! Monthly values
do i = 1, nvar-1
helpvar = outvar(i)
select case (trim(outvar(i)))
case ('AET_year','cwb_year','GPP_year','NEP_year','NPP_year','perc_year','PET_year','temp_year','TER_year','prec_year','resps_year')
ii = output_var(i,1,0)
do j = 1, year
climszenyear(ii,ip,iclim,act_real,j) = output_var(i,1,j)
enddo
case ('GPP_mon','NPP_mon','TER_mon')
ii = output_var(i,1,0)
if (ip .eq.1) then
write (output_unit_mon(i), '(A)') '# Statistics over all years for each month '
write (output_unit_mon(i), '(A)') '# g C/m '
write (output_unit_mon(i), '(A)') '# ipnr site_id Month Mean Minimum Maximum Variance Var.Coeff. Std.Dev. Skewness Excess 0.05-Quant. 0.95-Quant. Median'
endif
do k = 1,12
help = 0.
do j = 1, year
helpmon(j) = output_varm(ii,1,j,k) * 100. ! tC/ha --> gC/m
enddo
htext = adjustr(site_name(ip))
idtext = adjustl(htext (131:150)) ! only write last 20 signs
write (output_unit_mon(i), '(I5,2X, A20,I5)', advance = 'no') ip, idtext, k
call calc_stat(year, helpmon, output_unit_mon(i))
enddo
case ('NEE_mon')
ii = output_var(i,1,0)
if (ip .eq.1) then
write (output_unit_mon(i), '(A)') '# Statistics over all years for each month '
write (output_unit_mon(i), '(A)') '# g C/m '
write (output_unit_mon(i), '(A)') '# ipnr site_id Month Mean Minimum Maximum Variance Var.Coeff. Std.Dev. Skewness Excess 0.05-Quant. 0.95-Quant. Median'
endif
do k = 1,12
help = 0.
do j = 1, year
helpmon(j) = output_varm(ii,1,j,k) ! gC/m
enddo
htext = adjustr(site_name(ip))
idtext = adjustl(htext (131:150)) ! only write last 20 signs
write (output_unit_mon(i), '(I5,2X, A20,I5)', advance = 'no') ip, idtext, k
call calc_stat(year, helpmon, output_unit_mon(i))
enddo
case ('resps_mon')
ii = output_var(i,1,0)
if (ip .eq.1) then
write (output_unit_mon(i), '(A)') '# Statistics over all years for each month '
write (output_unit_mon(i), '(A)') '# g C/m '
write (output_unit_mon(i), '(A)') '# ipnr site_id Month Mean Minimum Maximum Variance Var.Coeff. Std.Dev. Skewness Excess 0.05-Quant. 0.95-Quant. Median'
endif
do k = 1,12
help = 0.
do j = 1, year
helpmon(j) = output_varm(ii,1,j,k) * kgha_in_gm2 ! kgC/ha --> gC/m
enddo
htext = adjustr(site_name(ip))
idtext = adjustl(htext (131:150)) ! only write last 20 signs
write (output_unit_mon(i), '(I5,2X, A20,I5)', advance = 'no') ip, idtext, k
call calc_stat(year, helpmon, output_unit_mon(i))
enddo
case ('AET_mon','cwb_mon','perc_mon','PET_mon','temp_mon','prec_mon')
ii = output_var(i,1,0)
if (ip .eq.1) then
write (output_unit_mon(i), '(A)') '# Statistics over all years for each month '
write (output_unit_mon(i), '(A)') '# '
write (output_unit_mon(i), '(A)') '# ipnr site_id Month Mean Minimum Maximum Variance Var.Coeff. Std.Dev. Skewness Excess 0.05-Quant. 0.95-Quant. Median'
endif
do k = 1,12
help = 0.
do j = 1, year
helpmon(j) = output_varm(ii,1,j,k)
enddo
htext = adjustr(site_name(ip))
idtext = adjustl(htext (131:150)) ! only write last 20 signs
write (output_unit_mon(i), '(I5,2X, A20,I5)', advance = 'no') ip, idtext, k
call calc_stat(year, helpmon, output_unit_mon(i))
enddo
case ('AET_week','cwb_week','GPP_week','NEP_week','NPP_week','perc_week','PET_week','temp_week','TER_week','prec_week','resps_week')
ii = output_var(i,1,0)
do k = 1,52
help = 0.
do j = 1, year
help = help + output_varw(ii,1,j,k)
enddo
help = help / year
climszenweek(ii,ip,iclim,act_real,k) = help
enddo
case default
help = 0.
do j = 1, year
help = help + output_var(i,1,j)
enddo ! j
help = help / year
climszenres(i,ip,iclim,act_real) = help
write (output_unit_all, '(E12.4)', advance = 'no') help
end select ! outvar
end do ! i
write (output_unit_all, '(A)') ''
end select
END SUBROUTINE out_var_stat
!**************************************************************
SUBROUTINE calc_stat(nreal, helparr, outunit)
! calculate statistics
use data_out
use data_simul
IMPLICIT NONE
integer :: outunit ! output unit
integer :: nreal ! number of elements
real, dimension(nreal) :: helparr ! input-array with dimension nreal
! with numerical recipies
REAL:: adev,ave,var, &
curt=-99. , &
sdev=-99. , &
skew=0.
! statistical measurment figures for climate scenario realisation
real:: avcl, & ! mean
mincl, & ! minimum
maxcl, & ! maximum
median, & ! median
stdevcl=-99. , & ! standard deviation
varicl, & ! dispersion
varcocl ! coefficient of variance
real quant05, quant95 ! 0.05 and 0.95 quantile
real, external :: mean, variance
avcl = mean(nreal, helparr)
mincl = minval(helparr)
maxcl = maxval(helparr)
varicl = variance(nreal, avcl, helparr)
if (varicl .ge. 0.) stdevcl = sqrt(varicl)
if (avcl .ne. 0.) then
varcocl = stdevcl / avcl
else
varcocl = -9999.0
endif
call quantile(nreal, helparr, quant05, quant95, median)
! with numerical recipies
if (nreal .gt. 1) call moment(helparr, nreal, ave,adev,sdev,var,skew,curt)
write (outunit, '(11E12.4)') avcl, mincl, maxcl, varicl, varcocl, sdev, skew, curt, quant05, quant95, median
END SUBROUTINE calc_stat
!*****************************************************************!
!* *!
!* 4C (FORESEE) Simulation Model *!
!* *!
!* *!
!* Subroutines for: *!
!* - output routines - initialization and writing in files *!
!* *!
!* contains *!
!* PREP_OUT initialization of output files *!
!* PREP_OUTYEAR prepare yearly output files *!
!* PREP_COH prepare output of cohorts *!
!* PREP_OUT_COMP prepare compressed output *!
!* OUTYEAR yearly output in files *!
!* OUTDAY daily output in files *!
!* COH_OUT_D daily cohort output *!
!* COH_OUT_Y yearly cohort output *!
!* OUT_COMP compressed output (multi run) *!
!* OUT_WPM ouput for WPM after the simulation is ended *!
!* OUT_SCEN climate scenario control file (multi run) *!
!* ERROR_MESS print error message in error file "error.log"*!
!* STOP_MESS print message on program abortion *!
!* OPEN_FILE open special output file *!
!* WR_HEADER_FILE write header of special output file *!
!* OUTVEG output of species values (files veg_species) *!
!* OUTSTORE store of output variables (multi run 4) *!
!* OUT_VAR_FILE store of output variables (multi run 4) *!
!* *!
!* Copyright (C) 1996-2018 *!
!* Potsdam Institute for Climate Impact Reserach (PIK) *!
!* Authors and contributors see AUTHOR file *!
!* This file is part of 4C and is licensed under BSD-2-Clause *!
!* See LICENSE file or under: *!
!* http://www.https://opensource.org/licenses/BSD-2-Clause *!
!* Contact: *!
!* https://gitlab.pik-potsdam.de/foresee/4C *!
!* *!
!*****************************************************************!
SUBROUTINE prep_out
! Open output files
USE data_simul
USE data_species
USE data_stand
USE data_out
IMPLICIT NONE
CHARACTER(50) ::filename
INTEGER i,help_ip
INTEGER unit_n ! output unit
IF(site_nr==1) THEN
help_ip=site_nr
ELSE
help_ip=ip
END IF
! 1. yearly output
! open all selected files
if (time_out .gt. 0) then
call prep_outyear (help_ip)
endif
call old_out !behelfs, privatoutput
! 2. daily output
! open all selected files
if (flag_dayout .ge. 1) then
do i = 1,outd_n
if (outd(i)%out_flag .ne. 0) then
select CASE (outd(i)%kind_name)
CASE ('Cbcd')
if (flag_bc .gt. 0) then
call open_file (outd(i), help_ip)
call wr_header_file (outd(i))
endif
CASE default
call open_file (outd(i), help_ip)
call wr_header_file (outd(i))
end select
endif
END DO !i
END IF
! 3.Cohort output
if(flag_cohout==1.or.flag_cohout==2) call prep_coh
! 4. end output
! open all selected files
if (flag_wpm .gt. 0) then
do i = 1,oute_n
if (oute(i)%out_flag .ne. 0) then
select CASE (oute(i)%kind_name)
CASE default
call open_file (oute(i), help_ip)
call wr_header_file (oute(i))
end select
endif
END DO !i
END IF
! 5.summation output
if(flag_sum>0)then
unit_sum=getunit()
filename = trim(site_name(help_ip))//'_sum.out'//trim(anh)
open(unit_sum,file=trim(dirout)//filename,status='replace')
WRITE(unit_sum,'(A)') '# Photsum = Sum of gross photosynthesis gC/m2'
WRITE(unit_sum,'(A)') '# NPPpotsum = Sum of potential NPP gC/m2'
WRITE(unit_sum,'(A)') '# NPPsum = Sum of NPP gC/m2'
WRITE(unit_sum,'(A)') '# respsoil = Sum of soil respiration gC/m2'
WRITE(unit_sum,'(A)') '# lightsum = Sum of global radiation MJ/m2'
WRITE(unit_sum,'(A)') '# NEE = Sum of respsoil - daily NPP gC/m2'
WRITE(unit_sum,'(A)') '# ALS = Sum of absorbed global radiation MJ/m2'
WRITE(unit_sum,'(A)') '# Psum = Sum of precipitation (mm)'
WRITE(unit_sum,'(A)') '# Tmean = mean temperature (C)'
WRITE(unit_sum,'(A)') '# GPP = GPP gC/m2'
WRITE(unit_sum,'(A)') '# TER = Total ecosystem respiration gC/m2'
WRITE(unit_sum,'(A)') '# respaut = Autotrophe respiration gC/m2'
select CASE(flag_sum)
CASE(1)
WRITE(unit_sum,'(A11)') '# Daily sum'
WRITE(unit_sum,'(2A5,13A10)') '# Day','Year','Photsum','NPPpotsum','NPPsum', &
'respsoil','lightsum','NEE', 'ALS', 'Psum',&
'Tmean','cor_res', 'GPP','TER','respaut'
CASE(2)
WRITE(unit_sum,'(A50)') '# AET = Sum of actual evapotranspiration (mm)'
WRITE(unit_sum,'(A50)') '# PET = Sum of potential evapotranspiration (mm)'
WRITE(unit_sum,'(A50)') '# Percol. = Sum of percolation water from last layer (mm)'
WRITE(unit_sum,'(A12)') '# Weekly sum'
WRITE(unit_sum,'(2A6,17A10)') '# Week','Year','timedec','Photsum','NPPpotsum','NPPsum', &
'respsoil','lightsum','NEE','ALS', 'Psum','Tmean', &
'cor_res', 'AET', 'PET', 'Percol.', 'GPP','TER','respaut'
CASE(3)
WRITE(unit_sum,'(A50)') '# AET = Sum of actual evapotranspiration (mm)'
WRITE(unit_sum,'(A50)') '# PET = Sum of potential evapotranspiration (mm)'
WRITE(unit_sum,'(A50)') '# Ind_cout = monthly climate index according Coutange'
WRITE(unit_sum,'(A50)') '# Ind_wiss = monthly climate index according v. Wissmann'
WRITE(unit_sum,'(A50)') '# Ind_arid = monthly aridity index according UNEP'
WRITE(unit_sum,'(A50)') '# CWB = monthly climate water balance (P-PET)'
WRITE(unit_sum,'(A50)') '# Percol. = Sum of percolation water from last layer (mm)'
WRITE(unit_sum,'(A13)') '# Monthly sum'
WRITE(unit_sum,'(A7,A5,20A10)') '# Month','Year','timedec','Photsum','NPPpotsum','NPPsum', &
'respsoil','lightsum','NEE','ALS', 'Psum', 'Tmean', 'AET', 'PET', 'Ind_cout', &
'Ind_wiss', 'Ind_arid', 'CWB', 'Percol.', 'GPP','TER','respaut'
CASE(4)
WRITE(unit_sum,'(12A)') '# Yearly sum'
WRITE(unit_sum,'(A6,A10,11A11)') '# Year','Photsum','NPPpotsum','NPPsum', &
'respsoil','lightsum','NEE','ALS', 'Psum', 'Tmean', 'GPP','TER','respaut'
end select
END IF
END subroutine prep_out
!**************************************************************
SUBROUTINE prep_outyear (help_ip)
! Open yearly output files
USE data_simul
USE data_stand
USE data_out
USE data_species
IMPLICIT NONE
CHARACTER(10) :: helpunit
CHARACTER(2) :: helpvar
INTEGER i,j,help_ip,k
INTEGER unit_n ! output unit
do i = 1,outy_n
if (outy(i)%out_flag .ge. 1) then
select CASE (outy(i)%kind_name)
CASE ('AET_mon')
if (ip .eq. 1) then
nvar = nvar + 1
outvar(nvar) = "AET_mon"
endif
call open_file (outy(i), help_ip)
call wr_header_file (outy(i))
CASE ('Cbc', 'Nbc')
if (flag_bc .gt. 0) then
call open_file (outy(i), help_ip)
call wr_header_file (outy(i))
endif
CASE ('classd', 'classt') !open classification file
call open_file (outy(i), help_ip)
unit_n = outy(i)%unit_nr
WRITE(unit_n ,'(A)') trim(outy(i)%s_line)
WRITE(unit_n ,'(A)',advance='no') trim(outy(i)%header)
do k=1,nspecies
do j=1,num_class
WRITE(unit_n,'(A8,I2)',advance='no')'Class',j
END DO !j
end do !k
WRITE(unit_n,*) ' '
CASE ('classage') !open classification file
call open_file (outy(i), help_ip)
unit_n = outy(i)%unit_nr
WRITE(unit_n ,'(A)') trim(outy(i)%s_line)
WRITE(unit_n ,'(A)',advance='no') trim(outy(i)%header)
do k=1,nspecies
do j=1,num_class
WRITE(unit_n,'(A8,I2)',advance='no')'Class',j
END DO !j
end do !k
WRITE(unit_n,*) ' '
CASE ('classmvol') !open classification file
call open_file (outy(i), help_ip)
unit_n = outy(i)%unit_nr
WRITE(unit_n ,'(A)') trim(outy(i)%s_line)
WRITE(unit_n ,'(A)',advance='no') trim(outy(i)%header)
do k=1,nspecies
do j=1,num_class
WRITE(unit_n,'(A8,I2)',advance='no')'Class',j
END DO !j
end do !k
WRITE(unit_n,*) ' '
CASE ('classd_h') !open classification file
call open_file (outy(i), help_ip)
unit_n = outy(i)%unit_nr
WRITE(unit_n ,'(A)') trim(outy(i)%s_line)
WRITE(unit_n ,'(A)',advance='no') trim(outy(i)%header)
do k=1,nspecies
do j=1,num_class
WRITE(unit_n,'(A8,I2)',advance='no')'Class',j
END DO !j
end do
WRITE(unit_n,*) ' '
CASE ('classdm') !open classification file
call open_file (outy(i), help_ip)
unit_n = outy(i)%unit_nr
WRITE(unit_n ,'(A)') trim(outy(i)%s_line)
WRITE(unit_n ,'(A)',advance='no') trim(outy(i)%header)
do k=1,nspecies
do j=1,num_class
WRITE(unit_n,'(A8,I2)',advance='no')'Class',j
END DO !j
end do
WRITE(unit_n,*) ' '
CASE ('classdm_h') ! open classification file
call open_file (outy(i), help_ip)
unit_n = outy(i)%unit_nr
WRITE(unit_n ,'(A)') trim(outy(i)%s_line)
WRITE(unit_n ,'(A)',advance='no') trim(outy(i)%header)
do k=1,nspecies
do j=1,num_class
WRITE(unit_n,'(A8,I2)',advance='no')'Class',j
END DO !j
end do
WRITE(unit_n,*) ' '
CASE ('classh') !open classification file
call open_file (outy(i), help_ip)
unit_n = outy(i)%unit_nr
WRITE(unit_n ,'(A)') trim(outy(i)%s_line)
WRITE(unit_n ,'(A)',advance='no') trim(outy(i)%header)
do j=1,num_class
WRITE(unit_n,'(A8,I2)',advance='no')'Class',j
END DO !j
WRITE(unit_n,*) ' '
CASE ('GPP_mon')
if (ip .eq. 1) then
nvar = nvar + 1
outvar(nvar) = "GPP_mon"
endif
call open_file (outy(i), help_ip)
call wr_header_file (outy(i))
CASE ('NEE_mon')
if (ip .eq. 1) then
nvar = nvar + 1
outvar(nvar) = "NEE_mon"
endif
call open_file (outy(i), help_ip)
call wr_header_file (outy(i))
CASE ('NPP_mon')
if (ip .eq. 1) then
nvar = nvar + 1
outvar(nvar) = "NPP_mon"
endif
call open_file (outy(i), help_ip)
call wr_header_file (outy(i))
CASE ('spec') !open species file
call open_file (outy(i), help_ip)
unit_n = outy(i)%unit_nr
! header
WRITE(unit_n ,'(A)',advance='no') trim(outy(i)%header)
do j=1,nspecies
zeig=>pt%first
do while (associated(zeig))
if(zeig%coh%species.eq.j)then
WRITE(helpunit,'(I2)') zeig%coh%species
read(helpunit,*) helpvar
WRITE(unit_n,'(A10)',advance='no') 'Diam_S'//helpvar
WRITE(unit_n,'(A10)',advance='no') 'Heig_S'//helpvar
WRITE(unit_n,'(2A10)',advance='no') 'Tree_S'//helpvar,'Biom_S'//helpvar
exit
END IF
zeig=>zeig%next
END DO
END DO
WRITE(unit_n,*) ' '
CASE ('TER_mon')
if (ip .eq. 1) then
nvar = nvar + 1
outvar(nvar) = "TER_mon"
endif
call open_file (outy(i), help_ip)
call wr_header_file (outy(i))
CASE default
call open_file (outy(i), help_ip)
call wr_header_file (outy(i))
end select
END IF
END DO !i
if (nvar .gt. 0) then
if (.not. allocated(output_unit_mon)) then
allocate(output_unit_mon(nvar))
if (.not. allocated(output_var)) allocate(output_var(nvar,1,0:0))
if (.not. allocated(output_varm)) allocate(output_varm(nvar,site_nr,year,12))
do i=1,nvar
output_var(i,1,0) = i
enddo
nvar = nvar + 1
endif
endif
END subroutine prep_outyear
!**************************************************************
SUBROUTINE prep_coh
!prepare cohort output
USE data_simul
USE data_stand
USE data_out
IMPLICIT NONE
INTEGER help_ip
INTEGER i
INTEGER unit_n ! output unit
IF(site_nr==1) THEN
help_ip=site_nr
ELSE
help_ip=ip
END IF
! output of all selected daily cohort files
do i = 1,outcd_n
if (outcd(i)%out_flag .ne. 0) then
unit_n = outcd(i)%unit_nr
select CASE (outcd(i)%kind_name)
CASE default
call open_file (outcd(i), help_ip)
call wr_header_file (outcd(i))
end select
END IF
END DO !i
!prepare yearly cohort output
! output of all selected yearly files
do i = 1,outcy_n
if (outcy(i)%out_flag .ne. 0) then
unit_n = outcy(i)%unit_nr
select CASE (outcy(i)%kind_name)
CASE default
call open_file (outcy(i), help_ip)
call wr_header_file (outcy(i))
end select
END IF
END DO !i
END subroutine prep_coh
!**************************************************************
SUBROUTINE prep_out_comp
! preparation: compressed output of final results for each run
USE data_simul
USE data_soil
USE data_stand
USE data_out
IMPLICIT NONE
character(70) filename
filename = trim(site_name(1))//'_B'//'.cmp'
unit_comp1 = getunit()
open(unit_comp1, file=trim(dirout)//filename, status='replace')
write (unit_comp1, '(A)') '# Compressed output of start values for each run'
write (unit_comp1, 1000)
write (unit_comp1, 2000)
filename = trim(site_name(1))//'_E'//'.cmp'
unit_comp2 = getunit()
open(unit_comp2, file=trim(dirout)//filename, status='replace')
write (unit_comp2, '(A)') '# Compressed output of final results for each run'
write (unit_comp2, '(A, I5)') '# Simulation time (years)', year
write (unit_comp2, 500)
write (unit_comp2, 1000)
write (unit_comp2, 2000)
500 FORMAT ('# ||-------------------------------------------- final state -------------------------------------------||--- mean annual values ---||--- cumulative quantities ---||------------------- final state ',&
'-------------------||----------------------------------------------------------------------------- mean annual values ---------------------------------------------------------------------------------------------------------------', &
'-------------------------------------------------------------------------------------------------------------------------------|')
1000 FORMAT ('# m2_m2 /ha t DW/ha t DW/ha cm cm t DW/ha t DW/ha t DW/ha t DW/ha t DW/ha t DW/ha t C/ha kg C/ha kg C/ha kg DW/ha kg DW/ha kg DW/ha t C/ha t C/ha t C/ha t C/ha',&
' t C/ha t C/ha kg C/ha kg C/ha kg N/ha kg N/ha kg N/ha kg C/ha kg C/ha mm mm mm mm mm C mm kg N/ha', 189X,' J_cm2 mm kg N/ha')
2000 FORMAT ('# ipnr site_id LAI nTree typ Biomass Biom._sv Meddiam Domhei totfol tottb totsap tothrt totfrt totcrt mean_NPP mean_NEP mean_GPP c_Stem_inc cumVs_ab cumVs_dead C_sum C_d_stm C_tot C_hum_tot',&
' C_tot_40 C_hum_40 C_accu C_litter N_litter N_min Nleach Soil_Res Tot_Resp PET AET percol interc transp temp prec N_depo drIndAl GDD cwb_an fire_inde fire_indb I_arid I_lang I_cout ', &
'I_wiss I_mart I_weck I_reich I_emb CI_gor CI_cur CI_con NTindex I_Nesterov I_Budyko Rad RedN dew/rime Nupt I_frost I_frost_sp Ind_SHC' )
END subroutine prep_out_comp
!**************************************************************
SUBROUTINE outyear (flagout)
!yearly output
USE data_biodiv
USE data_climate
USE data_depo
USE data_evapo
USE data_inter
USE data_out
USE data_par
USE data_simul
USE data_soil
USE data_soil_cn
USE data_species
USE data_stand
USE data_manag
USE data_tsort
USE data_site
USE data_frost
IMPLICIT NONE
integer flagout ! control of output
! 1 - output with outyear,
! 2 - output after management and mortality
integer i,j,k,ihelp
integer unit_n ! output unit
real hconv ! conversion factor from patchsize into ha
! output variables of yearly C-balance in kg C/ha
real y_GPP, & ! yearly gross productioin
y_NPP, & ! yearly net primary productioin
y_NEP, & ! yearly net ecosystem productioin
y_autresp, & ! yearly total resp of all cohorts and species
y_sumbio, & ! total biomass of all cohorts and all species
y_C_d_st, & ! C in stems of dead trees
y_sumvsab, & ! C in total sum of volume of removed stems by management
y_C_tot, & ! total soil C stock (OPM, humus and litter; whithout stems)
y_C_tot_es, & ! total C of ecosystem (soil, dead stems and biomass)
y_resps, & ! yearly soil respiration
y_resptot ! yearly total respiration
! output variables of yearly C-balance in mol C/m2
real ym_GPP, & ! yearly gross productioin
ym_NPP, & ! yearly net primary productioin
ym_NEP, & ! yearly net ecosystem productioin
ym_autresp, & ! yearly total resp of all cohorts and species
ym_sumbio, & ! total biomass of all cohorts and all species
ym_C_d_st, & ! C in stems of dead trees
ym_sumvsab, & ! C in total sum of volume of removed stems by management
ym_C_tot, & ! total soil C stock (OPM, humus and litter; whithout stems)
ym_C_tot_es,& ! total C of ecosystem (soil, dead stems and biomass)
ym_resps, & ! yearly soil respiration
ym_resptot, & ! yearly total respiration
y_lai ! LAI of stand without soil vegetation
! output variables of litter file: share in total biomasses
real y_fol, y_tb, y_crt, y_frt, y_stem, y_totlit, y_C_lit, y_N_lit
! output variables harvested trees
real se_c_ha, & ! sortiment element in C kg/ha
se_m3_ha ! volume of sortiment element in m/ha
real Cbc_ap ! output variable of biochar application
real help, h1, h2, h3, h4, q1, q2, q3, q4
real hdnlf, hdnlf_sp, xhelp, xhelp1
integer hdate_lf, hdate_lftot, hanzdlf
real hsumtlf
y_lai = 0.
if ((flagout .eq. 1) .and. (.not.allocated(sout))) allocate (sout(nspecies))
if (time.eq.0) then
hdnlf = 0.
hdnlf_sp = 0.
hdate_lf = 0.
hdate_lftot = 0.
hanzdlf = 0.
hsumtlf = 0.
else
hdnlf = dnlf(time)
hdnlf_sp = dnlf_sp(time)
hdate_lf = date_lf(time)
hdate_lftot = date_lftot(time)
hanzdlf = anzdlf(time)
hsumtlf = sumtlf(time)
end if
! output of all selected files
do i = 1,outy_n
if (outy(i)%out_flag .eq. flagout) then
unit_n = outy(i)%unit_nr
select CASE (outy(i)%kind_name)
CASE ('AET_mon','aet_mon')
q1 = aet_mon(1) + aet_mon(2) + aet_mon(3)
q2 = aet_mon(4) + aet_mon(5) + aet_mon(6)
q3 = aet_mon(7) + aet_mon(8) + aet_mon(9)
q4 = aet_mon(10) + aet_mon(11) + aet_mon(12)
if (time .gt.1) then
h1 = aet_dec + aet_mon(1) + aet_mon(2)
else
h1 = aet_mon(1) + aet_mon(2)
endif
h2 = aet_mon(3) + aet_mon(4) + aet_mon(5)
h3 = aet_mon(6) + aet_mon(7) + aet_mon(8)
h4 = aet_mon(9) + aet_mon(10) + aet_mon(11)
WRITE(unit_n,'(I6)',advance='no') time_cur
WRITE(unit_n,'(20F10.2)') aet_mon, q1, q2, q3, q4, h1, h2, h3, h4
CASE ('c_bal')
hconv = 10000./kpatchsize
y_NPP = sumNPP * cpart ! kg DW --> kg C
y_NPP = y_NPP * hconv ! kg C/patch --> kg C/ha
y_autresp = autresp * cpart * hconv ! kg DW pro patch --> kg C/ha
y_resps = resps_c * gm2_in_kgha ! g/m2 --> kg/ha
y_resptot = y_resps + y_autresp
y_GPP = y_NPP + y_autresp
y_NEP = y_NPP - y_resps
y_C_d_st = C_opm_stem * gm2_in_kgha
y_sumvsab = sumvsab * cpart ! kg DW /ha --> kg C
y_sumbio = (sumbio+sumbio_out) * cpart ! kg DW /ha --> kg C/ha
y_C_tot = C_tot * gm2_in_kgha * 0.001 ! g/m2 --> t/ha
y_C_tot_es= y_C_tot + y_C_d_st + y_sumbio
ym_NPP = sumNPP * cpart ! kg DW --> kg C
ym_NPP = ym_NPP * 1./kpatchsize ! kg C/patch --> kg C/m2
ym_NPP = ym_NPP * 1000. / Cmass ! kg C --> mol C
ym_autresp= autresp * cpart * kgha_in_gm2 * hconv / Cmass ! kg DW pro patch --> mol/m2
ym_resps = resps_c /Cmass ! g/m2 --> mol/m2
ym_resptot= ym_resps + ym_autresp
ym_GPP = ym_NPP + ym_autresp
ym_NEP = ym_NPP - ym_resps
ym_C_d_st = C_opm_stem /Cmass ! g/m2 --> mol/m2
ym_sumvsab= sumvsab * cpart * kgha_in_gm2 / Cmass ! kg DW /ha --> mol/m2
ym_sumbio = sumbio * cpart * kgha_in_gm2 / Cmass ! kg DW /ha --> mol/m2
ym_C_tot = C_tot /Cmass ! g/m2 --> mol/m2
ym_C_tot_es= ym_C_tot + ym_C_d_st + ym_sumbio
gppsum = gppsum * gm2_in_kgha
WRITE(unit_n,'(I6)',advance='no') time_cur
WRITE(unit_n,'(10F10.1,9F10.2,11F10.1,F10.1)') y_GPP, y_NPP, y_NEP, y_autresp, y_resps, y_resptot, &
y_C_d_st, y_sumvsab, y_sumbio, y_C_tot_es, y_C_tot, &
C_tot_1, C_hum_1, C_tot_40, C_hum_40, C_tot_80, C_hum_80, C_tot_100, C_hum_100, &
ym_GPP, ym_NPP, ym_NEP, ym_autresp, ym_resps, ym_resptot, &
ym_C_d_st, ym_sumvsab, ym_sumbio, ym_C_tot_es, ym_C_tot, gppsum
CASE ('Cbc')
if (flag_bc .gt. 0) then
WRITE(unit_n,'(I6)',advance='no') time_cur
do j=1,nlay
WRITE(unit_n,'(F10.3)',advance='no') C_bc(j)
END DO !j
WRITE(unit_n,'(A)') ''
endif
CASE ('Chum')
WRITE(unit_n,'(I6)',advance='no') time_cur
do j=1,nlay
WRITE(unit_n,'(F10.3)',advance='no') C_hum(j)
END DO !j
WRITE(unit_n,'(A)') ''
CASE ('Copm')
WRITE(unit_n,'(I6)',advance='no') time_cur
do j=1,nlay
WRITE(unit_n,'(F10.3)',advance='no') C_opm(j)
END DO !j
WRITE(unit_n,'(A)') ''
CASE ('Copmfract')
WRITE(unit_n,'(I6)',advance='no') time_cur
do k=1,anrspec
j = nrspec(k)
xhelp = SUM(slit(j)%C_opm_frt)
xhelp1 = SUM(slit(j)%C_opm_crt)
WRITE(unit_n,'(I8,5F10.3)',advance='no') j, slit(j)%C_opm_fol, slit(j)%C_opm_tb, &
xhelp, xhelp1, slit(j)%C_opm_stem
END DO ! j
WRITE(unit_n,'(A)') ''
CASE ('classd')
WRITE(unit_n,'(I6)',advance='no') time_cur
do k=1,nspecies
do j=1,num_class
WRITE(unit_n,'(I10)',advance='no') diam_class(j,k)
END DO
end do
WRITE(unit_n,'(A)') ''
CASE ('classage')
WRITE(unit_n,'(I6)',advance='no') time_cur
do k=1,nspecies
do j=1,num_class
WRITE(unit_n,'(I10)',advance='no') diam_class_age(j,k)
END DO
end do
WRITE(unit_n,'(A)') ''
CASE ('classmvol')
WRITE(unit_n,'(I6)',advance='no') time_cur
do k=1,nspecies
do j=1,num_class
WRITE(unit_n,'(f10.3)',advance='no') diam_class_mvol(j,k)
END DO
end do
WRITE(unit_n,'(A)') ''
CASE ('classd_h')
WRITE(unit_n,'(I6)',advance='no') time_cur
do k=1,nspecies
do j=1,num_class
WRITE(unit_n,'(f10.3)',advance='no') diam_class_h(j,k)
END DO
end do
WRITE(unit_n,'(A)') ''
CASE ('classdm')
WRITE(unit_n,'(I6)',advance='no') time_cur
do k=1,nspecies
do j=1,num_class
WRITE(unit_n,'(I10)',advance='no') diam_classm(j,k)
END DO
end do
WRITE(unit_n,'(A)') ''
CASE ('classdm_h')
WRITE(unit_n,'(I6)',advance='no') time_cur
do k=1,nspecies
do j=1,num_class
WRITE(unit_n,'(f10.3)',advance='no') diam_classm_h(j,k)
END DO
end do
WRITE(unit_n,'(A)') ''
CASE ('classh')
WRITE(unit_n,'(I6)',advance='no') time_cur
do j=1,num_class
WRITE(unit_n,'(I10)',advance='no') height_class(j)
END DO
WRITE(unit_n,'(A)') ''
CASE ('classt')
WRITE(unit_n,'(I6)',advance='no') time_cur
do k=1,nspecies
do j=1,num_class
WRITE(unit_n,'(I10)',advance='no') diam_class_t(j,k)
END DO
end do
WRITE(unit_n,'(A)') ''
CASE ('clim')
help = co2 * 1000000.
WRITE(unit_n,'(2I5)',advance='no') time_cur
WRITE(unit_n,'(6F10.2, 6I10, 7F10.2, E12.4, F8.2, 6F10.2, 2F8.2, 3I8, F10.2, I8, F10.2)') med_air,sum_prec,med_rad, med_wind, help, gdday, &
days_summer, days_hot, days_ice, days_dry, days_hrain, days_snow, ind_arid_an, cwb_an, ind_lang_an, &
ind_cout_an, ind_wiss_an, ind_mart_an, ind_mart_vp, ind_emb, ind_weck, ind_reich, &
con_gor, con_cur, con_con, ntindex, ind_bud, hdnlf, hdnlf_sp, hdate_lf, hdate_lftot, hanzdlf, hsumtlf, iday_vegper, ind_shc
CASE ('clim_temp')
q1 = (temp_mon(1) + temp_mon(2) + temp_mon(3)) / 3.
q2 = (temp_mon(4) + temp_mon(5) + temp_mon(6)) / 3.
q3 = (temp_mon(7) + temp_mon(8) + temp_mon(9)) / 3.
q4 = (temp_mon(10) + temp_mon(11) + temp_mon(12)) / 3.
if (time .gt.1) then
h1 = (temp_dec + temp_mon(1) + temp_mon(2)) / 3.
else
h1 = (temp_mon(1) + temp_mon(2)) / 2.
endif
h2 = (temp_mon(3) + temp_mon(4) + temp_mon(5)) / 3.
h3 = (temp_mon(6) + temp_mon(7) + temp_mon(8)) / 3.
h4 = (temp_mon(9) + temp_mon(10) + temp_mon(11)) / 3.
WRITE(unit_n,'(I6)',advance='no') time_cur
WRITE(unit_n,'(20F10.2)') temp_mon, q1, q2, q3, q4, h1, h2, h3, h4
CASE ('clim_prec')
q1 = prec_mon(1) + prec_mon(2) + prec_mon(3)
q2 = prec_mon(4) + prec_mon(5) + prec_mon(6)
q3 = prec_mon(7) + prec_mon(8) + prec_mon(9)
q4 = prec_mon(10) + prec_mon(11) + prec_mon(12)
if (time .gt.1) then
h1 = prec_dec + prec_mon(1) + prec_mon(2)
else
h1 = prec_mon(1) + prec_mon(2)
endif
h2 = prec_mon(3) + prec_mon(4) + prec_mon(5)
h3 = prec_mon(6) + prec_mon(7) + prec_mon(8)
h4 = prec_mon(9) + prec_mon(10) + prec_mon(11)
WRITE(unit_n,'(I6)',advance='no') time_cur
WRITE(unit_n,'(20F10.2)') prec_mon, q1, q2, q3, q4, h1, h2, h3, h4
CASE ('clim_rad')
q1 = (rad_mon(1) + rad_mon(2) + rad_mon(3)) / 3.
q2 = (rad_mon(4) + rad_mon(5) + rad_mon(6)) / 3.
q3 = (rad_mon(7) + rad_mon(8) + rad_mon(9)) / 3.
q4 = (rad_mon(10) + rad_mon(11) + rad_mon(12)) / 3.
if (time .gt.1) then
h1 = (rad_dec + rad_mon(1) + rad_mon(2)) / 3.
else
h1 = (rad_mon(1) + rad_mon(2)) / 2.
endif
h2 = (rad_mon(3) + rad_mon(4) + rad_mon(5)) / 3.
h3 = (rad_mon(6) + rad_mon(7) + rad_mon(8)) / 3.
h4 = (rad_mon(9) + rad_mon(10) + rad_mon(11)) / 3.
WRITE(unit_n,'(I6)',advance='no') time_cur
WRITE(unit_n,'(20F10.2)') rad_mon, q1, q2, q3, q4, h1, h2, h3, h4
CASE ('clim_hum')
q1 = (hum_mon(1) + hum_mon(2) + hum_mon(3)) / 3.
q2 = (hum_mon(4) + hum_mon(5) + hum_mon(6)) / 3.
q3 = (hum_mon(7) + hum_mon(8) + hum_mon(9)) / 3.
q4 = (hum_mon(10) + hum_mon(11) + hum_mon(12)) / 3.
if (time .gt.1) then
h1 = (hum_dec + hum_mon(1) + hum_mon(2)) / 3.
else
h1 = (hum_mon(1) + hum_mon(2)) / 2.
endif
h2 = (hum_mon(3) + hum_mon(4) + hum_mon(5)) / 3.
h3 = (hum_mon(6) + hum_mon(7) + hum_mon(8)) / 3.
h4 = (hum_mon(9) + hum_mon(10) + hum_mon(11)) / 3.
WRITE(unit_n,'(I6)',advance='no') time_cur
WRITE(unit_n,'(20F10.2)') hum_mon, q1, q2, q3, q4, h1, h2, h3, h4
CASE ('indi')
WRITE(unit_n,'(2I5)',advance='no') time_cur
WRITE(unit_n,'(F10.2, 2(F8.2, 5I8), F10.1, I10, F8.2, 4I8 )') fire_indb, fire(1)%mean, fire(1)%frequ, &
fire(2)%mean, fire(2)%frequ, fire_indi_max, fire_indi_day, fire(3)%mean, (fire(3)%frequ(j), j=1,4)
CASE ('litter')
if (totfol .gt. 1E-6) then
y_fol = totfol_lit*100. / totfol
else
y_fol = -99.
endif
if (totfrt .gt. 1E-6) then
y_frt = totfrt_lit*100. / totfrt
else
y_frt = -99.
endif
if (tottb .gt. 1E-6) then
y_tb = tottb_lit*100. / tottb
else
y_tb = -99.
endif
if (totcrt .gt. 1E-6) then
y_crt = totcrt_lit*100. / totcrt
else
y_crt = -99.
endif
hconv = totsap + tothrt
if (hconv .gt. 1E-6) then
y_stem= totstem_lit*100. / hconv
else
y_stem = -99.
endif
y_totlit = totfol_lit + totfrt_lit + totcrt_lit + tottb_lit + totstem_lit
y_C_lit = (C_lit + C_lit_stem) * gm2_in_kgha
y_N_lit = (N_lit + N_lit_stem) * gm2_in_kgha
WRITE(unit_n,'(I6)',advance='no') time_cur
WRITE(unit_n,'(8E12.4,2(6E12.4),5F12.2)') totfol_lit,totfol_lit_tree,totfrt_lit,totfrt_lit_tree,totcrt_lit,tottb_lit,totstem_lit, y_totlit, &
C_lit_fol*gm2_in_kgha, C_lit_frt*gm2_in_kgha, C_lit_crt*gm2_in_kgha, &
C_lit_tb*gm2_in_kgha, C_lit_stem*gm2_in_kgha, y_C_lit, &
N_lit_fol*gm2_in_kgha, N_lit_frt*gm2_in_kgha, N_lit_crt*gm2_in_kgha, &
N_lit_tb*gm2_in_kgha, N_lit_stem*gm2_in_kgha, y_N_lit
CASE ('fcap_av')
WRITE(unit_n,'(I6)',advance='no') time_cur
do j=1,nlay
WRITE(unit_n,'(F10.3)',advance='no') field_cap(j) - wilt_p(j)
END DO !j
WRITE(unit_n,'(A)') ''
CASE ('fcapv_av')
WRITE(unit_n,'(I6)',advance='no') time_cur
do j=1,nlay
WRITE(unit_n,'(F10.3)',advance='no') f_cap_v(j) - wilt_p_v(j)
END DO !j
WRITE(unit_n,'(A)') ''
CASE ('GPP_mon')
q1 = GPP_mon(1) + GPP_mon(2) + GPP_mon(3)
q2 = GPP_mon(4) + GPP_mon(5) + GPP_mon(6)
q3 = GPP_mon(7) + GPP_mon(8) + GPP_mon(9)
q4 = GPP_mon(10) + GPP_mon(11) + GPP_mon(12)
if (time .gt.1) then
h1 = GPP_dec + GPP_mon(1) + GPP_mon(2)
else
h1 = GPP_mon(1) + GPP_mon(2)
endif
h2 = GPP_mon(3) + GPP_mon(4) + GPP_mon(5)
h3 = GPP_mon(6) + GPP_mon(7) + GPP_mon(8)
h4 = GPP_mon(9) + GPP_mon(10) + GPP_mon(11)
WRITE(unit_n,'(I6)',advance='no') time_cur
WRITE(unit_n,'(20F10.2)') GPP_mon, q1, q2, q3, q4, h1, h2, h3, h4
CASE ('humusv')
WRITE(unit_n,'(I6)',advance='no') time_cur
do j=1,nlay
WRITE(unit_n,'(F10.3)',advance='no') humusv(j)*100.
END DO !j
WRITE(unit_n,'(A)') ''
CASE ('NEE_mon')
q1 = NEE_mon(1) + NEE_mon(2) + NEE_mon(3)
q2 = NEE_mon(4) + NEE_mon(5) + NEE_mon(6)
q3 = NEE_mon(7) + NEE_mon(8) + NEE_mon(9)
q4 = NEE_mon(10) + NEE_mon(11) + NEE_mon(12)
if (time .gt.1) then
h1 = NEE_dec + NEE_mon(1) + NEE_mon(2)
else
h1 = NEE_mon(1) + NEE_mon(2)
endif
h2 = NEE_mon(3) + NEE_mon(4) + NEE_mon(5)
h3 = NEE_mon(6) + NEE_mon(7) + NEE_mon(8)
h4 = NEE_mon(9) + NEE_mon(10) + NEE_mon(11)
WRITE(unit_n,'(I6)',advance='no') time_cur
WRITE(unit_n,'(20F10.2)') NEE_mon, q1, q2, q3, q4, h1, h2, h3, h4
CASE ('NPP_mon')
q1 = NPP_mon(1) + NPP_mon(2) + NPP_mon(3)
q2 = NPP_mon(4) + NPP_mon(5) + NPP_mon(6)
q3 = NPP_mon(7) + NPP_mon(8) + NPP_mon(9)
q4 = NPP_mon(10) + NPP_mon(11) + NPP_mon(12)
if (time .gt.1) then
h1 = NPP_dec + NPP_mon(1) + NPP_mon(2)
else
h1 = NPP_mon(1) + NPP_mon(2)
endif
h2 = NPP_mon(3) + NPP_mon(4) + NPP_mon(5)
h3 = NPP_mon(6) + NPP_mon(7) + NPP_mon(8)
h4 = NPP_mon(9) + NPP_mon(10) + NPP_mon(11)
WRITE(unit_n,'(I6)',advance='no') time_cur
WRITE(unit_n,'(20F10.2)') NPP_mon, q1, q2, q3, q4, h1, h2, h3, h4
CASE ('Nbc')
if (flag_bc .gt. 0) then
WRITE(unit_n,'(I6)',advance='no') time_cur
do j=1,nlay
WRITE(unit_n,'(F10.3)',advance='no') N_bc(j)
END DO !j
WRITE(unit_n,'(A)') ''
endif
CASE ('Nhum')
WRITE(unit_n,'(I6)',advance='no') time_cur
do j=1,nlay
WRITE(unit_n,'(F10.3)',advance='no') N_hum(j)
END DO !j
WRITE(unit_n,'(A)') ''
CASE ('Nopm')
WRITE(unit_n,'(I6)',advance='no') time_cur
do j=1,nlay
WRITE(unit_n,'(F10.3)',advance='no') N_opm(j)
END DO !j
WRITE(unit_n,'(A)') ''
CASE ('manrec')
if (flag_manreal.eq.1) then
WRITE(unit_n,'(I6)',advance='no') time_cur-1
WRITE(unit_n,'(10x,A30,I6)') maninf, meas
end if
CASE ('mansort')
if ((flag_manreal.eq.1.or.flag_deadsort.eq.1).and.maninf.ne.'tending'.and.maninf.ne.'brushing') then
ztim=>st%first
do
IF (.not.ASSOCIATED(ztim)) exit
if(time.eq.ztim%tim%year.and. (ztim%tim%stype.eq.'ab'.or.ztim%tim%stype.eq.'tb')) then
se_m3_ha = (ztim%tim%vol/kpatchsize)*10000. ! m/patchsize ---> m3/ha
se_c_ha = se_m3_ha*spar(ztim%tim%specnr)%prhos*1000000.*cpart ! m/patchsize ---> kg C/ha
write(unit_n,'(3I6,1x,A5,1x,F8.3,1x,f7.3,1x,f7.3,1x,f7.3,1x,f7.3,1x,f9.4,1x,f14.3,1x,i8,x,a4)') ztim%tim%year,&
ztim%tim%count,ztim%tim%specnr,ztim%tim%ttype,ztim%tim%length,ztim%tim%dia,ztim%tim%diaor, ztim%tim%zapfd,&
ztim%tim%zapfdor,se_m3_ha, se_c_ha,int(ztim%tim%tnum), ztim%tim%stype
end if
ztim=>ztim%next
end do
flag_manreal=0
flag_deadsort=0
else if (maninf.eq.'tending'.or.maninf.eq.'brushing') then
flag_manreal=0
maninf=' '
end if
CASE ('root')
WRITE(unit_n,'(I6)',advance='no') time_cur
do j=1,nlay
WRITE(unit_n,'(F10.3)',advance='no') root_fr(j)
END DO !j
WRITE(unit_n,'(A)') ''
CASE ('fr_loss')
WRITE(unit_n,'(I6)',advance='no') time_cur
do j=1,nlay
WRITE(unit_n,'(F10.3)',advance='no') fr_loss(j)
END DO !j
WRITE(unit_n,'(A)') ''
CASE ('redis')
WRITE(unit_n,'(I6)',advance='no') time_cur
do j=1,nlay
WRITE(unit_n,'(F10.3)',advance='no') redis(j)
END DO !j
WRITE(unit_n,'(A)') ''
CASE ('sdrought')
WRITE(unit_n,'(I6)',advance='no') time_cur
WRITE(unit_n,'(20I8)') s_drought
CASE ('soil')
help = -99.0
Cbc_ap = 0.
if (time .gt. 0) help = rnet_cum / recs(time)
if (flag_bc .gt. 0) then
ihelp = y_bc_n - 1
if (y_bc_n .eq. 1) ihelp = y_bc_n
if (y_bc(ihelp) .eq. time) then
Cbc_ap = Cbc_ap + C_bc_appl(ihelp)
endif
endif
WRITE(unit_n,'(I6)',advance='no') time_cur
WRITE(unit_n,'(13F10.3,5F10.2,17F10.3,4F10.2)') med_air, sum_prec, int_cum_can, &
perc_cum, wupt_cum, wupt_r_c, tra_tr_cum, tra_sv_cum, wupt_e_c, aet_cum, wat_tot, gp_can_mean, &
N_min, N_tot, C_tot, N_an_tot, N_hum_tot, C_hum_tot, N_hum(1), C_hum(1), &
N_lit, C_lit, C_opm_fol, C_opm_frt, C_opm_crt, C_opm_tb, C_opm_stem, Nupt_c, &
Nleach_c, Ndep_cum, resps_c, pet_cum, int_cum_sveg, thick(1), dew_cum, help, N_bc_tot, C_bc_tot, Cbc_ap
CASE ('spec')
WRITE(unit_n,'(I6)',advance='no') time_cur
do j=1,nspecies
zeig=>pt%first
do while (associated(zeig))
if(zeig%coh%species.eq.j)then
WRITE(unit_n,'(2F10.2,I10,F10.2)',advance='no') svar(j)%med_diam, &
svar(j)%dom_height, svar(j)%sum_ntreea, svar(j)%sum_bio
exit
END IF
zeig=>zeig%next
END DO
END DO
WRITE(unit_n,*) ' '
CASE('standsort')
if (outy(i)%out_flag .eq. 1) then
outy(i)%out_flag = 2
else if (outy(i)%out_flag .eq. 2) then
ztim=>st%first
do
IF (.not.ASSOCIATED(ztim)) exit
if(ztim%tim%year.eq.time.and. ztim%tim%stype.eq.'vb') then
se_m3_ha = (ztim%tim%vol/kpatchsize)*10000. ! m/patchsize ---> m3/ha
se_c_ha = se_m3_ha*spar(ztim%tim%specnr)%prhos*1000000.*cpart ! m/patchsize ---> kg C/ha
write(unit_n,'(3I6,1x,A5,1x,F8.3,1x,f7.3,1x,f7.3,1x,f7.3,1x,f7.3,1x,f9.4,1x,f14.3,1x,i8)') ztim%tim%year,&
ztim%tim%count,ztim%tim%specnr,ztim%tim%ttype,ztim%tim%length,ztim%tim%dia,ztim%tim%diaor, ztim%tim%zapfd,&
ztim%tim%zapfdor,se_m3_ha, se_c_ha,int(ztim%tim%tnum)
end if
ztim=>ztim%next
end do
end if
CASE ('TER_mon')
q1 = TER_mon(1) + TER_mon(2) + TER_mon(3)
q2 = TER_mon(4) + TER_mon(5) + TER_mon(6)
q3 = TER_mon(7) + TER_mon(8) + TER_mon(9)
q4 = TER_mon(10) + TER_mon(11) + TER_mon(12)
if (time .gt.1) then
h1 = TER_dec + TER_mon(1) + TER_mon(2)
else
h1 = TER_mon(1) + TER_mon(2)
endif
h2 = TER_mon(3) + TER_mon(4) + TER_mon(5)
h3 = TER_mon(6) + TER_mon(7) + TER_mon(8)
h4 = TER_mon(9) + TER_mon(10) + TER_mon(11)
WRITE(unit_n,'(I6)',advance='no') time_cur
WRITE(unit_n,'(20F10.2)') TER_mon, q1, q2, q3, q4, h1, h2, h3, h4
CASE ('veg')
if (outy(i)%out_flag .eq. 1) then
vout%help_veg1(1) = anz_spec
vout%help_veg1(2) = anz_coh_act
vout%help_veg1(3) = anz_tree_ha
do k = 1, nspec_tree
y_lai = y_lai + svar(k)%sum_lai
end do
vout%help_veg2(1) = y_lai
vout%help_veg2(2) = sumbio
vout%help_veg2(3) = sumnpp
vout%help_veg2(4) = med_diam
vout%help_veg2(5) = hdom
vout%help_veg2(6) = totfol
vout%help_veg2(7) = totsap
vout%help_veg2(8) = totfrt
vout%help_veg2(9) = tothrt
vout%help_veg2(10) = totsteminc
vout%help_veg2(11) = totstem_m3
vout%help_veg3 = crown_area/kpatchsize
outy(i)%out_flag = 2
else if (outy(i)%out_flag .eq. 2) then
WRITE(unit_n,'(I6)',advance='no') time_cur
WRITE(unit_n,'(3I10)',advance='no') vout%help_veg1
WRITE(unit_n,'(F10.3,2E12.3,2F12.3,14E12.3, 5F12.3)') vout%help_veg2, sumvsab, sumvsdead, &
vout%help_veg3, drIndAl, Ndem, gp_can_mean, gp_can_min, gp_can_max, mean_diam, mean_height, basal_area, sumvsdead_m3, totsteminc_m3
outy(i)%out_flag = 1
endif
CASE ('veg_in')
WRITE(unit_n,'(2I5)',advance='no') time_cur
WRITE(unit_n,'(3I10)',advance='no') anz_spec_in, anz_coh_in, anz_tree_in
WRITE(unit_n,'(F10.3,E12.3,2F12.3,E12.3)') LAI_in, sumbio_in, med_diam_in, hmean_in, totfol_in
CASE ('veg_out')
WRITE(unit_n,'(2I5)',advance='no') time_cur
WRITE(unit_n,'(3I10)',advance='no') anz_spec_out, anz_coh_out, anz_tree_out
WRITE(unit_n,'(F10.3,E12.3,2F12.3,E12.3)') LAI_out, sumbio_out, med_diam_out, hmean_out, totfol_out
CASE ('veg_be')
! beech - veg file
call outveg (1, outy(i)%out_flag, unit_n)
CASE ('veg_bi')
! birch - veg file
call outveg (5, outy(i)%out_flag, unit_n)
CASE ('veg_pi')
! pine - veg file
call outveg (3, outy(i)%out_flag, unit_n)
CASE ('veg_pc')
! pinus contorta - veg file
if (nspec_tree .gt. 5) call outveg (6, outy(i)%out_flag, unit_n)
CASE ('veg_pp')
! pinus ponderosa - veg file
if (nspec_tree .gt. 6) call outveg (7, outy(i)%out_flag, unit_n)
CASE ('veg_pt')
! populus tremula - veg file
if (nspec_tree .gt. 7) call outveg (8, outy(i)%out_flag, unit_n)
CASE ('veg_oa')
! oak - veg file
call outveg (4, outy(i)%out_flag, unit_n)
CASE ('veg_sp')
! spruce - veg file
call outveg (2, outy(i)%out_flag, unit_n)
CASE ('veg_ph')
! aleppo pine - veg file
if (nspec_tree .gt. 8) call outveg (9, outy(i)%out_flag, unit_n)
CASE ('veg_dg')
! douglas fir - veg file
if (nspec_tree .gt. 9) call outveg (10, outy(i)%out_flag, unit_n)
CASE ('veg_rb')
! robinia - veg file
if (nspec_tree .gt. 10) call outveg (11, outy(i)%out_flag, unit_n)
CASE ('veg_egl')
! Eucalyptus globulus - veg file
if (nspec_tree .gt. 11) call outveg (12, outy(i)%out_flag, unit_n)
CASE ('veg_egr')
! Ecalyptus grandis - veg file
if (nspec_tree .gt. 12) call outveg (13, outy(i)%out_flag, unit_n)
CASE ('veg_sveg')
! ground vegetation - veg file
if (flag_sveg .gt. 0) call outveg (14, outy(i)%out_flag, unit_n)
CASE ('veg_mist')
! Mistletoe (Viscum a.) - veg file
if (flag_dis .gt. 0) call outveg (15, outy(i)%out_flag, unit_n)
END SELECT
END IF
END DO !i
if(flag_cohout==1 .or. flag_cohout==2) call coh_out_y (flagout)
if (flagout .eq. 2) deallocate (sout)
END subroutine outyear
!**************************************************************
SUBROUTINE outday (flagout)
!daily output
USE data_biodiv
USE data_climate
USE data_depo
USE data_inter
USE data_evapo
USE data_inter
USE data_simul
USE data_stand
USE data_species
USE data_soil
USE data_soil_cn
USE data_soil_t
USE data_out
IMPLICIT NONE
integer flagout ! control of output
! 1 - output with
! 2 - output
INTEGER i,j,jj,k
integer tt, month
INTEGER unit_n ! output unit
REAL xhelp, xhelp1
! output of all selected files
do i = 1,outd_n
if (outd(i)%out_flag .eq. flagout) then
unit_n = outd(i)%unit_nr
select CASE (outd(i)%kind_name)
CASE ('Cday')
j=iday
WRITE(unit_n,'(2I6)',advance='no') j,time_cur
WRITE(unit_n,'(13E12.4, F7.1)') phot_C, dailygrass_C, dailynetass_C, dailypotNPP_C, dailyNPP_C, NPP_day, GPP_day, Cout%NEE(j), &
TER_day, dailyautresp_C, Cout%Resp_aut(j), respsoil, dailyrespfol_C, 100.*totFPARsum
CASE ('Chumd')
WRITE(unit_n,'(2I6)',advance='no') iday,time_cur
do j=1,nlay
WRITE(unit_n,'(F10.3)',advance='no') C_hum(j)
END DO !j
WRITE(unit_n,'(A)') ''
CASE ('Copmd')
WRITE(unit_n,'(2I6)',advance='no') iday,time_cur
do j=1,nlay
WRITE(unit_n,'(F10.3)',advance='no') C_opm(j)
END DO !j
WRITE(unit_n,'(A)') ''
CASE ('Copmfractd')
WRITE(unit_n,'(2I6)',advance='no') iday,time_cur
do k=1,anrspec
j = nrspec(k)
xhelp = SUM(slit(j)%C_opm_frt)
xhelp1 = SUM(slit(j)%C_opm_crt)
WRITE(unit_n,'(I8,5F10.3)',advance='no') j, slit(j)%C_opm_fol, slit(j)%C_opm_tb, &
xhelp, xhelp1, slit(j)%C_opm_stem
END DO ! j
WRITE(unit_n,'(A)') ''
CASE ('Cbcd')
if (flag_bc .gt. 0) then
WRITE(unit_n,'(2I6)',advance='no') iday,time_cur
do j=1,nlay
WRITE(unit_n,'(F10.3)',advance='no') C_bc(j)
END DO !j
WRITE(unit_n,'(A)') ''
endif
CASE ('day')
WRITE(unit_n,'(2I6)',advance='no') iday,time_cur
xhelp = (NO_dep + NH_dep)*1000. ! g/m ==> mg/m
if (N_min > 100) then
continue
endif
WRITE(unit_n,'(21F10.3, F10.1, 3I7, I8, F8.3, 4F10.2, 4F10.3)',advance='no') airtemp,rad,prec,interc_can,snow,pet,aet, &
trans_dem,trans_tree,trans_sveg,gp_can,respsoil,Nleach,Nupt_d,N_min,N_an_tot, &
xhelp,cover,LAI, Irelpool(0), totFPARcan, fire_indi, fire(2)%index, fire(1)%index, fire(3)%index, snow_day, &
drIndd, bucks_root, bucks_100, prec-pet, dptemp, dew_rime, Rnet_tot, rad_max
WRITE(unit_n,'(A)') ''
CASE ('day_short')
call tzinda(tt,month,time_cur,iday)
WRITE(unit_n,'(2(I2,1X), I4, 2X)',advance='no') tt,month,time_cur
WRITE(unit_n,'(I8, F10.2)',advance='no') fire(2)%index, prec-pet
WRITE(unit_n,'(A)') ''
CASE ('NH4')
WRITE(unit_n,'(I6,I5,1X)',advance='no') iday,time_cur
do j=1,nlay
WRITE(unit_n,'(E10.3)',advance='no') NH4(j)
END DO !j
WRITE(unit_n,'(A)') ''
CASE ('NH4c')
WRITE(unit_n,'(2I6)',advance='no') iday,time_cur
do j=1,nlay
! convert gN/m2 into mgN/l
xhelp = pNH4f * NH4(j) * 1000. / wats(j)
WRITE(unit_n,'(F10.4)',advance='no') xhelp
END DO !j
WRITE(unit_n,'(A)') ''
CASE ('NO3')
WRITE(unit_n,'(I6,I5,1X)',advance='no') iday,time_cur
do j=1,nlay
WRITE(unit_n,'(E10.3)',advance='no') NO3(j)
END DO !j
WRITE(unit_n,'(A)') ''
CASE ('NO3c')
WRITE(unit_n,'(2I6)',advance='no') iday,time_cur
do j=1,nlay
! convert gN/m2 into mgN/l
xhelp = pNO3f * NO3(j) * 1000. / wats(j)
WRITE(unit_n,'(F10.4)',advance='no') xhelp
END DO !j
WRITE(unit_n,'(A)') ''
CASE ('Nhumd')
WRITE(unit_n,'(2I6)',advance='no') iday,time_cur
do j=1,nlay
WRITE(unit_n,'(F10.3)',advance='no') N_hum(j)
END DO !j
WRITE(unit_n,'(A)') ''
CASE ('Nopmd')
WRITE(unit_n,'(2I6)',advance='no') iday,time_cur
do j=1,nlay
WRITE(unit_n,'(F10.3)',advance='no') N_opm(j)
END DO !j
WRITE(unit_n,'(A)') ''
CASE ('NOPMfract')
WRITE(unit_n,'(2I6)',advance='no') iday,time_cur
do k=1,anrspec
j = nrspec(k)
WRITE(unit_n,'(5F10.3)',advance='no') slit(j)%N_opm_fol, slit(j)%N_opm_tb, &
slit(j)%N_opm_frt(1), slit(j)%N_opm_crt(1), slit(j)%N_opm_stem
END DO ! j
WRITE(unit_n,'(A)') ''
CASE ('Nuptd')
WRITE(unit_n,'(2I6)',advance='no') iday,time_cur
do j=1,nlay
WRITE(unit_n,'(E10.2)',advance='no') Nupt(j)
END DO !j
WRITE(unit_n,'(A)') ''
CASE ('Nmind')
WRITE(unit_n,'(2I6)',advance='no') iday,time_cur
do j=1,nlay
WRITE(unit_n,'(E10.2)',advance='no') Nmin(j)
END DO !j
WRITE(unit_n,'(A)') ''
CASE ('perc')
WRITE(unit_n,'(2I6)',advance='no') iday,time_cur
do j=1,nlay
WRITE(unit_n,'(F10.3)',advance='no') perc(j)
END DO !j
WRITE(unit_n,'(A)') ''
CASE ('specd')
WRITE(unit_n,'(2I6)',advance='no') iday,time_cur
k = 0
do jj=1,anrspec
j = nrspec(jj)
if (k .gt. 0) WRITE(unit_n,'(A12)',advance='no') ''
WRITE(unit_n,'(A16,I8)',advance='no') spar(j)%species_short_name, j
WRITE(unit_n,'(4E12.3, F10.3)',advance='no') svar(j)%Ndem, svar(j)%Nupt, svar(j)%Ndemp, svar(j)%Nuptp, svar(j)%RedN
WRITE(unit_n,'(A)') ''
k = k+1
END DO !j
CASE ('temp')
WRITE(unit_n,'(2I6,F10.3)',advance='no') iday,time_cur, temps_surf
do j=1,nlay
WRITE(unit_n,'(F10.3)',advance='no') temps(j)
END DO !j
WRITE(unit_n,'(A)') ''
CASE ('water')
WRITE(unit_n,'(2I6)',advance='no') iday,time_cur
do j=1,nlay
WRITE(unit_n,'(F10.3)',advance='no') wats(j)
END DO !j
WRITE(unit_n,'(A)') ''
CASE ('watvol')
WRITE(unit_n,'(2I6)',advance='no') iday,time_cur
do j=1,nlay
WRITE(unit_n,'(F10.3)',advance='no') watvol(j)
END DO !j
WRITE(unit_n,'(A)') ''
CASE ('wat_res')
WRITE(unit_n,'(2I6)',advance='no') iday,time_cur
do j=1,nlay
WRITE(unit_n,'(F10.4)',advance='no') wat_res(j)
END DO !j
WRITE(unit_n,'(A)') ''
CASE ('wupt')
WRITE(unit_n,'(2I6)',advance='no') iday,time_cur
do j=1,nlay
WRITE(unit_n,'(F10.3)',advance='no') wupt_r(j)
END DO !j
WRITE(unit_n,'(A)') ''
end select
END IF
END DO !i
if(flag_cohout .gt. 0) call coh_out_d (flagout)
END subroutine outday
!**************************************************************
SUBROUTINE coh_out_d (flagout)
! daily cohort output
USE data_simul
USE data_stand
USE data_out
USE data_par
IMPLICIT NONE
integer flagout ! control of output
! 1 - output with
! 2 - output
INTEGER i,j
INTEGER unit_n ! output unit
logical lflag
real help
! output of all selected files
do i = 1,outcd_n
if (outcd(i)%out_flag .eq. flagout) then
unit_n = outcd(i)%unit_nr
WRITE(unit_n ,'(2I5)',advance='no') iday,time_cur
do j= 1,max_coh
zeig => pt%first
lflag = .FALSE.
do while (associated(zeig))
if (zeig%coh%ident .eq. j) then
select CASE (outcd(i)%kind_name)
CASE ('ass')
WRITE(unit_n,'(E12.3)',advance='no') zeig%coh%assi
CASE ('aevi')
WRITE(unit_n,'(E12.3)',advance='no') zeig%coh%aev_i
CASE ('ddi')
WRITE(unit_n,'(F12.3)',advance='no') zeig%coh%drindd
CASE ('dem')
WRITE(unit_n,'(E12.3)',advance='no') zeig%coh%demand
CASE ('dips')
WRITE(unit_n,'(F12.3)',advance='no') zeig%coh%drindps
CASE ('gp')
WRITE(unit_n,'(E12.3)',advance='no') zeig%coh%gp
CASE ('gsdps')
WRITE(unit_n,'(F12.0)',advance='no') zeig%coh%ndaysps
CASE ('intcap')
help = SUM(zeig%coh%intcap)
WRITE(unit_n,'(E12.3)',advance='no') help
CASE ('interc')
WRITE(unit_n,'(E12.3)',advance='no') zeig%coh%interc_st
CASE ('Ndemc_d')
WRITE(unit_n,'(E12.3)',advance='no') zeig%coh%Ndemc_d
CASE ('Nuptc_d')
WRITE(unit_n,'(E12.3)',advance='no') zeig%coh%Nuptc_d
CASE ('N_fol')
WRITE(unit_n,'(E12.3)',advance='no') zeig%coh%N_fol
CASE ('N_pool')
WRITE(unit_n,'(E12.3)',advance='no') zeig%coh%N_pool
CASE ('RedNc')
WRITE(unit_n,'(E12.3)',advance='no') zeig%coh%RedNc
CASE ('resp')
help = zeig%coh%resp * kg_in_g * cpart ! kg DW per tree ==> g C per tree
WRITE(unit_n,'(E12.3)',advance='no') help
CASE ('respaut')
! help = zeig%coh%respaut * kg_in_g * cpart ! kg DW per tree ==> g C per tree
help = zeig%coh%maintres * kg_in_g * cpart
WRITE(unit_n,'(E12.3)',advance='no') help
CASE ('respbr')
help = zeig%coh%respbr * kg_in_g * cpart ! kg DW per tree ==> g C per tree
WRITE(unit_n,'(E12.3)',advance='no') help
CASE ('respfol')
help = zeig%coh%respfol * kg_in_g * cpart ! kg DW per tree ==> g C per tree
WRITE(unit_n,'(E12.3)',advance='no') help
CASE ('resphet')
help = zeig%coh%resphet * kg_in_g * cpart ! kg DW per tree ==> g C per tree
WRITE(unit_n,'(E12.3)',advance='no') help
CASE ('respsap')
help = zeig%coh%respsap * kg_in_g * cpart ! kg DW per tree ==> g C per tree
WRITE(unit_n,'(E12.3)',advance='no') help
CASE ('respfrt')
help = zeig%coh%respfrt * kg_in_g * cpart ! kg DW per tree ==> g C per tree
WRITE(unit_n,'(E12.3)',advance='no') help
CASE ('sup')
WRITE(unit_n,'(E12.3)',advance='no') zeig%coh%supply
CASE ('totfpar')
WRITE(unit_n,'(E12.3)',advance='no') zeig%coh%totfpar
end select
lflag = .TRUE.
exit
ELSE
zeig => zeig%next
END IF
END DO
if (.not. lflag) WRITE(unit_n,'(F12.3)',advance='no') -99.9
END DO !j
WRITE(unit_n,'(A)') ''
END IF ! out_flag
END DO !i
END subroutine coh_out_d
!**************************************************************
SUBROUTINE coh_out_y (flagout)
!yearly cohort output
use data_simul
use data_soil
use data_stand
use data_out
use data_par
implicit none
integer flagout ! control of cohort output
! 1 - output with outyear,
! 2 - output after management and mortality
integer i,j,k
integer unit_n ! output unit
logical lflag
real help
! output of all selected files
do i = 1,outcy_n
if (outcy(i)%out_flag .eq. flagout) then
unit_n = outcy(i)%unit_nr
WRITE(unit_n ,'(I5)',advance='no') time_cur
do j= 1,max_coh
zeig => pt%first
lflag = .FALSE.
do while (associated(zeig))
if (zeig%coh%ident .eq. j) then
select CASE (outcy(i)%kind_name)
CASE ('age')
WRITE(unit_n,'(I12)',advance='no') zeig%coh%x_age
CASE ('ahb')
WRITE(unit_n,'(E12.3)',advance='no') zeig%coh%x_ahb
CASE ('ahbasrel')
if (zeig%coh%Asapw .gt. zero) then
help = zeig%coh%x_ahb / zeig%coh%Asapw
else
help = 0.
endif
WRITE(unit_n,'(E12.3)',advance='no') help
CASE ('ahc')
WRITE(unit_n,'(E12.3)',advance='no') zeig%coh%ahc
CASE ('ahcasrel')
if (zeig%coh%Asapw .gt. zero) then
help = zeig%coh%ahc / zeig%coh%Asapw
else
help = 0.
endif
WRITE(unit_n,'(E12.3)',advance='no') help
CASE ('asapw')
WRITE(unit_n,'(E12.3)',advance='no') zeig%coh%Asapw
CASE ('atr')
WRITE(unit_n,'(I12)',advance='no') int(zeig%coh%ntreea)
CASE ('bioi')
WRITE(unit_n,'(E12.3)',advance='no') zeig%coh%bio_inc
CASE ('botlayer')
WRITE(unit_n,'(I12)',advance='no') zeig%coh%botLayer
CASE ('cpa')
WRITE(unit_n,'(E12.3)',advance='no') zeig%coh%crown_area*int(zeig%coh%ntreea)
CASE ('crt')
WRITE(unit_n,'(E12.3)',advance='no') zeig%coh%x_crt
CASE ('daybb')
WRITE(unit_n,'(I12)',advance='no') int(zeig%coh%day_bb)
CASE ('dcrb')
WRITE(unit_n,'(E12.3)',advance='no') zeig%coh%dcrb
CASE ('diac')
if( zeig%coh%ndaysgr.ne.0) then
WRITE(unit_n,'(E12.3)',advance='no') zeig%coh%drindal/zeig%coh%ndaysgr
else
WRITE(unit_n,'(E12.3)',advance='no') zeig%coh%drindal
end if
CASE ('diam')
WRITE(unit_n,'(f12.5)',advance='no') zeig%coh%diam
CASE ('dtr')
WRITE(unit_n,'(E12.3)',advance='no') zeig%coh%ntreed
CASE ('dwd')
help = zeig%coh%ntreed*(zeig%coh%x_sap + zeig%coh%x_hrt)
WRITE(unit_n,'(E12.3)',advance='no') help
CASE ('fol')
WRITE(unit_n,'(E12.3)',advance='no') zeig%coh%x_fol
CASE ('foli')
WRITE(unit_n,'(E12.3)',advance='no') zeig%coh%fol_inc
CASE ('frt')
WRITE(unit_n,'(E12.3)',advance='no') zeig%coh%x_frt
CASE ('frti')
WRITE(unit_n,'(E12.3)',advance='no') zeig%coh%frt_inc
CASE ('frtrel')
WRITE(unit_n,'(E12.3)',advance='no') zeig%coh%frtrel(1)
CASE ('geff')
WRITE(unit_n,'(E12.3)',advance='no') zeig%coh%geff
CASE ('gfol')
WRITE(unit_n,'(E12.3)',advance='no') zeig%coh%gfol
CASE ('gfrt')
WRITE(unit_n,'(E12.3)',advance='no') zeig%coh%gfrt
CASE ('grossass')
WRITE(unit_n,'(E12.3)',advance='no') zeig%coh%grossass
CASE ('gsap')
WRITE(unit_n,'(E12.3)',advance='no') zeig%coh%gsap
CASE ('gsd')
WRITE(unit_n,'(I12)',advance='no') zeig%coh%ndaysgr
CASE ('hbo')
WRITE(unit_n,'(E12.3)',advance='no') zeig%coh%x_hbole
CASE ('hea')
WRITE(unit_n,'(I12)',advance='no') zeig%coh%x_health
CASE ('hei')
WRITE(unit_n,'(E12.3)',advance='no') zeig%coh%height
CASE ('hrt')
WRITE(unit_n,'(E12.3)',advance='no') zeig%coh%x_hrt
CASE ('leaf')
WRITE(unit_n,'(E12.3)',advance='no') zeig%coh%t_leaf
CASE ('maintres')
WRITE(unit_n,'(E12.3)',advance='no') zeig%coh%maintres
CASE ('nas')
WRITE(unit_n,'(E12.3)',advance='no') zeig%coh%netass
CASE ('npp')
WRITE(unit_n,'(E12.3)',advance='no') zeig%coh%npp
CASE ('Ndemc_c')
WRITE(unit_n,'(E12.3)',advance='no') zeig%coh%Ndemc_c
CASE ('Nuptc_c')
WRITE(unit_n,'(E12.3)',advance='no') zeig%coh%Nuptc_c
CASE ('Nfol')
WRITE(unit_n,'(E12.3)',advance='no') zeig%coh%N_fol
CASE ('Npool')
WRITE(unit_n,'(E12.3)',advance='no') zeig%coh%N_pool
CASE ('Nstr')
if(zeig%coh%Ndemc_c.ne.0) then
help = zeig%coh%Nuptc_c / zeig%coh%Ndemc_c
else
help = zeig%coh%Nuptc_c
! help = 1
end if
WRITE(unit_n,'(E12.3)',advance='no') help
CASE ('rdpt')
WRITE(unit_n,'(E12.3)',advance='no') zeig%coh%x_rdpt
CASE ('rooteff')
WRITE(unit_n,'(F12.4)',advance='no') zeig%coh%rooteff(1)
CASE ('sap')
WRITE(unit_n,'(E12.3)',advance='no') zeig%coh%x_sap
CASE ('sfol')
WRITE(unit_n,'(E12.3)',advance='no') zeig%coh%sfol
CASE ('sfrt')
WRITE(unit_n,'(E12.3)',advance='no') zeig%coh%sfrt
CASE ('spn')
WRITE(unit_n,'(I12)',advance='no') zeig%coh%species
CASE ('ssap')
WRITE(unit_n,'(E12.3)',advance='no') zeig%coh%ssap
CASE ('stem')
WRITE(unit_n,'(E12.3)',advance='no') zeig%coh%stem_inc
CASE ('str')
WRITE(unit_n,'(I12)',advance='no') zeig%coh%x_stress
CASE ('tdb')
WRITE(unit_n,'(E12.3)',advance='no') zeig%coh%dbio
CASE ('trman')
WRITE(unit_n,'(I12)',advance='no') int(zeig%coh%ntreem)
CASE ('toplayer')
WRITE(unit_n,'(I12)',advance='no') zeig%coh%topLayer
CASE ('ttb')
WRITE(unit_n,'(E12.3)',advance='no') zeig%coh%totbio
CASE ('watleft')
WRITE(unit_n,'(F12.4)',advance='no') zeig%coh%watleft
CASE ('yrw')
WRITE(unit_n,'(F12.4)',advance='no') zeig%coh%jrb
end select
lflag = .TRUE.
exit
ELSE
zeig => zeig%next
END IF
END DO
if (.not. lflag) WRITE(unit_n,'(F12.3)',advance='no') -99.9
END DO !j
WRITE(unit_n,'(A)') ''
select CASE (outcy(i)%kind_name)
CASE ('frtrel')
do k=2,nroot_max
WRITE(unit_n ,'(I2,3X)',advance='no') k
do j= 1,max_coh
zeig => pt%first
lflag = .FALSE.
do while (associated(zeig))
if (zeig%coh%ident .eq. j) then
WRITE(unit_n,'(E12.3)',advance='no') zeig%coh%frtrel(k)
lflag = .TRUE.
exit
ELSE
zeig => zeig%next
END IF
END DO ! zeig
if (.not. lflag) WRITE(unit_n,'(F12.3)',advance='no') -99.9
END DO ! j
WRITE(unit_n,'(A)') ''
END DO ! k
WRITE(unit_n,'(A)') ''
CASE ('frtrelc')
do k=2,nroot_max
WRITE(unit_n ,'(I2,3X)',advance='no') k
do j= 1,max_coh
zeig => pt%first
lflag = .FALSE.
do while (associated(zeig))
if (zeig%coh%ident .eq. j) then
WRITE(unit_n,'(E12.3)',advance='no') zeig%coh%frtrelc(k)
lflag = .TRUE.
exit
ELSE
zeig => zeig%next
END IF
END DO ! zeig
if (.not. lflag) WRITE(unit_n,'(F12.3)',advance='no') -99.9
END DO ! j
WRITE(unit_n,'(A)') ''
END DO ! k
WRITE(unit_n,'(A)') ''
CASE ('rld')
if (flag_wred .eq. 9) then
do k=2,nroot_max
WRITE(unit_n ,'(I2,3X)',advance='no') k
do j= 1,max_coh
zeig => pt%first
lflag = .FALSE.
do while (associated(zeig))
if (zeig%coh%ident .eq. j) then
WRITE(unit_n,'(E12.3)',advance='no') zeig%coh%rld(k)
lflag = .TRUE.
exit
ELSE
zeig => zeig%next
END IF
END DO ! zeig
if (.not. lflag) WRITE(unit_n,'(F12.3)',advance='no') -99.9
END DO ! j
WRITE(unit_n,'(A)') ''
END DO ! k
endif
WRITE(unit_n,'(A)') ''
end select
endif ! out_flag
enddo !i
END subroutine coh_out_y
!**************************************************************
SUBROUTINE out_wpm (flagout)
use data_out
use data_simul
use data_wpm
implicit none
integer flagout ! control of output
! 0 - no output
! 1 - output at end of simulation
integer i,j,k
integer unit_n ! output unit
integer dummy
dummy = 0.
! output of all selected files
do j = 1,oute_n
if (oute(j)%out_flag .eq. flagout) then
unit_n = oute(j)%unit_nr
select CASE (oute(j)%kind_name)
CASE ('sea')
do i=1,size(years)
write(unit_n, '(I6, 30F10.2)') &
years(i), &
sum_costs(1,i), &
sum_costs(2,i), &
sum_costs(3,i), &
sum_costs(4,i), &
fix(2)-fix(1), &
sum_costs(5,i), &
st_costs(1,i), &
st_costs(2,i), &
st_costs(3,i), &
st_costs(4,i), &
st_costs(5,i), &
st_assets(1,i), &
st_assets(2,i), &
st_assets(3,i), &
st_assets(4,i), &
st_assets(5,i), &
ms_costs(1,i), &
ms_costs(2,i), &
ms_costs(3,i), &
ms_costs(4,i), &
ms_costs(5,i), &
ms_assets(1,i), &
ms_assets(2,i), &
ms_assets(3,i), &
ms_assets(4,i), &
ms_assets(5,i), &
fix(1), &
subsidy(1,i), &
subsidy(1,i), &
fix(2)
end do
case ('sea_npv')
do i=1,size(years)
write(unit_n, '(I6, 12F10.2)') &
years(i), &
npv(1,i), &
npv(2,i), &
npv(3,i), &
npv(4,i), &
npv(5,i), &
npv(6,i), &
npv(7,i), &
npv(8,i), &
npv(9,i), &
npv(10,i), &
npv(11,i), &
npv(12,i)
end do
CASE ('sea_ms')
do i=1,size(years)
write(unit_n, '(I6,43E10.3)') &
years(i), &
mansort_tg(1,1,i), &
mansort_tg(1,2,i), &
mansort_tg(1,3,i), &
mansort_tg(1,6,i), &
mansort_tg(1,7,i), &
mansort_tg(1,8,i), &
mansort_tg(1,9,i), &
mansort_tg(1,10,i), &
mansort_tg(2,1,i), &
mansort_tg(2,2,i), &
mansort_tg(2,4,i), &
mansort_tg(2,5,i), &
mansort_tg(2,6,i), &
mansort_tg(2,7,i), &
mansort_tg(2,8,i), &
mansort_tg(2,9,i), &
mansort_tg(2,10,i), &
mansort_tg(3,1,i), &
mansort_tg(3,2,i), &
mansort_tg(3,3,i), &
mansort_tg(3,4,i), &
mansort_tg(3,5,i), &
mansort_tg(3,6,i), &
mansort_tg(3,7,i), &
mansort_tg(3,8,i), &
mansort_tg(3,9,i), &
mansort_tg(3,10,i), &
mansort_tg(4,1,i), &
mansort_tg(4,2,i), &
mansort_tg(4,5,i), &
mansort_tg(4,6,i), &
mansort_tg(4,7,i), &
mansort_tg(4,8,i), &
mansort_tg(4,9,i), &
mansort_tg(4,10,i), &
mansort_tg(5,1,i), &
mansort_tg(5,2,i), &
mansort_tg(5,5,i), &
mansort_tg(5,6,i), &
mansort_tg(5,7,i), &
mansort_tg(5,8,i), &
mansort_tg(5,9,i), &
mansort_tg(5,10,i)
end do
CASE ('sea_st')
do i=1,size(years)
write(unit_n, '(I6,43E10.3)') &
years(i), &
standsort_tg(1,1,i), &
standsort_tg(1,2,i), &
standsort_tg(1,5,i), &
standsort_tg(1,6,i), &
standsort_tg(1,7,i), &
standsort_tg(1,8,i), &
standsort_tg(1,9,i), &
standsort_tg(1,10,i), &
standsort_tg(2,1,i), &
standsort_tg(2,2,i), &
standsort_tg(2,4,i), &
standsort_tg(2,5,i), &
standsort_tg(2,6,i), &
standsort_tg(2,7,i), &
standsort_tg(2,8,i), &
standsort_tg(2,9,i), &
standsort_tg(2,10,i), &
standsort_tg(3,1,i), &
standsort_tg(3,2,i), &
standsort_tg(3,3,i), &
standsort_tg(3,4,i), &
standsort_tg(3,5,i), &
standsort_tg(3,6,i), &
standsort_tg(3,7,i), &
standsort_tg(3,8,i), &
standsort_tg(3,9,i), &
standsort_tg(3,10,i), &
standsort_tg(4,1,i), &
standsort_tg(4,2,i), &
standsort_tg(4,5,i), &
standsort_tg(4,6,i), &
standsort_tg(4,7,i), &
standsort_tg(4,8,i), &
standsort_tg(4,9,i), &
standsort_tg(4,10,i), &
standsort_tg(5,1,i), &
standsort_tg(5,2,i), &
standsort_tg(5,5,i), &
standsort_tg(5,6,i), &
standsort_tg(5,7,i), &
standsort_tg(5,8,i), &
standsort_tg(5,9,i), &
standsort_tg(5,10,i)
end do
CASE ('wpm')
do i=1,size(years)
write(unit_n, '(I6,13E10.3, 1E11.3, 3E10.3)') &
years(i), &
sum_input(i), &
use_categories(1)%value(i), &
use_categories(2)%value(i), &
use_categories(3)%value(i), &
use_categories(4)%value(i), &
use_categories(5)%value(i), &
use_categories(6)%value(i), &
use_categories(7)%value(i), &
sum_use_cat(i), &
burning(i), &
landfill(i), &
atmo_year(i), &
atmo_cum(i), &
emission_har(i), &
sub_energy(i), &
sub_material(i), &
sub_sum(i)
end do
CASE ('wpm_inter')
do i=1,size(years)
write(unit_n, '(I6,27E10.3)') &
years(i), &
pl(1,1,i), &
pl(1,2,i), &
pl(1,3,i), &
pl(1,4,i), &
pl(1,5,i), &
pl(1,7,i), &
pl(2,1,i), &
pl(2,2,i), &
pl(2,3,i), &
pl(2,4,i), &
pl(2,5,i), &
pl(2,6,i), &
pl(2,7,i), &
pl(3,1,i), &
pl(3,2,i), &
pl(3,3,i), &
pl(3,4,i), &
pl(3,5,i), &
pl(3,6,i), &
pl(3,7,i), &
use_cat(1,i), &
use_cat(2,i), &
use_cat(3,i), &
use_cat(4,i), &
use_cat(5,i), &
use_cat(6,i), &
use_cat(7,i)
end do
end select
endif
enddo
end subroutine out_wpm
!**************************************************************
SUBROUTINE out_scen
USE data_simul
USE data_out
IMPLICIT NONE
WRITE (unit_ctr,*) ip,' ',deltaT,deltaPrec
END subroutine out_scen
!**************************************************************
SUBROUTINE out_comp(unit_comp)
! final result output for each run
USE data_biodiv
USE data_climate
USE data_depo
USE data_evapo
USE data_inter
USE data_manag
USE data_out
USE data_par
USE data_simul
USE data_site
USE data_soil
USE data_soil_cn
USE data_species
USE data_stand
USE data_climate
USE data_frost
IMPLICIT NONE
integer unit_comp
integer help1, i
real, dimension(31) :: help2
real hconv ! conversion factor from patchsize into ha
! output variables of final results in kg/ha
real y_NPP, & ! mean net primary productioin
y_GPP, & ! mean yearly gross productioin
y_NEP, & ! mean yearly net ecosystem productioin
y_sumbio, & ! total biomass of all cohorts and all tree-species
y_sumbio_sv,& ! total biomass of all cohorts and all ground-vegetation-species
y_autresp, & ! mean yearly total autotroph resp
y_resps, & ! mean yearly soil respiration
y_resptot, & ! mean yearly total respiration
y_C_accu, & ! mean yearly C accumualtion
y_RedN, & ! mean RedN of all species
y_lai ! LAI of stand without soil vegetation
real C_sum ! total C storage of the stand (biomass and soil)
real help_gdd
character(20) idtext, datei
character(150) htext
character(1) aa
call wclas(waldtyp)
hconv = 10000./kpatchsize
y_NPP = cum_sumNPP * hconv * cpart/year ! kg DW/patch --> kg C/ha
y_sumbio = sumbio / 1000. ! kg DW / ha --> t DW/ha
y_sumbio_sv = sumbio_sv / 1000. ! kg DW / ha --> t DW/ha
totfol = totfol / 1000. ! kg / ha --> t/ha
totsap = totsap / 1000. ! kg / ha --> t/ha
totfrt = totfrt / 1000. ! kg / ha --> t/ha
tothrt = tothrt / 1000. ! kg / ha --> t/ha
totcrt = totcrt / 1000. ! kg / ha --> t/ha
tottb = tottb / 1000. ! kg / ha --> t/ha
y_C_accu = (C_tot - C_accu) * gm2_in_kgha / year ! g C/m2 --> kg C/ha, mean
C_lit_m = C_lit_m * gm2_in_kgha / year ! g/m2 --> kg/ha, mean
N_lit_m = N_lit_m * gm2_in_kgha / year ! g/m2 --> kg/ha, mean
N_min_m = N_min_m * gm2_in_kgha / year ! g/m2 --> kg/ha, mean
Nupt_m = Nupt_m * gm2_in_kgha / year ! g/m2 --> kg/ha, mean
Nleach_m = Nleach_m * gm2_in_kgha / year ! g/m2 --> kg/ha, mean
y_resps = resps_c_m * gm2_in_kgha / year ! g C/m2 --> kg C/ha, mean
y_autresp = autresp_m * cpart * hconv / year
y_resptot = y_resps + y_autresp
y_GPP = y_NPP + y_autresp
y_NEP = y_NPP - y_resps ! kg C/ha
y_NPP = y_NPP / 1000. ! kg C /ha --> t C/ha
dew_m = dew_m / year
AET_m = AET_m / year
pet_m = pet_m / year
interc_m_can = interc_m_can / year
perc_m = perc_m / year
wupt_r_m = wupt_r_m / year
C_opm_stem = C_opm_stem * gm2_in_kgha / 1000. ! g C/m2 --> t C/ha
if (.not.lcomp1) C_tot = SUM(C_opm) + SUM(C_hum) ! calculated again (litter at the end)
C_tot = C_tot * gm2_in_kgha / 1000. ! g C/m2 --> t C/ha
C_hum_tot = C_hum_tot * gm2_in_kgha / 1000. ! g C/m2 --> t C/ha
med_air_all = med_air_all / year
med_rad_all = med_rad_all / year
mean_drIndAl = mean_drIndAl / year
help_gdd = gdday_all / year
sum_prec_all = sum_prec_all / year
Ndep_cum_all = Ndep_cum_all * gm2_in_kgha / year ! g/m2 --> kg/ha, mean
C_sum = C_tot + (sumbio + cumsumvsab + cumsumvsdead) * cpart / 1000. ! corrected due to C_opm_stem already in cumsumvsdead
if(fire_indb_m.gt.0) then
fire_indb_m = fire_indb_m / year ! fire index Bruschek
end if
fire(2)%mean_m = fire(2)%mean_m / year ! fire index east (Kaese M68)
fire(3)%mean_m = fire(3)%mean_m / year
cwb_an_m = cwb_an_m / year
ind_arid_an_m = ind_arid_an_m / year
ind_lang_an_m = ind_lang_an_m / year
ind_cout_an_m = ind_cout_an_m / year
ind_wiss_an_m = ind_wiss_an_m / year
ind_mart_an_m = ind_mart_an_m / year
ind_weck_m = ind_weck_m / year
ind_reich_m = ind_reich_m / year
ind_emb_m = ind_emb_m / year
con_gor_m = con_gor_m / year
con_cur_m = con_cur_m / year
con_con_m = con_con_m / year
ind_bud_m = ind_bud_m / year
ind_shc_m = ind_shc_m / year
if(time.gt.1) call frost_index_total
ntindex =0.
if(time.gt.1) then
tempmean_mo = tempmean_mo/year
call t_indices(tempmean_mo)
end if
y_lai = 0.
y_RedN = 0.
do i = 1, nspec_tree
y_lai = y_lai + svar(i)%sum_lai
end do
if (anz_RedN .gt. 0) y_RedN = RedN_mean / anz_RedN
select case (flag_multi)
case (4,5,8)
write (datei, '(A10)') adjustl(sitenum(ip)) ! standip can occur variable times, this ensures clear indetification
read (datei, '(A)') idtext
case default
htext = adjustr(site_name(ip))
idtext = adjustl(htext (131:150)) ! only write last 20 signs
end select
if(thin_dead .ne. 0) then
cumsumvsab = cumsumvsdead
cumsumvsdead = 0.
end if
if (time .le. 1) then
aa = 'B'
else
aa = 'E'
endif
if(flag_end .eq.0) then
write (unit_comp, '(A, I5,1X, A20,F6.2,I7,I4,F9.2,E10.3, 8F9.2, F11.3, E11.3, 4E11.4, 3F8.2,4F10.2, F9.1, F9.3, 4F10.1, 7F7.1, 2F9.3, F9.1, 3F10.2, &
7(1X,F9.2), E12.4, F8.2, 5F10.2, F8.2, 3F8.3,3X, 3f8.2)') &
aa, ip, idtext, y_lai, anz_tree_ha, waldtyp, y_sumbio, y_sumbio_sv, med_diam, hdom, totfol,tottb,totsap,tothrt,totfrt,totcrt, &
y_NPP, y_NEP, y_GPP, cumsteminc, cumsumvsab, cumsumvsdead, C_sum, C_opm_stem, C_tot, C_hum_tot,C_tot_40,C_hum_40, &
y_C_accu, C_lit_m, N_lit_m, N_min_m, Nleach_m, y_resps, y_resptot, pet_m, AET_m, perc_m, interc_m_can, wupt_r_m, med_air_all, &
sum_prec_all, Ndep_cum_all, mean_drIndAl, help_gdd, cwb_an_m, fire(2)%mean_m, fire_indb_m, ind_arid_an_m, ind_lang_an_m, ind_cout_an_m, &
ind_wiss_an_m, ind_mart_an_m, ind_weck_m, ind_reich_m, ind_emb_m, con_gor_m, con_cur_m, con_con_m, ntindex, fire(3)%mean_m, ind_bud_m, med_rad_all, y_RedN, dew_m, Nupt_m, mlfind, mlfind_sp, ind_shc_m
else
help1 = 0
help2 = 0.0
write (unit_comp, '(A, I5,1X, A15,F6.2,I7,I4, 8F9.2, 6E11.4, 3F8.2, 3F10.2, F9.1, F9.3, 2F10.1, 6F7.1, F9.3)') &
aa, ip, idtext, help2(1), help1, help1, (help2(i), i=1,31)
end if
END subroutine out_comp
!**************************************************************
SUBROUTINE error_mess(ti,mess,val)
USE data_out
USE data_simul
USE data_site
IMPLICIT NONE
INTEGER,intent(in) :: ti
CHARACTER(LEN=*),intent(in) :: mess
real,intent(in) :: val
if (flag_multi .ne. 5) then
write (unit_err, *)
write (unit_err, '(A8,I5,1X, A20, A10,I5)') 'ip/site ', ip, stand_id, ' Year ',ti
write(unit_err,'(A)',advance='no') trim(mess)
write(unit_err,*) val
endif
END subroutine error_mess
!**************************************************************
SUBROUTINE stop_mess(ti,mess)
USE data_out
IMPLICIT NONE
INTEGER,intent(in) :: ti
CHARACTER(LEN=*),intent(in) :: mess
WRITE(*,*) 'Program aborted in simulation year ',ti
WRITE(*,*) trim(mess)
WRITE(*,*) 'see error.log for reason'
END subroutine stop_mess
!**************************************************************
SUBROUTINE open_file (varout, help_ip)
! Open special output file
USE data_simul
USE data_out
IMPLICIT NONE
TYPE (out_struct) :: varout
INTEGER help_ip
CHARACTER(150) ::filename ! complete name of output file
filename = trim(site_name(help_ip))//'_'//trim(varout%kind_name)//'.out'//trim(anh)
varout%unit_nr = getunit()
open(varout%unit_nr,file=trim(dirout)//filename,status='replace')
END subroutine open_file
!**************************************************************
SUBROUTINE wr_header_file (varout)
! Write header of special output file
USE data_simul
USE data_out
IMPLICIT NONE
TYPE (out_struct) :: varout
INTEGER unit_n ! output unit
unit_n = varout%unit_nr
WRITE(unit_n ,'(A)') trim(varout%f_line)
WRITE(unit_n ,'(A)') trim(varout%s_line)
WRITE(unit_n ,'(A)') trim(varout%header)
END subroutine wr_header_file
!**************************************************************
SUBROUTINE outveg (nsp, out_flag, unit_n)
! output of species values (files veg_species)
USE data_climate
USE data_simul
USE data_species
USE data_stand
USE data_out
IMPLICIT NONE
integer:: nsp ! species number
integer:: out_flag ! output flag
integer:: unit_n ! output unit
real :: dumvar=0.
if (out_flag .eq. 1) then
sout(nsp)%help_veg1(1) = nsp
sout(nsp)%help_veg1(2) = svar(nsp)%anz_coh
sout(nsp)%help_veg1(3) = svar(nsp)%sum_nTreeA
sout(nsp)%help_veg2(1) = svar(nsp)%sum_lai
sout(nsp)%help_veg2(2) = svar(nsp)%sum_bio
sout(nsp)%help_veg2(3) = svar(nsp)%sumNPP
sout(nsp)%help_veg2(4) = svar(nsp)%med_diam
sout(nsp)%help_veg2(5) = svar(nsp)%dom_height
sout(nsp)%help_veg2(6) = svar(nsp)%fol
sout(nsp)%help_veg2(7) = svar(nsp)%sap
sout(nsp)%help_veg2(8) = svar(nsp)%frt
sout(nsp)%help_veg2(9) = svar(nsp)%hrt
sout(nsp)%help_veg2(10)= svar(nsp)%totsteminc
sout(nsp)%help_veg2(11)= svar(nsp)%totstem_m3
sout(nsp)%help_veg3 = svar(nsp)%crown_area/kpatchsize
sout(nsp)%help_veg4 = svar(nsp)%sumvsdead*10000/kpatchsize
sout(nsp)%help_veg5 = svar(nsp)%sumvsdead_m3*10000/kpatchsize
sout(nsp)%help_veg6 = svar(nsp)%totsteminc_m3
out_flag = 2
else if (out_flag .eq. 2) then
WRITE(unit_n,'(I6)',advance='no') time_cur
WRITE(unit_n,'(3I10)',advance='no') sout(nsp)%help_veg1
WRITE(unit_n,'(F10.3,2E12.3,2F12.3,9E12.3, 4F12.3, I6, F6.0,3F12.3, 3F12.4)') sout(nsp)%help_veg2, svar(nsp)%sumvsab, sout(nsp)%help_veg4, &
sout(nsp)%help_veg3, svar(nsp)%drIndAl, svar(nsp)%Ndem, svar(nsp)%Nupt, svar(nsp)%RedNm, &
svar(nsp)%daybb, spar(nsp)%end_bb, svar(nsp)%mean_diam, svar(nsp)%mean_height, svar(nsp)%basal_area, sout(nsp)%help_veg5,sout(nsp)%help_veg6, svar(nsp)%mean_jrb
out_flag = 1
endif
END SUBROUTINE outveg
!**************************************************************
SUBROUTINE outstore
! store of output variables (multi run 4 and 8)
USE data_climate
USE data_depo
USE data_evapo
USE data_inter
USE data_manag
USE data_out
USE data_par
USE data_simul
USE data_soil
USE data_soil_cn
USE data_stand
USE data_biodiv
USE data_frost
IMPLICIT NONE
real C_sum, & ! total C storage of the stand (biomass and soil)
hconv, help
integer i, j, k, ipp
if (flag_trace) write (unit_trace, '(I4,I10,A)') iday, time_cur, ' outstore '
if (flag_mult910) then
ipp = 1
else
ipp = ip
endif
hconv = 10000./kpatchsize
do i = 1, nvar-1
select case (trim(outvar(i)))
case('above_biom')
output_var(i,ipp,time)=(sumbio-totfrt-totcrt)/1000.
case ('AET','aet')
output_var(i,ipp,time) = AET_cum
case ('AET_year','AETyear','aetyear','aet_year') ! AET
outvar(i) = 'AET_year'
output_var(i,ipp,time) = AET_cum
case ('AET_mon','AETmon','aetmon','aet_mon') ! monthly AET
outvar(i) = 'AET_mon'
k = output_var(i,1,0)
do j = 1, 12
output_varm(k,ipp,time,j) = AET_mon(j)
enddo
case ('AET_week','AETweek','aetweek','aet_week') ! weekly AET
outvar(i) = 'AET_week'
k = output_var(i,1,0)
do j = 1, 52
output_varw(k,ipp,time,j) = AET_week(j)
enddo
case ( 'anzdlf') ! number of days with forst April - June
output_var(i,ipp,time) = anzdlf(time)
case ( 'BA') ! basal area
output_var(i,ipp,time) = basal_area
case ('C_accu','Caccu','c_accu') ! C accumulation per year
if (time .eq. 1) then
help = C_tot - C_accu
else
help = C_tot - C_accu
do j = 1, time-1
help = help - output_var(i,ipp,j)*1000.*kgha_in_gm2
end do
endif
output_var(i,ipp,time) = help * gm2_in_kgha / 1000. ! g C/m2 --> t C/ha
case ('C_d_stem','c_d_stem')
output_var(i,ipp,time) = C_opm_stem * gm2_in_kgha / 1000.
case ('chumtot','Chumtot','C_hum_tot') ! total C in humus
output_var(i,ipp,time) = C_hum_tot * gm2_in_kgha / 1000. ! g C/m2 --> t C/ha
case('con_gor')
output_var(i,ipp,time)=con_gor
case('con_cur')
output_var(i,ipp,time)=con_cur
case('con_con')
output_var(i,ipp,time)=con_con
case ('ctot','Ctot','C_tot') ! total soil C
output_var(i,ipp,time) = C_tot * gm2_in_kgha / 1000. ! g C/m2 --> t C/ha
case ('csum','Csum','C_sum') ! total C in ecosystem
output_var(i,ipp,time) = C_tot*gm2_in_kgha/1000. + (sumbio + cumsumvsab + cumsumvsdead) * cpart / 1000. ! t/ha
case('cwb') ! climatic water balance
output_var(i,ipp,time)=cwb_an
case ('cwbyear','cwb_year') ! climatic water balance
outvar(i) = 'cwb_year'
output_var(i,ipp,time)=cwb_an
case ('cwbmon','cwb_mon') ! monthly climatic water balance
outvar(i) = 'cwb_mon'
k = output_var(i,1,0)
do j = 1, 12
output_varm(k,ipp,time,j) = prec_mon(j) - pet_mon(j)
enddo
case ('cwbweek','cwb_week') ! weekly climatic water balance
outvar(i) = 'cwb_week'
k = output_var(i,1,0)
do j = 1, 52
output_varw(k,ipp,time,j) = prec_week(j) - pet_week(j)
enddo
case ( 'date_lf') ! number of the day with the last late frost
output_var(i,ipp,time) = date_lf(time)
case ( 'date_lft') ! number of the day with the last late frost
output_var(i,ipp,time) = date_lftot(time)
case('daybb_be')
output_var(i,ipp,time)= svar(1)%daybb
case('daybb_oa')
output_var(i,ipp,time)= svar(4)%daybb
case('daybb_bi')
output_var(i,ipp,time)= svar(5)%daybb
case ('dbh')
output_var(i,ipp,time) = mean_diam
case ('dens') ! stem density
output_var(i,ipp,time) = anz_tree_ha
case ('dnlf') ! number of frost days after start of vegetation period
output_var(i,ipp,time) = dnlf(time)
case ('dnlf_sp') ! number of frost days after bud burst
output_var(i,ipp,time) = dnlf_sp(time)
case ('drindal', 'drIndAl', 'drIndal', 'DrIndAl') ! drought index for allocation calculation (cum.) for the whole stand [-], weighted by NPP
output_var(i,ipp,time) = drIndAl
case ('fire_indb')
output_var(i,ipp,time) = fire_indb
case ('fire_ind1')
output_var(i,ipp,time) = fire(1)%mean
case ('fire_ind2')
output_var(i,ipp,time) = fire(2)%mean
case ('fire_ind3')
output_var(i,ipp,time) = fire(3)%mean
case ('fire_ind1_c1')
output_var(i,ipp,time) = fire(1)%frequ(1)
case ('fire_ind1_c2')
output_var(i,ipp,time) = fire(1)%frequ(2)
case ('fire_ind1_c3')
output_var(i,ipp,time) = fire(1)%frequ(3)
case ('fire_ind1_c4')
output_var(i,ipp,time) = fire(1)%frequ(4)
case ('fire_ind1_c5')
output_var(i,ipp,time) = fire(1)%frequ(5)
case ('fire_ind2_c1')
output_var(i,ipp,time) = fire(2)%frequ(1)
case ('fire_ind2_c2')
output_var(i,ipp,time) = fire(2)%frequ(2)
case ('fire_ind2_c3')
output_var(i,ipp,time) = fire(2)%frequ(3)
case ('fire_ind2_c4')
output_var(i,ipp,time) = fire(2)%frequ(4)
case ('fire_ind2_c5')
output_var(i,ipp,time) = fire(2)%frequ(5)
case ('fire_ind3_c1')
output_var(i,ipp,time) = fire(3)%frequ(1)
case ('fire_ind3_c2')
output_var(i,ipp,time) = fire(3)%frequ(2)
case ('fire_ind3_c3')
output_var(i,ipp,time) = fire(3)%frequ(3)
case ('fire_ind3_c4')
output_var(i,ipp,time) = fire(3)%frequ(4)
case ('fire_ind3_c5')
output_var(i,ipp,time) = fire(3)%frequ(5)
case('fortyp') ! forest type classified
call wclas(waldtyp)
output_var(i,ipp,time) = waldtyp
case ('gpp','GPP') ! yearly GPP
output_var(i,ipp,time) = sumGPP * hconv/100. ! g C/patch --> t C/ha
case ('GPP_year','GPPyear','gppyear','gpp_year') ! GPP for each year
outvar(i) = 'GPP_year'
output_var(i,ipp,time) = sumGPP * hconv/100. ! g C/patch --> t C/ha
case ('GPP_mon','GPPmon','gppmon','gpp_mon') ! monthly GPP
outvar(i) = 'GPP_mon'
k = output_var(i,1,0)
do j = 1, 12
output_varm(k,ipp,time,j) = GPP_mon(j) * hconv/100. ! g C/patch --> t C/ha
enddo
case ('GPP_week','GPPweek','gppweek','gpp_week') ! weekly GPP
outvar(i) = 'GPP_week'
k = output_var(i,1,0)
do j = 1, 52
output_varw(k,ipp,time,j) = GPP_week(j) * hconv/100. ! g C/patch --> t C/ha
enddo
case ('height')
output_var(i,ipp,time) = hdom
case ('iday_vp') ! yearly canopy interception
output_var(i,ipp,time) = iday_vegper
case('ind_arid')
output_var(i,ipp,time)=ind_arid_an
case('ind_cout')
output_var(i,ipp,time)=ind_cout_an
case('ind_emb')
output_var(i,ipp,time)=ind_emb
case('ind_lang')
output_var(i,ipp,time)=ind_lang_an
case('ind_mart')
output_var(i,ipp,time)=ind_mart_an
case('ind_reich')
output_var(i,ipp,time)=ind_reich
case('ind_weck')
output_var(i,ipp,time)=ind_weck
case('ind_wiss')
output_var(i,ipp,time)=ind_wiss_an
case ('int','interc') ! yearly canopy interception
output_var(i,ipp,time) = int_cum_can
case ('lai','LAI')
output_var(i,ipp,time) = LAImax
case ('NEE_mon','NEEmon','neemon','nee_mon') ! monthly NEP
outvar(i) = 'NEE_mon'
k = output_var(i,1,0)
do j = 1, 12
output_varm(k,ipp,time,j) = NEE_mon(j) ! g C/m
enddo
case ('NEP', 'nep')
outvar(i) = 'NEP'
output_var(i,ipp,time) = sumNPP * hconv * cpart/1000. - resps_c * gm2_in_kgha/1000. ! kg DW/patch --> t C/ha
case ('NEP_year','NEPyear','nepyear','nep_year') ! NEP of each year
outvar(i) = 'NEP_year'
output_var(i,ipp,time) = sumNPP * hconv * cpart/1000. - resps_c * gm2_in_kgha/1000. ! kg DW/patch --> t C/ha
case ('NEP_mon','NEPmon','nepmon','nep_mon') ! monthly NEP
outvar(i) = 'NEP_mon'
k = output_var(i,1,0)
do j = 1, 12
output_varm(k,ipp,time,j) = NPP_mon(j) * hconv/100. - resps_mon(j) * gm2_in_kgha/1000. ! kg C/patch --> t C/ha
enddo
case ('NEP_week','NEPweek','nepweek','nep_week') ! weekly NPP
outvar(i) = 'NEP_week'
k = output_var(i,1,0)
do j = 1, 52
output_varw(k,ipp,time,j) = NPP_week(j) * hconv/100. - resps_week(j) * gm2_in_kgha/1000. ! g C/patch --> t C/ha
enddo
case ('ndep','Ndep','N_dep') ! yearly N deposition
output_var(i,ipp,time) = Ndep_cum ! g N/m2
case('nleach', 'Nleach', 'N_leach') ! Annual N leaching kg N/ha
output_var(i,ipp,time) = N_min * gm2_in_kgha ! g/m2 --> kg/ha, mean
case ('nmin','Nmin','N_min') ! yearly N mineralization
output_var(i,ipp,time) = N_min * gm2_in_kgha ! g/m2 --> kg/ha, mean
case ('npp','NPP') ! NPP
output_var(i,ipp,time) = sumNPP * hconv * cpart/1000. ! kg DW/patch --> t C/ha
case ('NPP_year','NPPyear','nppyear','npp_year') ! NPP of each year
outvar(i) = 'NPP_year'
output_var(i,ipp,time) = sumNPP * hconv * cpart/1000. ! kg DW/patch --> t C/ha
case ('NPP_mon','NPPmon','nppmon','npp_mon') ! monthly NPP
outvar(i) = 'NPP_mon'
k = output_var(i,1,0)
do j = 1, 12
output_varm(k,ipp,time,j) = NPP_mon(j) * hconv/100. ! g C/patch --> t C/ha
enddo
case ('NPP_week','NPPweek','nppweek','npp_week') ! weekly NPP
outvar(i) = 'NPP_week'
k = output_var(i,1,0)
do j = 1, 52
output_varw(k,ipp,time,j) = NPP_week(j) * hconv/100. ! g C/patch --> t C/ha
enddo
case ('NTI', 'nti','NTindex','ntindex') ! Nonnen-Temperatur-Index
output_var(i,ipp,time) = ntindex
case ('perc') ! yearly percolation
output_var(i,ipp,time) = perc_cum
case ('perc_year') ! yearly percolation
outvar(i) = 'perc_year'
output_var(i,ipp,time) = perc_cum
case ('perc_mon', 'percmon') ! monthly percolation
outvar(i) = 'perc_mon'
k = output_var(i,1,0)
do j = 1, 12
output_varm(k,ipp,time,j) = perc_mon(j)
enddo
case ('perc_week', 'percweek') ! weekly percolation
outvar(i) = 'perc_week'
k = output_var(i,1,0)
do j = 1, 52
output_varw(k,ipp,time,j) = perc_week(j)
enddo
case ('PET','pet') ! potential evapotranspiration sum
output_var(i,ipp,time) = PET_cum
case ('PET_year','PETyear','pet_year','petyear') ! potential evapotranspiration sum of each year
outvar(i) = 'PET_year'
output_var(i,ipp,time) = PET_cum
case ('PET_mon','PETmon','pet_mon','petmon') ! monthly potential evapotranspiration sum
outvar(i) = 'PET_mon'
k = output_var(i,1,0)
do j = 1, 12
output_varm(k,ipp,time,j) = PET_mon(j)
enddo
case ('PET_week','PETweek','pet_week','petweek') ! weekly potential evapotranspiration sum
outvar(i) = 'PET_week'
k = output_var(i,1,0)
do j = 1, 52
output_varw(k,ipp,time,j) = PET_week(j)
enddo
case ('prec') ! yearly precipitation
output_var(i,ipp,time) = sum_prec
case ('prec_year', 'precyear') ! precipitation sum of each year
outvar(i) = 'prec_year'
output_var(i,ipp,time) = sum_prec
case ('prec_mon', 'precmon') ! monthly precipitation sum
outvar(i) = 'prec_mon'
k = output_var(i,1,0)
do j = 1, 12
output_varm(k,ipp,time,j) = prec_mon(j)
enddo
case ('prec_week', 'precweek') ! weekly precipitation sum
outvar(i) = 'prec_week'
k = output_var(i,1,0)
do j = 1, 52
output_varw(k,ipp,time,j) = prec_week(j)
enddo
case ('resps','respsoil') ! yearly soil respiration
outvar(i) = 'resps'
output_var(i,ipp,time) = resps_c * gm2_in_kgha ! g C/m2 --> kg C/ha, mean
case ('resps_year', 'respsyear') ! soil respiration of each year
outvar(i) = 'resps_year'
output_var(i,ipp,time) = resps_c * gm2_in_kgha ! g C/m2 --> kg C/ha, mean
case ('resps_mon', 'respsmon') ! monthly soil respiration
outvar(i) = 'resps_mon'
k = output_var(i,1,0)
do j = 1, 12
output_varm(k,ipp,time,j) = resps_mon(j) * gm2_in_kgha ! g C/m2 --> kg C/ha
enddo
case ('resps_week', 'respsweek') ! weekly soil respiration
outvar(i) = 'resps_week'
k = output_var(i,1,0)
do j = 1, 52
output_varw(k,ipp,time,j) = resps_week(j) * gm2_in_kgha ! g C/m2 --> kg C/ha
enddo
case('steminc')
output_var(i,ipp,time)= totsteminc/1000.
case ('sumbio') ! Biomass
output_var(i,ipp,time) = sumbio / 1000. ! kg DW / ha --> t DW/ha
case ('sumtlf') ! temperature sum of days with frost April - June
output_var(i,ipp,time) = sumtlf(time)
case ('temp') ! airtemp
output_var(i,ipp,time) = med_air
case ('temp_year', 'tempyear') ! mean yearly air temperature
outvar(i) = 'temp_year'
output_var(i,ipp,time) = med_air
case ('temp_mon', 'tempmon') ! mean monthly air temperature
outvar(i) = 'temp_mon'
k = output_var(i,1,0)
do j = 1, 12
output_varm(k,ipp,time,j) = temp_mon(j) ! Mittelung erfolgt schon in daily (/ monrec(j))
enddo
case ('temp_week', 'tempweek') ! mean weekly air temperature
outvar(i) = 'temp_week'
k = output_var(i,1,0)
do j = 1, 52
output_varw(k,ipp,time,j) = temp_week(j) / 7.
enddo
case ('TER','ter') ! yearly TER
outvar(i) = 'TER'
output_var(i,ipp,time) = sumTER * hconv/100. ! g C/patch --> t C/ha
case ('TER_year','TERyear','teryear','ter_year') ! yearly TER
outvar(i) = 'TER_year'
output_var(i,ipp,time) = sumTER * hconv/100. ! g C/patch --> t C/ha
case ('TER_mon','TERmon','termon','ter_mon') ! monthly TER
outvar(i) = 'TER_mon'
k = output_var(i,1,0)
do j = 1, 12
output_varm(k,ipp,time,j) = TER_mon(j) * hconv/100. ! g C/patch --> t C/ha
enddo
case ('TER_week','TERweek','terweek','ter_week') ! weekly TER
outvar(i) = 'TER_week'
k = output_var(i,1,0)
do j = 1, 52
output_varw(k,ipp,time,j) = TER_week(j) * hconv/100. ! g C/patch --> t C/ha
enddo
case('totstem')
output_var(i,ipp,time)= totstem_m3
case('vsab')
output_var(i,ipp,time)= sumvsab_m3
case('vsdead')
output_var(i,ipp,time)= sumvsdead_m3
end select
enddo
END SUBROUTINE outstore
!**************************************************************
SUBROUTINE out_var_file
! writing of output variables (multi run 4 and 8)
use data_biodiv
use data_out
use data_simul
use data_site
IMPLICIT NONE
integer i, ii, j, k, unit_nr
real varerr
character(50) :: filename ! complete name of output file
character(15) idtext, datei
real, dimension(12) :: helpf
real, dimension(52) :: helpw
character(30) :: helpvar
if (flag_trace) write (unit_trace, '(I4,I10,A)') iday, time_cur, ' out_var_file '
do i = 1, nvar-1
helpvar = outvar(i)
call out_var_select(helpvar, varerr, unit_nr)
if (varerr .ne. 0.) then
select case (trim(outvar(i)))
case ('AET_week','cwb_week','GPP_week','NEP_week','NPP_week','perc_week','PET_week','temp_week','TER_week','prec_week','resps_week')
write (unit_nr, '(A)') '# Site Week1 Week2 Week3 Week4 Week5 Week6 Week7 Week8 Week9 &
Week10 Week11 Week12 Week13 Week14 Week15 Week16 Week17 Week18 Week19 &
Week20 Week21 Week22 Week23 Week24 Week25 Week26 Week27 Week28 Week29 &
Week30 Week31 Week32 Week33 Week34 Week35 Week13 Week37 Week38 Week39 &
Week40 Week41 Week42 Week43 Week44 Week45 Week46 Week47 Week48 Week49 &
Week50 Week51 Week52'
do ip = 1, site_nr
write (datei, '(A10)') adjustl(sitenum(ip))
read (datei, '(A)') idtext
write (unit_nr, '(A15)', advance = 'no') idtext
ii = output_var(i,1,0)
helpw = 0.
do k = 1, 52
do j = 1, year
helpw(k) = helpw(k) + output_varw(ii,ip,j,k)
enddo
helpw(k) = helpw(k) / year
enddo
write (unit_nr, '(52(E12.4))', advance = 'no') helpw
write (unit_nr, '(A)') ''
enddo
case ('AET_mon','cwb_mon','GPP_mon','NEP_mon','NPP_mon','perc_mon','PET_mon','temp_mon','TER_mon','prec_mon','resps_mon')
write (unit_nr, '(A)') '# Site Mean1 Mean2 Mean3 Mean 4&
Mean5 Mean6 Mean7 Mean8 Mean9 Mean10 Mean11 Mean12'
do ip = 1, site_nr
write (datei, '(A10)') adjustl(sitenum(ip))
read (datei, '(A)') idtext
write (unit_nr, '(A15)', advance = 'no') idtext
ii = output_var(i,1,0)
helpf = 0.
do k = 1, 12
do j = 1, year
helpf(k) = helpf(k) + output_varm(ii,ip,j,k)
enddo
helpf(k) = helpf(k) / year
enddo
write (unit_nr, '(12(E12.4))', advance = 'no') helpf
write (unit_nr, '(A)') ''
enddo
case default
write (unit_nr, '(A)') '# Site Year 1 Year 2 Year 3 Year 4 Year 5 ...'
do ip = 1, site_nr
write (datei, '(A10)') adjustl(sitenum(ip))
read (datei, '(A)') idtext
write (unit_nr, '(A15)', advance = 'no') idtext
do j = 1, year
write (unit_nr, '(E12.4)', advance = 'no') output_var(i,ip,j)
enddo
write (unit_nr, '(A)') ''
enddo
end select
else
write (*,*)
write (*,*) '*** 4C-error - output of variables (out_var_file): ', trim(outvar(i)), ' not found'
write (*,*)
write (unit_err,*)
write (unit_err,*) '*** 4C-error - no such output variable (out_var_file): ', trim(outvar(i))
endif
close(unit_nr)
enddo
END SUBROUTINE out_var_file
!**************************************************************
SUBROUTINE out_var_select(varout, varerr, unit_nr)
! selection of output variables and open files (multi run 4, 8, 9)
use data_biodiv
use data_out
use data_simul
use data_site
IMPLICIT NONE
integer unit_nr
real varerr
character(50) :: filename ! complete name of output file
character(30) :: varout
character(15) idtext, datei
if (flag_trace) write (unit_trace, '(I4,I10,A,F6.0,I4)') iday, time_cur, ' out_var_select '//varout, varerr, unit_nr
filename = trim(site_name1)//'_'//trim(varout)//'.out'
unit_nr = getunit()
open(unit_nr,file=trim(dirout)//filename,status='replace')
write (unit_nr, '(A)') '# Output of '//varout
varerr = 0.
select case (trim(varout))
case('anzdlf')
write(unit_nr, '(A)') '# number of days with frost April - June'
varerr = 1
case ('AET','aet')
write (unit_nr, '(A)') '# Yearly actual evapotranspiration sum / mm'
varerr = 1.
case ('AET_year')
write (unit_nr, '(A)') '# Annual actual evapotranspiration sum / mm'
varerr = 1.
case ('AET_mon','aet_mon','AETmon','aetmon')
write (unit_nr, '(A)') '# Monthly actual evapotranspiration sum / mm'
varerr = 1.
case ('AET_week','aet_week','AETweek','aetweek')
write (unit_nr, '(A)') '# Weekly actual evapotranspiration sum / mm'
varerr = 1.
case('above_biom')
write(unit_nr,'(A)') '# Total aboveground biomass / t DW/ha'
varerr = 1.
case('BA')
write(unit_nr,'(A)') '# Basal arera m'
varerr = 1.
case ('C_accu','Caccu','c_accu') ! C accumulation per year
write (unit_nr, '(A)') '# Soil carbon accumulation per year / t C/ha'
varerr = 1.
case ('C_d_stem','c_d_stem') ! C accumulation per year
write (unit_nr, '(A)') '# carbon in dead trees / t C/ha'
varerr = 1.
case ('C_hum_tot','C_humtot','chumtot','Chumtot') ! total soil C
write (unit_nr, '(A)') '# Total carbon in humus / t C/ha'
varerr = 1.
case ('C_sum','csum','Csum') ! total C in ecosystem
write (unit_nr, '(A)') '# Total carbon in ecosystem / t C/ha'
varerr = 1.
case ('C_tot','ctot','Ctot') ! total soil C
write (unit_nr, '(A)') '# Total carbon in soil / t C/ha'
varerr = 1.
case('con_gor')
write(unit_nr,'(A)') '# Continentality index Gorczynski'
varerr = 1.
case('con_cur')
write(unit_nr,'(A)') '# Continentality index Currey'
varerr = 1.
case('con_con')
write(unit_nr,'(A)') '# Continentality index Conrad'
varerr = 1.
case('cwb_year','cwb')
write(unit_nr,'(A)') '# Annual climate water balance'
varerr = 1.
case('cwb_mon')
write(unit_nr,'(A)') '# Monthly climate water balance'
varerr = 1.
case('cwb_week')
write(unit_nr,'(A)') '# Weekly climate water balance'
varerr = 1.
case('date_lf')
write(unit_nr, '(A)') '# number of day of last late frost after start of vegetation period'
varerr = 1
case('date_lft')
write(unit_nr, '(A)') '# number of day of last late frost'
varerr = 1
case('daybb_be')
write(unit_nr,'(A)') '# Day of bud burst beech'
varerr = 1.
case('daybb_bi')
write(unit_nr,'(A)') '# Day of bud burst betula'
varerr = 1.
case('daybb_oa')
write(unit_nr,'(A)') '# Day of bud burst oak'
varerr = 1.
case ('dbh') ! mean DBH
write (unit_nr, '(A)') '# DBH / cm'
varerr = 1.
case ('dens') ! stem density /ha
write (unit_nr, '(A)') '# Stem density per ha'
varerr = 1.
case('dnlf')
write(unit_nr, '(A)') '# number of frost days since start of vegetation period'
varerr = 1.
case('dnlf_sp')
write(unit_nr, '(A)') '# number of frost days since start of bud burst'
varerr = 1.
case ('drindal','drIndAl','drIndal','DrIndAl') ! drought index for allocation calculation (cum.) for the whole stand [-], weighted by NPP
write (unit_nr, '(A)') '# Drought index for allocation calculation'
varerr = 1.
case ('fire_indb')
write (unit_nr, '(A)') '# Fire index Bruschek'
varerr = 1.
case ('fire_ind1')
write (unit_nr, '(A)') '# Fire index west'
varerr = 1.
case ('fire_ind2')
write (unit_nr, '(A)') '# Fire index east'
varerr = 1.
case ('fire_ind3')
write (unit_nr, '(A)') '# Fire index Nesterov'
varerr = 1.
case ('fire_ind1_c1')
write (unit_nr, '(A)') '# Fire index west class 1'
varerr = 1.
case ('fire_ind1_c2')
write (unit_nr, '(A)') '# Fire index west class 2'
varerr = 1.
case ('fire_ind1_c3')
write (unit_nr, '(A)') '# Fire index west class 3'
varerr = 1.
case ('fire_ind1_c4')
write (unit_nr, '(A)') '# Fire index west class 4'
varerr = 1.
case ('fire_ind1_c5')
write (unit_nr, '(A)') '# Fire index west class 5'
varerr = 1.
case ('fire_ind2_c1')
write (unit_nr, '(A)') '# Fire index east class 1'
varerr = 1.
case ('fire_ind2_c2')
write (unit_nr, '(A)') '# Fire index east class 2'
varerr = 1.
case ('fire_ind2_c3')
write (unit_nr, '(A)') '# Fire index east class 3'
varerr = 1.
case ('fire_ind2_c4')
write (unit_nr, '(A)') '# Fire index east class 4'
varerr = 1.
case ('fire_ind2_c5')
write (unit_nr, '(A)') '# Fire index east class 5'
varerr = 1.
case ('fire_ind3_c1')
write (unit_nr, '(A)') '# Fire index Nesterov class 1'
varerr = 1.
case ('fire_ind3_c2')
write (unit_nr, '(A)') '# Fire index Nesterov class 2'
varerr = 1.
case ('fire_ind3_c3')
write (unit_nr, '(A)') '# Fire index Nesterov class 3'
varerr = 1.
case ('fire_ind3_c4')
write (unit_nr, '(A)') '# Fire index Nesterov class 4'
varerr = 1.
case ('fire_ind3_c5')
write (unit_nr, '(A)') '# Fire index Nesterov class 5'
varerr = 1.
case ('fortyp')
write (unit_nr, '(A)') '# Forest classification'
varerr = 1.
case ('GPP') ! GPP
write (unit_nr, '(A)') '# Yearly gross primary production / t C/ha'
varerr = 1.
case ('GPP_year') ! GPP
write (unit_nr, '(A)') '# Annual gross primary production / t C/ha'
varerr = 1.
case ('GPP_mon') ! monthly GPP
write (unit_nr, '(A)') '# Monthly gross primary production / t C/ha'
varerr = 1.
case ('GPP_week') ! weekly GPP
write (unit_nr, '(A)') '# Weekly gross primary production / t C/ha'
varerr = 1.
case ('height') ! height, in this case dominant height
write (unit_nr, '(A)') '# Height / cm'
varerr = 1.
case ('iday_vp')
write (unit_nr, '(A)') '# start day of vegetation period'
varerr = 1.
case('ind_arid')
write(unit_nr,'(A)') '# Aridity index (UNEP)'
varerr = 1.
case('ind_lang')
write(unit_nr,'(A)') '# Climate index Lang'
varerr = 1.
case('ind_cout')
write(unit_nr,'(A)') '# Climate index Coutange'
varerr = 1.
case('ind_emb')
write(unit_nr,'(A)') '# Climate index Emberger'
varerr = 1.
case('ind_mart')
write(unit_nr,'(A)') '# Climate index Martonne'
varerr = 1.
case('ind_reich')
write(unit_nr,'(A)') '# Climate index Reichel'
varerr = 1.
case('ind_weck')
write(unit_nr,'(A)') '# Climate index Weck'
varerr = 1.
case('ind_wiss')
write(unit_nr,'(A)') '# Climate index v. Wissmann'
varerr = 1.
case ('int','interc') ! yearly canopy interception
write (unit_nr, '(A)') '# Yearly canopy interception / mm'
varerr = 1.
case ('lai','LAI') ! yearly canopy interception
write (unit_nr, '(A)') '# Maximum LAI '
varerr = 1.
case ('N_dep','ndep','Ndep') ! yearly N deposition
write (unit_nr, '(A)') '# Yearly N deposition / g N/m2'
varerr = 1.
case('N_leach', 'nleach', 'Nleach')
write(unit_nr,'(A)') '# Annual N leaching kg N/ha'
varerr = 1.
case ('N_min','nmin','Nmin') ! yearly N mineralization
write (unit_nr, '(A)') '# Yearly N mineralization / kg N/ha'
varerr = 1.
case ('nep','NEP') ! NEP
write (unit_nr, '(A)') '# Yearly net ecosystem production / t C/ha'
varerr = 1.
case ('NEP_year') ! NEP
write (unit_nr, '(A)') '# Annual net ecosystem production / t C/ha'
varerr = 1.
case ('NEP_mon') ! monthly NEP
write (unit_nr, '(A)') '# Monthly net ecosystem production / t C/ha'
varerr = 1.
case ('NEP_week') ! weekly NEP
write (unit_nr, '(A)') '# Weekly net ecosystem production / t C/ha'
varerr = 1.
case ('NPP','npp') ! NPP
write (unit_nr, '(A)') '# Yearly net primary production / t C/ha'
varerr = 1.
case ('NPP_year') ! NPP of each year
write (unit_nr, '(A)') '# Annual net primary production / t C/ha'
varerr = 1.
case ('NPP_mon') ! monthly NPP
write (unit_nr, '(A)') '# Monthly net primary production / t C/ha'
varerr = 1.
case ('NPP_week') ! weekly NPP
write (unit_nr, '(A)') '# Weekly net primary production / t C/ha'
varerr = 1.
case ('NTI', 'nti','NTindex','ntindex') ! Nonnen-Temperatur-Index
write (unit_nr, '(A)') '# Nun temperature index'
varerr = 1.
case ('perc') ! yearly percolation
write (unit_nr, '(A)') '# Yearly percolation / mm'
varerr = 1.
case ('perc_year') ! yearly percolation
write (unit_nr, '(A)') '# Annual percolation / mm'
varerr = 1.
case ('perc_mon', 'percmon') ! monthly percolation
write (unit_nr, '(A)') '# Monthly percolation / mm'
varerr = 1.
case ('perc_week', 'percweek') ! weekly percolation
write (unit_nr, '(A)') '# Weekly percolation / mm'
varerr = 1.
case ('PET','pet') ! PET
write (unit_nr, '(A)') '# Yearly potential evapotranspiration / mm'
varerr = 1.
case ('PET_year') ! PET
write (unit_nr, '(A)') '# Annual potential evapotranspiration / mm'
varerr = 1.
case ('PET_mon') ! PET
write (unit_nr, '(A)') '# Monthly potential evapotranspiration / mm'
varerr = 1.
case ('PET_week') ! PET
write (unit_nr, '(A)') '# Weekly potential evapotranspiration / mm'
varerr = 1.
case ('prec') ! yearly precipitation
write (unit_nr, '(A)') '# Yearly precipitation sum / mm'
varerr = 1.
case ('prec_year') ! yearly precipitation
write (unit_nr, '(A)') '# Annual precipitation sum / mm'
varerr = 1.
case ('prec_mon', 'precmon') ! monthly precipitation sum
write (unit_nr, '(A)') '# Monthly precipitation sum / mm'
varerr = 1.
case ('prec_week', 'precweek') ! weekly precipitation sum
write (unit_nr, '(A)') '# Weekly precipitation sum / mm'
varerr = 1.
case ('resps', 'respsoil') ! yearly soil respiration
write (unit_nr, '(A)') '# Yearly soil respiration / kg C/ha'
varerr = 1.
case ('resps_year') ! yearly soil respiration
write (unit_nr, '(A)') '# Annual soil respiration / kg C/ha'
varerr = 1.
case ('resps_mon', 'respsmon') ! monthly soil respiration
write (unit_nr, '(A)') '# Monthly soil respiration / kg C/ha'
varerr = 1.
case ('resps_week', 'respsweek') ! Weekly soil respiration
write (unit_nr, '(A)') '# Weekly soil respiration / kg C/ha'
varerr = 1.
case('steminc')
write(unit_nr,'(A)') '# Total annual stem increment t/ha'
varerr = 1.
case ('sumbio') ! Biomass
write (unit_nr, '(A)') '# Total Biomass / t DW/ha'
varerr = 1.
case('sumtlf')
write(unit_nr, '(A)') '# temperature sum of minimum temperature < 0 April - June'
varerr = 1
case ('temp') ! airtemp
write (unit_nr, '(A)') '# Mean yearly air temperature / C'
varerr = 1.
case ('temp_year') ! airtemp
write (unit_nr, '(A)') '# Mean annual air temperature / C'
varerr = 1.
case ('temp_mon', 'tempmon') ! mean monthly air temperature
write (unit_nr, '(A)') '# Mean monthly air temperature / C'
varerr = 1.
case ('temp_week', 'tempweek') ! mean weekly air temperature
write (unit_nr, '(A)') '# Mean weekly air temperature / C'
varerr = 1.
case ('TER') ! TER
write (unit_nr, '(A)') '# Yearly total ecosystem respiration / t C/ha'
varerr = 1.
case ('TER_year') ! TER
write (unit_nr, '(A)') '# Annual total ecosystem respiration / t C/ha'
varerr = 1.
case ('TER_mon') ! monthly TER
write (unit_nr, '(A)') '# Monthly total ecosystem respiration / t C/ha'
varerr = 1.
case ('TER_week') ! weekly TER
write (unit_nr, '(A)') '# Weekly total ecosystem respiration / t C/ha'
varerr = 1.
case('totstem')
write(unit_nr,'(A)') '# Total annual stem volume m/ha'
varerr = 1.
case('vsdead')
write(unit_nr,'(A)') '# Total annual dead stem volume m/ha (not in the litter pool)'
varerr = 1.
case('vsab')
write(unit_nr,'(A)') '# Total annual harvested stem volume m/ha'
varerr = 1.
end select
END SUBROUTINE out_var_select
!**************************************************************
!*****************************************************************!
!* *!
!* 4C (FORESEE) Simulation Model *!
!* *!
!* *!
!* Subroutines for: *!
!* - Calculation of annual allocation of NPP (SR PARTITION) *!
!* - Calculation of annual allocation of NPP of soil *!
!* vegetation (PARTITION_SV *!
!* - Calculation of diameter at breast height (SR CALC_DBH) *!
!* *!
!* Copyright (C) 1996-2018 *!
!* Potsdam Institute for Climate Impact Reserach (PIK) *!
!* Authors and contributors see AUTHOR file *!
!* This file is part of 4C and is licensed under BSD-2-Clause *!
!* See LICENSE file or under: *!
!* http://www.https://opensource.org/licenses/BSD-2-Clause *!
!* Contact: *!
!* https://gitlab.pik-potsdam.de/foresee/4C *!
!* *!
!*****************************************************************!
!****************************!
!* SUBROUTINE PARTITION *!
!****************************!
SUBROUTINE PARTITION( p )
!*** Declaration part ***!
USE data_out
USE data_par
USE data_stand
USE data_species
USE data_simul
USE data_manag
IMPLICIT NONE
REAL :: lambdaf = 0., & ! partitioning functions
lambdas = 0., &
lambdar = 0., &
lambdac = 0., &
lambdaSum = 0.,& ! sum of the above three lambdas
NPP = 0., & ! annual NPP
F = 0., & ! state variables: foliage,
S = 0., & ! sapwood,
H = 0., & ! heartwood
R = 0., & ! fine roots,
B = 0., & ! bole height,
Ahb = 0., & ! cross sectional area heartwood at tree base
hs = 0., & ! sapwood height
Ht = 0., & ! total tree height
Asw = 0., & ! cross sectional area of sapwood in bole
DBH = 0., & ! tree diameter at breast height (DBH)
FNew, SNew, & ! new states
RNew, BNew, &
HtNew, &
HNew, Ahbnew, &
sigmaf = 0., & ! current leaf activity rate
sigman = 0., & ! current root activity rate
ar = 0., & ! aux vars for partitioning functions
as = 0., &
ac = 0., &
betar = 0., &
betas = 0., &
aux = 0., &
Fmax, & ! determines whether height growth or not
rsap, & ! auxiliary variable for height growth determination
growthrate ! height growthrate depends on relative light regime in the middle of the canopy
REAL :: Sf, & ! senescence rates
Ss, &
Sr, &
Gf, & ! growth rates
Gs, &
Gr
real :: DBH_help
REAL :: leaf_N_conc, & ! last years N concentration in leaves gN kgDM
tbc_root_Ndemand, & ! N demand for ghrowth of fine roots, branches and coarse roots g tree-1
Nredfak, & ! reduction factor for N allocation to fine roots, branches and coarse roots
nsc_get, nsc_plus, nsc_max, & !nsc_get estimated NSC demand [kg DW/tree], nsc_plus realized NSC supply from storage for NPP [kg DW/tree], nsc_max [kg DW/tree] maximum=80%
nsc_sap_refill,nsc_tb_refill, & !calculated amount for refilling of the NSC-Pools [kg C/tree], subtracted from the NPP
nsc_crt_refill,nsc_all_refill, & !
bioscost_sap, bioscost_tb, & ! Biosynthesis cost [kg C/tree]
bioscost_crt, bioscost_all, max_for_refill
logical :: treegroup_decid, looptrue ! decidous or coniferous for flag_dis=1
integer, dimension(5) :: decidous = (/1, 4, 5, 8, 11/) ! species numbers for decidous trees for flag_dis=1
integer :: i, nrow_dis
TYPE(Coh_Obj) :: p ! pointer to cohort list
REAL :: term1, &
a1, a2, a3, & ! coefficients of quadratic equation
x1 = 0., &
x2 = 0. ! solutions of quadratic equation
real :: Fmax_old
! if this cohort is mistletoe infected, reduce NPP by mistletoe-specific demand
! demand is defined in PARTITION_MI. as mistletoe is always 1st cohort, the demand of mistletoe is calculated before the reduction here
if (p%coh%mistletoe.eq.1) then
p%coh%NPP = p%coh%NPP-(NPP_demand_mistletoe/p%coh%ntreea)
endif
ns = p%coh%species
F = p%coh%x_fol
Fmax = p%coh%Fmax
S = p%coh%x_sap
R = p%coh%x_frt
H = p%coh%x_hrt
B = p%coh%x_hbole
NPP = p%coh%NPP
Ht = p%coh%height
Ahb = p%coh%x_Ahb
Sf = p%coh%sfol
Ss = p%coh%ssap
Sr = p%coh%sfrt
hs = p%coh%x_hsap
Asw = p%coh%Asapw
Fmax_old = Fmax
DBH_help = p%coh%diam
if (flag_end.eq.1) then
p%coh%notViable = .TRUE.
flag_end = 0
end if
if(p%coh%notViable.neqv..TRUE.) then
select case (flag_folhei)
case (1,4)
spar(ns)%pha = spar(ns)%pha_v1 * spar(ns)%pha_v3 * &
(F)**(-1-spar(ns)%pha_v3)/(spar(ns)%pha_v2+(F)**(-spar(ns)%pha_v3))**2.
case (2)
rsap=Asw/(Asw+Ahb)
spar(ns)%pha = 2.*spar(ns)%crown_a/(pi**0.5*(rsap*spar(ns)%pnus)**1.5*F**0.5)
case (3)
! this version only for tests and pine trees
spar(ns)%pha = (3500*(10.+F**0.9)-(0.9*3500.*F**0.9))/(10.+F**0.9)**2
end select ! flag_folhei
! only allocate if enough NPP is available
IF (NPP>1.0E-9) THEN
select case (flag_folhei)
case (0)
growthrate=spar(ns)%pha*spar(ns)%pha_coeff1 + spar(ns)%pha*spar(ns)%pha_coeff2*(1./p%coh%IrelCan-1.)
case (1,3)
growthrate=spar(ns)%pha + spar(ns)%pha*(1./MAX(p%coh%IrelCan,0.25)-1.)
case (2)
growthrate=spar(ns)%pha + spar(ns)%pha*(1.-p%coh%IrelCan)*5.
case (4)
growthrate=spar(ns)%pha *0.5/MAX(p%coh%IrelCan,0.25)
end select ! flag_folhei
sigmaf = NPP/F
! calculate root activity based on drought index
! test of a relationship which modifies fine root leaf ratio with shade tolerance:
IF (flag_sign.eq.1 .or. flag_sign.eq.11) THEN
term1 = spar(ns)%sigman * 10. * (((5.-spar(ns)%stol)*1.-p%coh%crown_area) / (5.-spar(ns)%stol)*1.)
sigman = amax1(term1,spar(ns)%sigman) * p%coh%drIndAl/p%coh%nDaysGr
ELSE
sigman = spar(ns)%sigman * p%coh%drIndAl / p%coh%nDaysGr
END IF
if (flag_sign .eq. 0 .or. flag_sign .eq. 1) then
! auxiliary variables for fine roots
ar = spar(ns)%pcnr * sigmaf / sigman
betar = (Sr - R + ar*(F-Sf)) / NPP
! auxiliary variables for sapwood
as = spar(ns)%prhos / spar(ns)%pnus
aux = 2.*(B+p%coh%deltaB) + Ht
betas = ( (as/3.)*(aux - growthrate*Sf) * (F-Sf) + Ss - S ) / NPP
! solve quadratic equation for lambdaf
term1 = (1.+spar(ns)%alphac)
a1 = term1 * as/3. * growthrate * NPP
a2 = 1.0 + ar + term1 * as/3. * (aux + growthrate*(F-2.*Sf))
a3 = term1*betas + betar - 1.
x1 = (-a2 + SQRT( a2*a2 - 4.*a1*a3) ) / (2.*a1)
x2 = (-a2 - SQRT( a2*a2 - 4.*a1*a3) ) / (2.*a1)
lambdaf = x1
if (lambdaf .le. 0. .or. lambdaf .gt. 1.) then
lambdaf = 0.5
lambdar = 0.5
lambdas = 0.
lambdac = 0.
else
! calculate coefficients for sapwood and roots
lambdar = ar * lambdaf + betar;
lambdas = as/3. * (aux + growthrate*(F+lambdaf*NPP-2.*Sf)) * lambdaf + betas
lambdac = spar(ns)%alphac * lambdas
! check consistency of calculation, i.e. no negative values
IF(lambdas < 0. .or. lambdas .gt. 1.) THEN
lambdas = 0.
lambdac = 0.
lambdaf = (1.-betar)/(ar+1)
lambdar = 1.-lambdaf
if (lambdaf .le. 0. .or. lambdaf .gt. 1.) then
lambdaf = 0.5
lambdar = 0.5
else if (lambdar<0) then
lambdar=0.
lambdaf=1.
end if
ELSE
! reduced allocation schemes for lamdaf<0. or lamdar<0. still to be added
lambdaf = AMAX1( lambdaf, 0. )
lambdar = AMAX1( lambdar, 0. )
! warrant that lambdaSum = 1 if balance can not be achieved this time step
lambdaSum = lambdaf + (1.+spar(ns)%alphac)*lambdas + lambdar
lambdaf = lambdaf / lambdaSum
lambdas = lambdas / lambdaSum
lambdar = lambdar / lambdaSum
lambdac = lambdac / lambdaSum
lambdaSum = lambdaf + (1.+spar(ns)%alphac)*lambdas + lambdar ! for debugging only
END IF
end if ! lambdaf .le. 0.
else ! flag_sign = 10, 11
! auxiliary variables for fine roots
ar = spar(ns)%pcnr * sigmaf / sigman
betar = (Sr - ar*Sf) / NPP
! auxiliary variables for sapwood
as = spar(ns)%prhos / spar(ns)%pnus
betas = (Ss - 2.*as*hs*Sf ) / NPP
! auxiliary variables for coarse roots, twigs and branches
ac = spar(ns)%alphac
! linear equation system in lamda(i)
term1 = 1. + ar + 2.*as*hs*(1+ac)
lambdaf = 1. - (1.+ac)*betas - betar
lambdaf = lambdaf / term1
lambdar = ar * lambdaf + betar
lambdas = 2.*as*hs * lambdaf + betas
lambdac = ac * lambdas
if (lambdaf .le. 0. .or. lambdaf .gt. 1.) then
lambdaf = 0.5
lambdar = 0.5
lambdas = 0.
lambdac = ac * lambdas
else
! calculate coefficients for sapwood and roots
lambdar = ar * lambdaf + betar;
lambdas = 2.*as*hs * lambdaf + betas
lambdac = ac * lambdas
! check consistency of calculation, i.e. no negative values
IF(lambdas < 0. .or. lambdas .gt. 1.) THEN
lambdas = 0.
lambdac = 0.
lambdaf = (1.-betar)/(ar+1)
lambdar = 1.-lambdaf
if (lambdaf .le. 0. .or. lambdaf .gt. 1.) then
lambdaf = 0.5
lambdar = 0.5
else if (lambdar<0) then
lambdar=0.
lambdaf=1.
end if
ELSE
! reduced allocation schemes for lamdaf<0. or lamdar<0. still to be added
lambdaf = AMAX1( lambdaf, 0. )
lambdar = AMAX1( lambdar, 0. )
! warrant that lambdaSum = 1 if balance can not be achieved this time step
lambdaSum = lambdaf + (1.+spar(ns)%alphac)*lambdas + lambdar
lambdaf = lambdaf / lambdaSum
lambdas = lambdas / lambdaSum
lambdar = lambdar / lambdaSum
lambdac = lambdac / lambdaSum
lambdaSum = lambdaf + (1.+spar(ns)%alphac)*lambdas + lambdar ! for debugging only
END IF
end if ! lambdaf .le. 0.
endif ! flag_sign
ELSE
lambdaf = 0.
lambdas = 0.
lambdar = 0.
END IF ! IF NPP < 1.0E-09
! gross growth rates of compartments
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
select case(flag_dis)
case (1)
looptrue = .False.
if (size(dis_year) .gt. 0) then
nrow_dis = size(dis_year)
do i=1,nrow_dis
if (time .eq. dis_year(i)) looptrue = .True.
enddo
endif
case(2)
looptrue = .False.
if (size(dis_year) .gt. 0) then
nrow_dis = size(dis_year)
do i=1,nrow_dis
if (time .eq. dis_year(i)) looptrue = .True.
enddo
endif
nsc_sap_refill = 0.
nsc_tb_refill = 0.
nsc_crt_refill = 0.
bioscost_sap = 0.
bioscost_tb = 0.
bioscost_crt = 0.
bioscost_all = 0.
if (NPP .gt. 0.001) then !is not working if NPP<=0
!first calculate the amount of carbon which is used to refill nsc storage
! 0.128 cost of biosynthese (F. Stuart Chapin et al. 2011. &
! Principles of terrestrial ecosystem ecology (page 159, table 6.1), Eglin et al. 2008. &
! Biochemical composition is not the main factor influencing variability in carbon isotope composition of tree rings)
nsc_sap_refill = AMAX1(0.00001,p%coh%x_nsc_sap_max - p%coh%x_nsc_sap)
nsc_tb_refill = AMAX1(0.00001,p%coh%x_nsc_tb_max - p%coh%x_nsc_tb)
nsc_crt_refill = AMAX1(0.00001,p%coh%x_nsc_crt_max - p%coh%x_nsc_crt)
bioscost_sap = 0.128*nsc_sap_refill
bioscost_tb = 0.128*nsc_tb_refill
bioscost_crt = 0.128*nsc_crt_refill
nsc_all_refill = nsc_sap_refill + nsc_tb_refill + nsc_crt_refill
bioscost_all = bioscost_sap + bioscost_tb + bioscost_crt
max_for_refill = 0.5*cpart*NPP
if (nsc_all_refill .gt. 0.1) then
if (nsc_all_refill .gt. max_for_refill) then ! the half can be used for refilling,
nsc_sap_refill = AMIN1(nsc_sap_refill, max_for_refill)
max_for_refill = max_for_refill - nsc_sap_refill
if (max_for_refill .gt. 0.0001) then
nsc_tb_refill = AMIN1(nsc_tb_refill, max_for_refill)
max_for_refill = max_for_refill - nsc_tb_refill
endif
if (max_for_refill .gt. 0.0001) then
nsc_crt_refill = AMIN1(nsc_crt_refill, max_for_refill)
max_for_refill = max_for_refill - nsc_crt_refill
endif
bioscost_sap = 0.128*nsc_sap_refill
bioscost_tb = 0.128*nsc_tb_refill
bioscost_crt = 0.128*nsc_crt_refill
nsc_all_refill = nsc_sap_refill + nsc_tb_refill + nsc_crt_refill
bioscost_all = bioscost_sap + bioscost_tb + bioscost_crt
endif !nsc_all_refill .gt. max_for_refill
p%coh%biocost_all = bioscost_all * 2. !*2 is conversion from kg C to kg DW
NPP = AMIN1(NPP - nsc_all_refill*2. - bioscost_all*2., NPP) !*2 is conversion from kg C to kg DW
if (NPP .lt. 0.001) NPP=0.001
p%coh%x_nsc_sap = AMIN1(p%coh%x_nsc_sap + nsc_sap_refill, p%coh%x_nsc_sap_max)
p%coh%x_nsc_tb = AMIN1(p%coh%x_nsc_tb + nsc_tb_refill, p%coh%x_nsc_tb_max)
p%coh%x_nsc_crt = AMIN1(p%coh%x_nsc_crt + nsc_crt_refill, p%coh%x_nsc_crt_max)
endif !nsc_all_refill>0
write(8612,150) time, p%coh%ident, p%coh%ntreea, p%coh%NPP, NPP, p%coh%x_nsc_sap, p%coh%x_nsc_tb, p%coh%x_nsc_crt, nsc_sap_refill, nsc_tb_refill, nsc_crt_refill, bioscost_all
150 FORMAT (I4,2X,I4,2X,F5.1,2X,9(F12.4,2X))
!second if disturbance took place this year --> NSC is used and added to NPP
if(looptrue .eq. .True.) then ! hier abaendern fuer die zeit der verminderten NPP
!first determine the amount to take from nsc-pool
nsc_get = 0.
nsc_plus = 0.
if (dis_control(1,1) .eq. 1) nsc_get = p%coh%x_fol_loss + nsc_get
if (dis_control(4,1) .eq. 1) nsc_get = p%coh%x_frt_loss + nsc_get
if (dis_control(2,1) .eq. 1) nsc_get = p%coh%NPP * p%coh%drindAl + nsc_get
!if (dis_control(3,1) .eq. 1) nsc_get = p%coh%x_phloem_loss + nsc_get
nsc_max = (p%coh%x_nsc_sap + p%coh%x_nsc_tb + p%coh%x_nsc_crt)*2. !*2 Umrechnung von kg C/tree zu kg DW/tree
nsc_plus = AMIN1(nsc_get,nsc_max)
NPP = NPP + nsc_plus
!third update of nsc storage in the three compartements
p%coh%x_nsc_sap = AMAX1(p%coh%x_nsc_sap - nsc_plus*cpart/3.0, 0.00001) !cpart Umrechnung von kg DW/tree zu kg C/tree
p%coh%x_nsc_tb = AMAX1(p%coh%x_nsc_tb - nsc_plus*cpart/3.0, 0.00001)
p%coh%x_nsc_crt = AMAX1(p%coh%x_nsc_crt - nsc_plus*cpart/3.0, 0.00001)
endif ! end NSC surplus if disturbance year
p%coh%NPP = NPP !update NPP value
write(8613,160) time, p%coh%ident, p%coh%ntreea, NPP, nsc_max, nsc_get, nsc_plus, p%coh%x_nsc_sap, p%coh%x_nsc_tb, p%coh%x_nsc_crt
160 FORMAT (I4,2X,I4,2X,F5.1,2X,7(F12.4,2X))
else
write(*,*)' Attention:: NPP<=0 --> NSC-POOL not working!!!'
endif ! NPP>0
end select
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Gf = lambdaf * NPP
Gr = lambdar * NPP
Gs = lambdas * NPP
p%coh%gfol = Gf
p%coh%gfrt = Gr
p%coh%gsap = Gs
p%coh%x_crt = p%coh%x_crt + Gs*spar(ns)%alphac*spar(ns)%cr_frac
p%coh%x_tb = p%coh%x_tb + Gs*spar(ns)%alphac*(1.-spar(ns)%cr_frac)
! update of state vector
select case (flag_dis)
! case (1,2)
! if (looptrue .eq. .True.) then
! FNew = F + Gf !im Schadjahr Seneszenz nicht nochmal abziehen
! SNew = S + Gs - Ss
! RNew = R + Gr !im Schadjahr Seneszenz nicht nochmal abziehen
! Hnew = H + Ss
! AhbNew= Ahb + Asw*spar(ns)%pss
! else
! FNew = F + Gf - Sf
! SNew = S + Gs - Ss
! RNew = R + Gr - Sr
! Hnew = H + Ss
! AhbNew= Ahb + Asw*spar(ns)%pss
! endif
case (0,1,2)
FNew = F + Gf - Sf
SNew = S + Gs - Ss
RNew = R + Gr - Sr
Hnew = H + Ss
AhbNew= Ahb + Asw*spar(ns)%pss
end select
! geffhelp = Gs/Fnew
! check whether height growth or not
IF (lambdas == 0.OR.FNew<Fmax) THEN ! treat special case where there is no height growth
HtNew = Ht
ELSE
! height growth depending on the relative light regime in the middle of the canopy
HtNew = Ht + growthrate * (FNew-Fmax)
Fmax=FNew
ENDIF
BNew = B+p%coh%deltaB
! copy back to original variables
p%coh%Fmax = Fmax
p%coh%x_fol = FNew
p%coh%x_sap = SNew
p%coh%x_frt = RNew
p%coh%x_hrt = HNew
p%coh%height = HtNew
p%coh%x_hbole= BNew
p%coh%x_Ahb = AhbNew
!Update of the maximum NSC storage capacity
select case(flag_dis)
case(2)
treegroup_decid = .False.
do i = 1, 5
if (decidous(i) .eq. p%coh%species) then
treegroup_decid = .True.
exit
endif
end do
If (treegroup_decid .eq. .True.) then
p%coh%x_nsc_sap_max = p%coh%x_sap * decid_sap_allo * cpart
p%coh%x_nsc_tb_max = p%coh%x_tb * decid_tb_allo * cpart
p%coh%x_nsc_crt_max = p%coh%x_crt * decid_crt_allo * cpart
p%coh%x_nsc_sap = AMIN1(p%coh%x_nsc_sap,p%coh%x_nsc_sap_max) ! has to change because of carbon inconsistency carbon loss due to sap shrinking is not accounted
p%coh%x_nsc_tb = AMIN1(p%coh%x_nsc_tb,p%coh%x_nsc_tb_max)
p%coh%x_nsc_crt = AMIN1(p%coh%x_nsc_crt,p%coh%x_nsc_crt_max)
endif
If (treegroup_decid .eq. .False.) then
p%coh%x_nsc_sap_max = p%coh%x_sap * conif_sap_allo * cpart
p%coh%x_nsc_tb_max = p%coh%x_tb * conif_tb_allo * cpart
p%coh%x_nsc_crt_max = p%coh%x_crt * conif_crt_allo * cpart
p%coh%x_nsc_sap = AMIN1(p%coh%x_nsc_sap,p%coh%x_nsc_sap_max)
p%coh%x_nsc_tb = AMIN1(p%coh%x_nsc_tb,p%coh%x_nsc_tb_max)
p%coh%x_nsc_crt = AMIN1(p%coh%x_nsc_crt,p%coh%x_nsc_crt_max)
endif
write(8614,170) time, p%coh%ident, p%coh%ntreea, p%coh%x_nsc_sap_max, p%coh%x_nsc_tb_max, p%coh%x_nsc_crt_max
170 FORMAT (I4,2X,I4,2X,F5.1,2X,3(F12.4,2X))
end select
CALL CALC_DBH(BNew,Htnew,Snew,Hnew,Ahbnew,p%coh%Ahc,p%coh%ident,DBH,p%coh%dcrb,hs,Asw)
if (flag_end.eq.1) then
DBH = p%coh%diam
p%coh%notViable = .TRUE.
flag_end = 0
end if
! Monitoring of current values
if (time_out .gt. 0 .and. flag_cohout .eq. 2) then
CALL OUT_ALL( p%coh%ident, p%coh%ntreea, NPP, DBH, growthrate,Fnew,Fmax_old,Htnew, lambdaf,lambdas,lambdar,lambdac,x1,x2,p%coh%x_nsc_sap_max, p%coh%x_nsc_tb_max, p%coh%x_nsc_crt_max, p%coh%x_nsc_sap, p%coh%x_nsc_tb, p%coh%x_nsc_crt)
endif
p%coh%x_hsap = hs
p%coh%diam = DBH ! This is the new value
p%coh%Asapw = Asw
p%coh%jrb = (DBH-DBH_help)*10/2
if(((DBH-DBH_help)*10/2).lt.0.) p%coh%jrb = 0.
! variables required by mortality submodel
p%coh%fol_inc = Gf - Sf
p%coh%bio_inc = NPP - Sf - (1.+spar(ns)%alphac)*Ss - Sr
p%coh%stem_inc = Gs ! deltaH + deltaS = Ss + Gs - Ss
p%coh%frt_inc = Gr - Sr ! fine root increment
p%coh%totBio = p%coh%x_fol + (1.+spar(ns)%alphac)*(p%coh%x_sap + p%coh%x_hrt) + p%coh%x_frt
p%coh%notViable = (FNew <= 0.) .OR. (SNew <= 0.) .OR. &
(RNew <= 0.) .OR. (Htnew <= Bnew)
! Nitrogen dynamics:
leaf_N_conc = p%coh%N_fol/F
! Simple model: all (sap)wood grows with CN-ratios of branches, twigs and coarse roots.
! When sapwood senesces N is reallocated and the new heart wood is at the level of stem CN-ratios.
! Branches, twigs and coarse roots do not senesce
! first step nitrogen related processes: N in litter, N-recallocation
p%coh%N_pool = p%coh%N_pool + Sf/F*p%coh%N_fol*spar(ns)%reallo_fol &
+ Sr*cpart/spar(ns)%cnr_frt*1000.* spar(ns)%reallo_frt &
+ Ss*cpart *1000. * (1/spar(ns)%cnr_tbc - 1/spar(ns)%cnr_stem)
p%coh%N_fol = p%coh%N_fol*(1-Sf/F)
! New version: cpart = C:biomass = 0.5 (amod.par)
! Summation, da Pool auch an anderen Stellen gefuellt wird
select case (flag_dis)
case (1,2)
p%coh%litC_fol = p%coh%litC_fol + p%coh%ntreea * Sf * cpart + p%coh%x_fol_loss * p%coh%ntreea * cpart
p%coh%litC_frt = p%coh%litC_frt + p%coh%ntreea * Sr * cpart + p%coh%x_frt_loss * p%coh%ntreea * cpart
case (0)
p%coh%litC_fol = p%coh%litC_fol + p%coh%ntreea * Sf * cpart
p%coh%litC_frt = p%coh%litC_frt + p%coh%ntreea * Sr * cpart
end select
! Sterblichkeit von sapwood fuert zu heartwood und nicht zur Litterproduktion
! p%coh%litC_tbc = p%coh%litC_tbc + p%coh%ntreea * spar(ns)%alphac*Ss * cpart
! Species specific N content and reallocation factor (see species.par)
! Caution: tbc mortallity is not a litter compartment; it is assigned as heartwood
p%coh%litN_fol = p%coh%litN_fol + p%coh%ntreea * Sf * cpart * (1.-spar(ns)%reallo_fol) / spar(ns)%cnr_fol
p%coh%litN_frt = p%coh%litN_frt + p%coh%ntreea * Sr * cpart * (1.-spar(ns)%reallo_frt) / spar(ns)%cnr_frt
! second step: allocation of N to new growth
! before bud-break allocation to leaves is 50% of the N content of last years foliage
tbc_root_Ndemand = Gs*cpart *kg_in_g / spar(ns)%cnr_tbc + Gr* cpart/spar(ns)%cnr_frt*kg_in_g
IF(tbc_root_Ndemand + Gf*p%coh%med_sla*0.5 > p%coh%N_pool) THEN
if (tbc_root_Ndemand .gt. 1E-8) then
Nredfak = AMAX1((p%coh%N_pool-Gf*p%coh%med_sla*0.5) / tbc_root_Ndemand,0.) ! Division by zero possible
else
Nredfak = 0.
endif
tbc_root_Ndemand = tbc_root_Ndemand*Nredfak
ENDIF
p%coh%N_pool = p%coh%N_pool - tbc_root_Ndemand
IF(p%coh%N_pool < Gf*0.5*leaf_N_conc) THEN
p%coh%N_fol = p%coh%N_fol + p%coh%N_pool
p%coh%N_pool = 0.
ELSE
p%coh%N_fol = p%coh%N_fol + Gf*0.5*leaf_N_conc
p%coh%N_pool = p%coh%N_pool - Gf*0.5*leaf_N_conc
ENDIF
end if
END SUBROUTINE PARTITION
!*******************************!
!* SUBROUTINE PARTITION_SV *!
!*******************************!
SUBROUTINE PARTITION_SV( p )
!*** Declaration part ***!
USE data_par
USE data_stand
USE data_species
USE data_simul
IMPLICIT NONE
REAL :: lambdaf = 0., & ! partitioning functions
lambdas = 0., &
lambdar = 0., &
NPP = 0., & ! annual NPP
F = 0., & ! state variables: foliage,
S = 0., & ! sapwood,
R = 0., & ! fine roots,
Ht = 0., & ! total tree height
FNew, SNew, & ! new states
RNew, &
sigmaf = 0., & ! current leaf activity rate
sigman = 0. ! current root activity rate
REAL :: Sf, & ! senescence rates
Ss, &
Sr, &
Gf, & ! growth rates
Gs, &
Gr
REAL :: FRsum
REAL :: tbc_root_Ndemand, & ! N demand for ghrowth of fine roots, branches and coarse roots g tree-1
Nredfak ! reduction factor for N allocation to fine roots, branches and coarse roots
REAL, EXTERNAL :: f_lf, df_lf, ddf_lf
INTEGER :: flag_SV_allo, &
rnum
TYPE(Coh_Obj) :: p ! pointer to cohort list
ns = p%coh%species
F = p%coh%x_fol
S = p%coh%x_sap
R = p%coh%x_frt
NPP = p%coh%NPP
Ht = p%coh%height
Sf = p%coh%sfol
Ss = p%coh%ssap
Sr = p%coh%sfrt
! choice of allocation model. 0 = constant allocation factors, 1 = allometric model
flag_SV_allo = 1
! only allocate if enough NPP is available
IF (NPP>1.0E-9) THEN
! calculate leaf activity based on net PS and leaf mass
sigmaf = NPP/F
! calculate root activity based on drought index
! test of a relationship which modifies fine root leaf ratio with shade tolerance
IF (flag_sign.eq.1) THEN
sigman = amax1(spar(ns)%sigman*10*(((5.-spar(ns)%stol)*1.-p%coh%crown_area)/(5.-spar(ns)%stol)*1.),spar(ns)%sigman) * p%coh%drIndAl / p%coh%nDaysGr
ELSE
sigman = spar(ns)%sigman * p%coh%drIndAl / p%coh%nDaysGr
END IF
M_avail=(NPP+F-Sf+R-Sr+S-Ss)/kpatchsize
IF(flag_SV_allo==0) THEN
! the parameters pdiam in the species.par file are used for allocation fractions
lambdaf=spar(ns)%pdiam1
lambdar=spar(ns)%pdiam2
lambdas=spar(ns)%pdiam3
ELSE
FRsum=(F+R)/kpatchsize
CALL newt (FRsum, f_lf, df_lf, ddf_lf, 1.e-6, 100, rnum)
IF(FRsum>M_avail .and. .not.flag_mult8910) CALL error_mess(time,'no solution found for allocation for groundvegetation cohort, rnum: ',real(rnum))
IF(rnum==-1) THEN
if (.not.flag_mult8910) CALL error_mess(time,'no solution found for allocation for groundvegetation cohort: ',real(p%coh%ident))
lambdaf=0.4
lambdar=0.4
lambdas=0.2
ELSE
lambdaf=(FRsum)/M_avail/2.
lambdar=(FRsum)/M_avail/2.
lambdas=1.-lambdaf-lambdar
ENDIF
ENDIF
END IF ! IF NPP < 1.0E-09
! gross growth rates of compartments
Gf = lambdaf * M_avail*kpatchsize -F +Sf
Gr = lambdar * M_avail*kpatchsize -R +Sr
Gs = lambdas * M_avail*kpatchsize -S +Ss
! preliminary solution for permanent seeding
IF(lambdaf * M_avail < 1.e-4) THEN
Gf = Gf + 1.e-4*kpatchsize
ENDIF
p%coh%gfol = Gf
p%coh%gfrt = Gr
p%coh%gsap = Gs
! update of state vector
FNew = F + Gf - Sf
SNew = S + Gs - Ss
RNew = R + Gr - Sr
p%coh%x_fol = FNew
p%coh%x_sap = SNew
p%coh%x_frt = RNew
! determine litter production from plant turnover rates
! first step nitrogen related processes: N in litter, N-recallocation
p%coh%N_pool = p%coh%N_pool + Sf/F*p%coh%N_fol*spar(ns)%reallo_fol &
+ Sr*cpart/spar(ns)%cnr_frt*1000.* spar(ns)%reallo_frt &
+ Ss*cpart *1000. * (1/spar(ns)%cnr_tbc - 1/spar(ns)%cnr_stem)
p%coh%N_fol = p%coh%N_fol*(1-Sf/F)
! Summation, due to the filling of the pool at other points as well
p%coh%litC_fol = p%coh%litC_fol + p%coh%ntreea * Sf * cpart
p%coh%litC_frt = p%coh%litC_frt + p%coh%ntreea * Sr * cpart
! New version with species specific N content and reallocation factor (see species.par)
! changed to 1-reallo
p%coh%litN_fol = p%coh%litN_fol + p%coh%ntreea * Sf * cpart * (1.-spar(ns)%reallo_fol) / spar(ns)%cnr_fol
p%coh%litN_frt = p%coh%litN_frt + p%coh%ntreea * Sr * cpart * (1.-spar(ns)%reallo_frt) / spar(ns)%cnr_frt
! second step: allocation of N to new growth
! before bud-break allocation to leaves is 50% of the N content of last years foliage
tbc_root_Ndemand = Gs*cpart *kg_in_g / spar(ns)%cnr_tbc + Gr* cpart/spar(ns)%cnr_frt*kg_in_g
IF(tbc_root_Ndemand + Gf*p%coh%med_sla*0.5 > p%coh%N_pool) THEN
if (tbc_root_Ndemand .gt. 1E-8) then
Nredfak = AMAX1((p%coh%N_pool-Gf*p%coh%med_sla*0.5) / tbc_root_Ndemand,0.) ! Div. by zero possible !
else
Nredfak = 0.
endif
tbc_root_Ndemand = tbc_root_Ndemand*Nredfak
ENDIF
p%coh%N_pool = p%coh%N_pool - tbc_root_Ndemand
END SUBROUTINE PARTITION_SV
!*******************************!
!* SUBROUTINE PARTITION_MI *!
!*******************************!
SUBROUTINE PARTITION_MI( p )
!*** Declaration part ***!
USE data_par
USE data_stand
USE data_simul
IMPLICIT NONE
TYPE(Coh_Obj) :: p ! pointer to cohort list
!no partitioning, foliage mass keeps constant
p%coh%x_fol = p%coh%x_fol ! !FNew
p%coh%x_sap = 0.!SNew
p%coh%x_frt = 0.!RNew
END SUBROUTINE PARTITION_MI
!***************************!
! FUNCTION f_lf *!
!***************************!
REAL FUNCTION f_lf(x)
USE data_stand
USE data_plant
REAL :: x
f_lf = ksi*x**kappa + x - M_avail
END ! FUNCTION f_lf
!***************************!
! FUNCTION df_lf *!
!***************************!
REAL FUNCTION df_lf(x)
USE data_stand
USE data_plant
REAL :: x
df_lf = ksi*kappa*x**(kappa-1.) + 1.
END ! FUNCTION df_lf
!***************************!
! FUNCTION ddf_lf *!
!***************************!
REAL FUNCTION ddf_lf(x)
USE data_stand
USE data_plant
REAL :: x
ddf_lf = ksi*kappa*(kappa-1.)*x**(kappa-2.)
END ! FUNCTION ddf_lf
!***************************!
! SUBROUTINE CALC_DBH *!
!***************************!
SUBROUTINE CALC_DBH(B, Ht, S, H, Ahb, Ahc, ident, dbh, dc, hs, Asw)
!*** Declaration part ***!
USE data_par
USE data_species
USE data_simul
IMPLICIT NONE
INTEGER :: ident
REAL :: Dc ! diameter at crown base
REAL :: B, & ! bole height,
Ht, & ! total tree height
S, & ! sapwood
H, & ! heartwood
hs, & ! sapwood height
D, & ! stem diameter at forest floor
DBH, & ! tree diameter at breast height
Ahb, & ! cross sectional area heartwood at tree base
Ahc, & ! cross sectional area of heartwood at crown base
Asw, & ! cross sectional area of sapwood in bole
discr, func, help, hp1, hp2,hp3, hp4
REAL :: fp, fq, & ! coefficients of quadratic equation
w1, w2, & ! solutions of quadratic equation
precision ! criterion for acceptance of solution
real :: sprhos ! sapwood density [kg/cm3]
!*** Calculation part ***!
precision = 1.e-5
sprhos = spar(ns)%prhos
! calculate Diameters
hs = (2*B +Ht)/3.
Asw = S/(spar(ns)%prhos*hs)
! if Bole height >= height trees are dead and calculations not required
IF(B .lt. Ht) THEN
select case (flag_volfunc)
case (0)
D = SQRT( (S+H)*4. / (sprhos*hs*pi) )
IF (Ht<h_breast) THEN
DBH = 0.0
ELSEIF (Ht>h_breast.and.B<h_breast) then
DBH=D-(D/(Ht-B))*(h_breast-B)
ELSE
DBH=D
ENDIF
case (1)
D = SQRT((Ahb+Asw)*4./pi)
! if Bole height = 0 then there is no need to calulate Diameter at crown base and Dc = D
IF(B.EQ.0.) THEN
Dc = D
ELSE
fp = -2. * (B/Ht) * (3.*H/(sprhos*B)-Ahb)-Ahb*(B/Ht)**2.
fp = -2. * B/Ht * (3.*H/(sprhos*B)-Ahb)-Ahb*(B/Ht)**2.
fq = ((3.*H/(sprhos) - Ahb*B) / Ht)**2.
discr = fp**2./4.-fq
if (abs(discr) .lt. zero) then
discr = zero ! avoid small values
endif
! No solution
if(discr.lt.0) then
if (.not.flag_mult8910) then
CALL error_mess(time,'discriminant < 0 in calc_dbh for cohort: ',real(ident))
CALL stop_mess(time,'discriminant < 0 in calc_dbh ')
CALL error_mess(time,'stop in calc_dbh for stand No: ',real(ip))
CALL error_mess(time,'heart wood mass H: ',H)
CALL error_mess(time,'bole height b: ',b)
CALL error_mess(time,'height Ht: ',Ht)
CALL error_mess(time,'ave. sapwood height hs: ',hs)
CALL error_mess(time,'sapwood area Asw: ',Asw)
CALL error_mess(time,'heartwood area at stem base Ahb: ',Ahb)
endif
flag_end = 1
return
end if
discr = SQRT(discr)
w1 = -fp/2. + discr
w2 = -fp/2. - discr
1313 hp1 = SQRT(w1*Ahb)
hp2 = (Ahb+SQRT(w1*Ahb))*B
hp3 = (w1*Ht + (Ahb+SQRT(w1*Ahb))*B)
help = (sprhos/3.) * (w1*Ht + (Ahb+SQRT(w1*Ahb))*B)
func = (sprhos/3.) * (w1*Ht + (Ahb+SQRT(w1*Ahb))*B) - H
hp4= H* precision
IF(abs(func) <= H * precision) THEN
Ahc = w1
if (.not.flag_mult8910) then
CALL error_mess(time,' positive root is a solution in calc_dbh for cohort: ',real(ident))
CALL error_mess(time,'stop in calc_dbh for stand No: ',real(ip))
CALL error_mess(time,'function: ',func)
endif
flag_end = 1
return
ELSE
func = (sprhos/3.) * (w2*Ht + (Ahb+SQRT(w2*Ahb))*B) - H
IF(abs(func) <= H * precision) THEN
Ahc = w2
ELSE
IF(precision.LT.1e-2) THEN
precision = precision*10.
GOTO 1313
if (.not.flag_mult8910) then
CALL error_mess(time,'no valid solution found in calc_dbh for heartwood geometry for cohort: ',real(ident))
CALL error_mess(time,': heart wood mass, H = ',H)
CALL error_mess(time,': precision requirement = ',precision)
CALL error_mess(time,'iteration in stand No: ',real(ip))
endif
ELSE
if (.not.flag_mult8910) then
CALL error_mess(time,'no valid solution found in calc_dbh for heartwood geometry for cohort: ',real(ident))
CALL stop_mess(time,'no valid solution found in calc_dbh for heartwood geometry')
CALL error_mess(time,'species No: ',real(ns))
CALL error_mess(time,'stop in calc_dbh for stand No: ',real(ip))
CALL error_mess(time,'precision requirement H*precision ',H*precision)
CALL error_mess(time,'heart wood mass H: ',H)
CALL error_mess(time,'bole height b: ',b)
CALL error_mess(time,'height Ht: ',Ht)
CALL error_mess(time,'ave. sapwood height hs: ',hs)
CALL error_mess(time,'sapwood area Asw: ',Asw)
CALL error_mess(time,'heartwood area at stem base Ahb: ',Ahb)
endif
flag_end = 1
return
ENDIF
ENDIF
ENDIF
Dc = SQRT((Ahc+Asw)*4./pi)
END IF
if (Ht<=h_breast) then
DBH = 0.0
else if (Ht>h_breast.and.B<h_breast) then
DBH=Dc*(Ht-h_breast)/(Ht-B)
else
DBH=D-(D-Dc)*h_breast/B
end if
end select
ELSE
if (.not.flag_mult8910) then
CALL error_mess(time,'no calculation of heartwood geometry for cohort (Bole height >= height trees are dead): ',real(ident))
CALL error_mess(time,'bole height: ',b)
CALL error_mess(time,'height: ',Ht)
endif
END IF ! if B > Ht
END SUBROUTINE CALC_DBH
!*****************************************************************!
!* *!
!* 4C Simulation Model *!
!* *!
!* *!
!* Subroutines for: *!
!* Simulation of processes at subannual resolution *!
!* *!
!* Contains subroutines: *!
!* *!
!* - pheno_ini *!
!* - pheno_begin *!
!* - pheno_count *!
!* - pheno_shed *!
!* *!
!* functions: *!
!* triangle *!
!* *!
!* Copyright (C) 1996-2018 *!
!* Potsdam Institute for Climate Impact Reserach (PIK) *!
!* Authors and contributors see AUTHOR file *!
!* This file is part of 4C and is licensed under BSD-2-Clause *!
!* See LICENSE file or under: *!
!* http://www.https://opensource.org/licenses/BSD-2-Clause *!
!* Contact: *!
!* https://gitlab.pik-potsdam.de/foresee/4C *!
!* *!
!*****************************************************************!
SUBROUTINE pheno_ini
USE data_climate
USE data_simul
USE data_site
USE data_species
USE data_stand
IMPLICIT NONE
integer i, j
integer leapyear
real atemp, hh, htemp
real triangle
real, external :: daylength
leaves_on = .false.
all_leaves_on = 0
phen_flag=1 ! CANOPY is calculated once at the beginning of each year
! Initialising of all species is done at the beginning, since if species information wouldnt be initialised
IF(time==1) THEN
do i=1,nspec_tree
ns = i
IF(spar(ns)%Phmodel==1) THEN
svar(ns)%Pro = 0.
svar(ns)%Inh = 1.
ELSE
svar(ns)%Pro = 0.
svar(ns)%Inh = 0.
svar(ns)%Tcrit = 0.
END IF
! initialize pheno state variables with climate from the actual year
do j = spar(ns)%end_bb+1, 365
atemp = tp(j, 1)
hh = DAYLENGTH(j,lat)
SELECT CASE(ns)
CASE(1,8)
!Fagus
! Promotor-Inhibitor model 11
svar(ns)%Pro = svar(ns)%Pro + spar(ns)%PPa* &
triangle(spar(ns)%PPtmin,spar(ns)%PPtopt,spar(ns)%PPtmax,atemp)* &
(1-svar(ns)%Inh)*hh/24 - &
spar(ns)%PPb*svar(ns)%Pro*(24-hh)/24
svar(ns)%Inh = svar(ns)%Inh - spar(ns)%PIa* &
triangle(spar(ns)%PItmin,spar(ns)%PItopt,spar(ns)%PItmax,atemp)* &
svar(ns)%Inh*hh/24
CASE(4)
! Quercus
! Promotor-Inhibitor model 12
htemp = triangle(spar(ns)%PPtmin,spar(ns)%PPtopt,spar(ns)%PPtmax,atemp)
svar(ns)%Pro = svar(ns)%Pro + spar(ns)%PPa * htemp * &
(1-svar(ns)%Inh) * hh/24
htemp = triangle(spar(ns)%PItmin,spar(ns)%PItopt,spar(ns)%PItmax,atemp)
svar(ns)%Inh = svar(ns)%Inh - spar(ns)%PIa * htemp * &
svar(ns)%Inh * hh/24 + spar(ns)%PPb*(24-hh)/24
CASE(5, 11)
! Betula, Robinia
IF(spar(ns)%Phmodel==1) THEN
! Promotor-Inhibitor model 2
svar(ns)%Pro = svar(ns)%Pro + spar(ns)%PPa* &
triangle(spar(ns)%PPtmin,spar(ns)%PPtopt,spar(ns)%PPtmax,atemp)* &
(1-svar(ns)%Inh) - spar(ns)%PPb*svar(ns)%Pro*(24-hh)/24
svar(ns)%Inh = svar(ns)%Inh - spar(ns)%PIa* &
triangle(spar(ns)%PItmin,spar(ns)%PItopt,spar(ns)%PItmax,atemp)*svar(ns)%Inh
END IF
END SELECT
enddo ! j
Enddo ! nspec_tree
END IF
! latest day of bud burst 30. of June (DOY 181+leapyear(time_cur))
do i=1, anrspec
ns = nrspec(i)
if(ns.le.nspec_tree) then
IF(spar(ns)%phmodel==4) THEN
svar(ns)%daybb = svar(ns)%ext_daybb
ELSE
svar(ns)%daybb = 181 + leapyear(time_cur)
ENDIF
end if
END DO ! anrspec
end SUBROUTINE pheno_ini
!*******************************************************************
SUBROUTINE pheno_begin
! calculation of day_bb, latest day of bud burst 30. june (DOY 181)
USE data_simul
USE data_species
USE data_stand
USE data_climate
USE data_site
IMPLICIT NONE
REAL triangle
INTEGER leapyear
real hh, htemp
integer i
hh = dlength
do i=1, anrspec
ns = nrspec(i)
if (iday .ge.364) then
continue
endif
if(ns.le.nspec_tree .OR. ns.eq.nspec_tree+2) then !either tree or mistletoe
! Pheno model
select Case (spar(ns)%Phmodel)
Case(0) ! no model
!Picea, Pinus, Mistletoe
IF(iday.EQ.1) THEN
svar(ns)%daybb = iday
phen_flag = 1
leaves_on = .TRUE.
ENDIF
Case(1)
! Phenology starts after leaf coloring/shedding and ends not later than 30. June
IF (iday > spar(ns)%end_bb+1 .OR. iday <= svar(ns)%daybb) THEN
SELECT CASE(ns)
CASE(1,8)
!Fagus
! Promotor-Inhibitor model 11
htemp = triangle(spar(ns)%PPtmin,spar(ns)%PPtopt,spar(ns)%PPtmax,airtemp)
svar(ns)%Pro = svar(ns)%Pro + spar(ns)%PPa * htemp * &
(1-svar(ns)%Inh) * dlength/24 - &
spar(ns)%PPb*svar(ns)%Pro * (24-dlength)/24
svar(ns)%Inh = svar(ns)%Inh - spar(ns)%PIa*&
triangle(spar(ns)%PItmin,spar(ns)%PItopt,spar(ns)%PItmax,airtemp)*&
svar(ns)%Inh*dlength/24
IF (svar(ns)%Pro >= 1) THEN
svar(ns)%daybb=iday
phen_flag = 1
leaves_on=.TRUE.
ELSE IF (svar(ns)%Pro < 1 .AND. iday==svar(ns)%daybb) THEN
phen_flag = 1
leaves_on=.TRUE.
END IF
CASE(4)
! Quercus
! Promotor-Inhibitor model 12
all_leaves_on=0
if (svar(ns)%Inh .gt. 1.) then
continue
svar(ns)%Inh = 1.
endif
if (svar(ns)%Pro .lt. 0.) then
continue
svar(ns)%Pro = 0.
endif
htemp = triangle(spar(ns)%PPtmin,spar(ns)%PPtopt,spar(ns)%PPtmax,airtemp)
svar(ns)%Pro = svar(ns)%Pro + spar(ns)%PPa * htemp * &
(1-svar(ns)%Inh) * dlength/24
htemp = triangle(spar(ns)%PItmin,spar(ns)%PItopt,spar(ns)%PItmax,airtemp)
svar(ns)%Inh = svar(ns)%Inh - spar(ns)%PIa * htemp * &
svar(ns)%Inh * dlength/24 + spar(ns)%PPb*(24-dlength)/24
IF (svar(ns)%Pro >= 1) THEN
svar(ns)%daybb=iday
phen_flag = 1
leaves_on=.TRUE.
ELSE IF (svar(ns)%Pro < 1 .AND. iday==svar(ns)%daybb) THEN
phen_flag = 1
leaves_on=.TRUE.
END IF
CASE(5, 11)
! Betula, Robinia
all_leaves_on=0
IF(spar(ns)%Phmodel==1) THEN
! Promotor-Inhibitor model 2
svar(ns)%Pro = svar(ns)%Pro + spar(ns)%PPa* &
triangle(spar(ns)%PPtmin,spar(ns)%PPtopt,spar(ns)%PPtmax,airtemp)* &
(1-svar(ns)%Inh) - spar(ns)%PPb*svar(ns)%Pro*(24-dlength)/24
svar(ns)%Inh = svar(ns)%Inh - spar(ns)%PIa* &
triangle(spar(ns)%PItmin,spar(ns)%PItopt,spar(ns)%PItmax,airtemp)*svar(ns)%Inh
IF (svar(ns)%Pro >= 1) THEN
svar(ns)%daybb=iday
phen_flag = 1
leaves_on=.TRUE.
ELSE IF (svar(ns)%Pro < 1 .AND. iday==svar(ns)%daybb) THEN
phen_flag = 1
leaves_on=.TRUE.
END IF
END IF
END SELECT
Endif
Case(2)
! Cannel-Smith model
IF(iday >= 305 + leapyear(time_cur) .OR. iday <= svar(ns)%daybb) THEN
IF(airtemp < spar(ns)%CSTbC) THEN
svar(ns)%Inh = svar(ns)%Inh + 1
svar(ns)%Tcrit = spar(ns)%CSa + spar(ns)%CSb*LOG(svar(ns)%Inh)
END IF
IF(airtemp > spar(ns)%CSTbT .AND. iday >= 32 .AND. iday <= svar(ns)%daybb) THEN
svar(ns)%Pro = svar(ns)%Pro + airtemp - spar(ns)%CSTbT;
END IF
IF(svar(ns)%Pro > svar(ns)%Tcrit) THEN
svar(ns)%daybb=iday
phen_flag = 1
leaves_on=.TRUE.
ELSE IF (svar(ns)%Pro < svar(ns)%Tcrit .AND. iday==svar(ns)%daybb) THEN
phen_flag = 1
leaves_on=.TRUE.
END IF
END IF
Case(3)
! Temperature sum model
SELECT CASE(ns)
CASE(11)
! Robinia
IF(iday >= spar(ns)%Lstart .AND. iday <= svar(ns)%daybb) THEN
IF(airtemp > spar(ns)%LTbT) THEN
svar(ns)%Pro = svar(ns)%Pro + airtemp
END IF
IF(svar(ns)%Pro > spar(ns)%LTcrit) THEN
svar(ns)%daybb=iday
phen_flag = 1
leaves_on=.TRUE.
ELSE IF (svar(ns)%Pro < spar(ns)%LTcrit .AND. iday==svar(ns)%daybb) THEN
phen_flag = 1
leaves_on=.TRUE.
END IF
END IF
CASE default
IF(iday >= spar(ns)%Lstart .AND. iday <= svar(ns)%daybb) THEN
IF(airtemp > spar(ns)%LTbT) THEN
svar(ns)%Pro = svar(ns)%Pro + airtemp - spar(ns)%LTbT
END IF
IF(svar(ns)%Pro > spar(ns)%LTcrit) THEN
svar(ns)%daybb=iday
phen_flag = 1
leaves_on=.TRUE.
ELSE IF (svar(ns)%Pro < spar(ns)%LTcrit .AND. iday==svar(ns)%daybb) THEN
phen_flag = 1
leaves_on=.TRUE.
END IF
END IF
END SELECT
Case(4)
! externally prescribed day of budburst
IF(iday==svar(ns)%daybb) THEN
phen_flag = 1
leaves_on=.TRUE.
END IF
Case default
IF(iday.EQ.1) THEN
svar(ns)%daybb=iday
phen_flag=1
leaves_on=.TRUE.
ENDIF
end select
else if(iday==svar(ns)%daybb) then
phen_flag = 1
leaves_on=.TRUE.
end if
END DO
zeig=>pt%first
do while (associated(zeig))
ns = zeig%coh%species
zeig%coh%day_bb = svar(ns)%daybb
zeig=>zeig%next
enddo
END SUBROUTINE pheno_begin
!*******************************************************************
SUBROUTINE pheno_count
USE data_simul
USE data_species
USE data_stand
IMPLICIT NONE
zeig=>pt%first
DO
if(.not. associated(zeig)) exit
! vegetation period per PS-time step and per season
IF((iday >= zeig%coh%day_bb) .AND. (iday <= spar(zeig%coh%species)%end_bb)) THEN
zeig%coh%nDaysPS = zeig%coh%nDaysPS + 1. ! set to 0 in npp
zeig%coh%nDaysGr = zeig%coh%nDaysGr + 1. ! set to 0 year_ini
END IF
zeig=>zeig%next
END DO
END SUBROUTINE pheno_count
!*******************************************************************
SUBROUTINE pheno_shed
USE data_simul
USE data_species
USE data_stand
IMPLICIT NONE
integer i
leaves_on=.FALSE.
all_leaves_on=1
DO i=1, anrspec
ns = nrspec(i)
IF(iday == spar(ns)%end_bb +1) THEN
phen_flag=1
all_leaves_on=0
! reset pheno state variable
IF(spar(ns)%Phmodel==1) THEN
svar(ns)%Pro = 0.
svar(ns)%Inh = 1.
ELSE
svar(ns)%Pro = 0.
svar(ns)%Inh = 0.
svar(ns)%Tcrit = 0.
END IF
ELSE IF((iday < svar(ns)%daybb) .OR. (iday > spar(ns)%end_bb)) THEN
all_leaves_on=0
ELSE IF((iday >= svar(ns)%daybb) .AND. (iday <= spar(ns)%end_bb)) THEN
leaves_on=.TRUE.
END IF
END DO
END SUBROUTINE pheno_shed
!*******************************************************************
FUNCTION triangle(min,opt,max,x)
REAL :: min,opt,max,x,triangle
IF( min <= x .AND. x <= opt) THEN
triangle = (x - min)/(opt - min)
ELSE IF( opt < x .AND. x <= max) THEN
triangle = (max - x)/(max - opt)
ELSE
triangle = 0
END IF
END FUNCTION triangle
FUNCTION leapyear(year)
INTEGER :: year,leapyear
IF( MOD(year,400)==0 .OR. ( MOD(year,100)/=0 .AND. MOD(year,4)==0 )) THEN
leapyear = 1
ELSE
leapyear = 0
END IF
END FUNCTION leapyear
source_code/version_2.3_windows/pik400x.bmp

75.1 KiB

!*****************************************************************!
!* *!
!* 4C (FORESEE) *!
!* *!
!* *!
!* Subroutines for planting *!
!* *!
!* contains: *!
!* SR planting *!
!* function sapwood *!
!* SR gener_coh *!
!* *!
!* comment: planting is controlled by the flag flag_reg, *!
!* soe standardized planting ensembles are definded *!
!* *!
!* Copyright (C) 1996-2018 *!
!* Potsdam Institute for Climate Impact Reserach (PIK) *!
!* Authors and contributors see AUTHOR file *!
!* This file is part of 4C and is licensed under BSD-2-Clause *!
!* See LICENSE file or under: *!
!* http://www.https://opensource.org/licenses/BSD-2-Clause *!
!* Contact: *!
!* https://gitlab.pik-potsdam.de/foresee/4C *!
!* *!
!*****************************************************************!
SUBROUTINE planting
USE data_stand
USE data_simul
USE data_species
USE data_soil
USE data_help
USE data_plant
USE data_manag
use data_wpm
IMPLICIT NONE
integer :: nplant, &
taxid, &
i,j,nr, &
taxnum, &
outunit, ctrlunit
real :: age, &
pl_height, &
sdev, &
plhmin, &
rsap, &
hbc, &
bhd, &
cform, &
hlp_lai, &
rednpl_sh
real :: rtflsp, sapwood, height, plots
integer, dimension(nspec_tree) :: infhelp
character(80) :: infile
character :: text
CHARACTER :: source
integer :: inunit,ios
integer :: parunit
integer :: nkoh, nplanth, numb
REAL p0(nspec_tree),p1(nspec_tree),p2(nspec_tree),p3(nspec_tree),p4(nspec_tree), &
c1(nspec_tree),c2(nspec_tree),ku_a0(nspec_tree),ku_a1(nspec_tree),ku_a2(nspec_tree),&
ku_b0(nspec_tree),ku_b1(nspec_tree),ku_b2(nspec_tree),ku_c0(nspec_tree),&
ku_c1(nspec_tree),ku_c2(nspec_tree),wei_k1(nspec_tree),wei_k2(nspec_tree)
real :: crown_base, crown_base_eg
TYPE(cohort) ::tree_ini
real corr_la
real :: troot2
real, dimension(20) :: hhei
external sapwood
external rtflsp
do i =1,nspec_tree
infhelp(i) = infspec(i)
end do
parunit=GETUNIT()
OPEN (parunit, FILE='input/generreg.par', STATUS='old')
DO i=1,nspec_tree
READ (parunit,*) p0(i),p1(i),p2(i),p3(i),p4(i),c1(i),c2(i),ku_a0(i),ku_a1(i),ku_a2(i), &
ku_b0(i),ku_b1(i),ku_b2(i),ku_c0(i),ku_c1(i),ku_c2(i),wei_k1(i),wei_k2(i)
ENDDO
CLOSE(parunit)
!*********************** sea **************************************
plant_year = time
flag_plant = flag_reg
!******************************************************************
rednpl_sh = 1.
! modification uf number of planted trees in the case of shelterwood management
if(flag_shelter.eq.1) rednpl_sh = 0.7
taxid = 0
if( flag_reg .ge.10) quspec = 1
if(flag_reg.ge.10.and.flag_reg.lt. 30) then
! planting of mono-species stands
select case(flag_reg)
case(10)
! planting pine
taxnum = 3
case(11)
! planting beech
taxnum = 1
case(12)
! planting oak
taxnum =4
case(13)
! planting spruce
taxnum = 2
case(14)
! planting birch
taxnum = 5
case(15)
! planting aspen
taxnum = 8
case(16)
! planting aleppo pine
taxnum = 9
case(17)
! planting douglas fir
taxnum =10
case(18)
! planting black locust
taxnum =11
case(20)
! reading planting data from file and generating tree cohorts
inunit=getunit()
write(*,'(a)') ' *** Planting of small trees ***'
write(*,'(A)',advance='no')' Input directory and file for planting: '
read (*,'(A)') infile
open (inunit,FILE=trim(infile),STATUS='old')
! read head of data-file
outunit=getunit()
open(outunit, FILE=TRIM(treefile(ip)),STATUS='replace')
ctrlunit = getunit() +1
OPEN (ctrlunit,FILE=TRIM(site_name(ip))//'.initctrl',STATUS='replace')
plots=10000.
do
read(inunit,*) text
if(text .ne. '!')then
backspace(inunit);exit
endif
enddo
! modification AB 19.9.11
CALL header(outunit,infile,source,cform,rsap,flag_volfunc,kpatchsize)
do
READ(inunit,*,IOSTAT=ios)numb, nplant ,taxid,pl_height, age, bhd, hbc
if(ios<0) exit
height = pl_height
! Modification (Alexander Borys), generating of nkoh cohorts from given data, 19.9.11
nkoh =10
do i = 1, nkoh
hhei(i) = height*(0.8 + (i-1)*0.025)
end do
write(outunit,*) numb, plots
do i = 1, nkoh
pl_height = hhei(i)*100.
height = hhei(i)
if(taxid.eq.12.or. taxid.eq.13) then
! Eucalyptus
hbc = crown_base_eg(height, bhd)
else
hbc=crown_base(height,c1(taxid),c2(taxid),bhd)
end if
nplanth = int(nplant/nkoh)
rsap = 0.5
source = 'd'
cform=1;hlp_lai=0
corr_la = 1.
call treeini(outunit,ctrlunit,taxid,source,bhd,height,hbc,nplanth,cform,rsap,int(age),hlp_lai,corr_la)
max_coh = max_coh + 1
! initialise tree_ini with zero
call coh_initial (tree_ini)
tree_ini%ident = max_coh
tree_ini%species = taxid
tree_ini%ntreea = nplant
tree_ini%ntreed = 0.
tree_ini%nta = tree_ini%ntreea
tree_ini%x_age = age
tree_ini%x_hbole = hbc
tree_ini%resp = 0.
tree_ini%height = pl_height
tree_ini%x_sap = x_sap
tree_ini%x_fol = x_fol
tree_ini%x_frt = x_frt
tree_ini%x_hrt = x_hrt
tree_ini%x_ahb = x_ahb
tree_ini%x_crt = (tree_ini%x_sap + tree_ini%x_hrt) * spar(taxid)%alphac*spar(taxid)%cr_frac
tree_ini%x_tb = (tree_ini%x_sap + tree_ini%x_hrt) * spar(taxid)%alphac*(1.-spar(taxid)%cr_frac)
! Borys
tree_ini%diam = bhd
tree_ini%med_sla = spar(taxid)%psla_min + spar(taxid)%psla_a*0.5
tree_ini%t_leaf = tree_ini%med_sla* tree_ini%x_fol ! [m-2]
tree_ini%ca_ini = tree_ini%t_leaf
tree_ini%crown_area = tree_ini%ca_ini
! initialize pheno state variables
IF(spar(tree_ini%species)%Phmodel==1) THEN
tree_ini%P=0
tree_ini%I=1
ELSE
tree_ini%P=0
tree_ini%I=0
tree_ini%Tcrit=0
END IF
IF(nplant.ne.0.) then
IF (.not. associated(pt%first)) THEN
ALLOCATE (pt%first)
pt%first%coh = tree_ini
NULLIFY(pt%first%next)
! root distribution
call root_depth (1, pt%first%coh%species, pt%first%coh%x_age, pt%first%coh%height, pt%first%coh%x_frt, pt%first%coh%x_crt, nr, troot2, pt%first%coh%x_rdpt, pt%first%coh%nroot)
pt%first%coh%nroot = nr
do j=1,nr
pt%first%coh%rooteff = 1. ! assumption for the first use
enddo
do j=nr+1, nlay
pt%first%coh%rooteff = 0. ! layers with no roots
enddo
ELSE
ALLOCATE(zeig)
zeig%coh = tree_ini
zeig%next => pt%first
pt%first => zeig
! root distribution
call root_depth (1, zeig%coh%species, zeig%coh%x_age, zeig%coh%height, zeig%coh%x_frt, zeig%coh%x_crt, nr, troot2, zeig%coh%x_rdpt, zeig%coh%nroot)
zeig%coh%nroot = nr
do j=1,nr
zeig%coh%rooteff = 1. ! assumption for the first use
enddo
do j=nr+1, nlay
zeig%coh%rooteff = 0. ! layers with no roots
enddo
END IF ! associated
anz_coh=anz_coh+1
END IF ! nplant
end do ! nkoh
end do
close(inunit)
close (outunit)
close (ctrlunit)
return
end select
! liocourt management with regeneration if flag_mg = 44
if(flag_mg.eq.44) then
do i= 1, M_numclass
taxid = m_specpl(spec_lic,i)
age = m_pl_age(spec_lic,i)
pl_height = m_plant_height(spec_lic,i)
plhmin = m_plant_hmin(spec_lic,i)
nplant = m_numplant(spec_lic,i) * kpatchsize/10000
sdev = m_hsdev(spec_lic,i)
call gener_coh(taxid, age, pl_height, plhmin, nplant,sdev)
end do
else
taxid = taxnum
age = pl_age(taxnum)
pl_height = plant_height(taxnum)
plhmin = plant_hmin(taxnum)
! number of seedling from data_plant
nplant = rednpl_sh*nint(numplant(taxnum)*kpatchsize/10000)
! number of seedlings from seedrate
if(flag_reg.eq.15.or.flag_reg.eq.16.or.flag_reg.eq.18) nplant = spar(taxnum)%seedrate*kpatchsize
sdev = hsdev(taxnum)
call gener_coh(taxid, age, pl_height, plhmin, nplant,sdev)
end if
else
! planting of mixed stands
! mixture given by ara<meters in data_plant
if(flag_reg.eq.9) then
do i = 1,nspec_tree
if (infspec(i).eq.1 .and. infhelp(i).eq.1) then
taxid = i
age = pl_age(taxid)
pl_height = plant_height(taxid)
plhmin = plant_hmin(taxid)
nplant = rednpl_sh*nint(npl_mix(taxid)*kpatchsize/10000)
sdev = hsdev(taxid)
call gener_coh(taxid, age, pl_height, plhmin, nplant,sdev)
infhelp(i) = 0
end if
end do ! i
else if(flag_reg.lt.9.or.flag_reg.gt.30) then
infspec = 0
npl_mix = 0
select case (flag_reg)
! planting of well definded mixtures of pine and oak
case(8)
infspec(3)=1
infspec(4)=1
npl_mix(3) = 9000.
npl_mix(4) = 1000.
case(7)
infspec(3)=1
infspec(4)=1
npl_mix(3) = 7000.
npl_mix(4) = 3000.
case(6)
infspec(3)=1
infspec(4)=1
npl_mix(3) = 5000.
npl_mix(4) = 5000.
case(5)
infspec(3)=1
infspec(4)=1
npl_mix(3) = 3000.
npl_mix(4) = 7000.
case(4)
infspec(3)=1
infspec(4)=1
npl_mix(3) = 2000.
npl_mix(4) = 8000.
case(33)
infspec(2) = 1
infspec(3) = 1
npl_mix(2) = 5000.
npl_mix(3) = 5000.
end select
do i =1,nspec_tree
infhelp(i) = infspec(i)
end do
do i = 1,nspec_tree
if (infspec(i).eq.1 .and. infhelp(i).eq.1) then
taxid = i
age = pl_age(taxid)
pl_height = plant_height(taxid)
plhmin = plant_hmin(taxid)
nplant = rednpl_sh*nint(npl_mix(taxid)*kpatchsize/10000)
sdev = hsdev(taxid)
call gener_coh(taxid, age, pl_height, plhmin, nplant,sdev)
infhelp(i) = 0
end if
end do ! i
end if
end if
END SUBROUTINE planting
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! gener_coh
! SR for planting seedling cohorts
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
SUBROUTINE gener_coh(taxid,age,pl_height,plhmin, nplant,sdev)
USE data_simul
USE data_stand
USE data_par
USE data_species
USE data_soil
USE data_help
USE data_plant
USE data_manag
IMPLICIT NONE
integer :: nplant, &
taxid, &
nclass, &
i,j,nr
real :: age, &
pl_height, &
sdev, &
plhmin, &
plhmax, &
plhinc, &
help, &
nstot, &
hhelp,x1,x2,xacc,shelp
real :: rtflsp, sapwood
real :: troot2
real, dimension(:), save, allocatable :: hei, &
nschelp
integer,dimension(:),allocatable :: nsc
TYPE(cohort) ::tree_ini
external sapwood
external rtflsp
flag_standup = 2 ! call stand_balance and root_distribution later
! number of classes
nclass = nint(plhmin + (pl_height-plhmin))
! Liocourt management
if(flag_reg.eq.17) nclass = 20
if(flag_reg.eq.11 .and. flag_mg.eq.44) nclass = 1
if(flag_reg.eq.18) nclass =20
if (flag_reg.eq.15) nclass = 20
allocate(hei(nclass))
allocate(nschelp(nclass))
allocate(nsc(nclass))
plhmax = pl_height + (pl_height-plhmin)
plhinc = (plhmax-plhmin)/nclass
nstot = 0
help = (1/(sqrt(2*pi)*sdev))
do i = 1, nclass
if ( nclass.eq.1) then
hei(i) = pl_height
else
! height per class
hei(i) = plhmin + (i-1)
nschelp(i) = help*exp(-((hei(i)-pl_height)**2)/(2*(sdev)**2))
nstot = nstot + nschelp (i)
end if
end do
do i = 1,nclass
if(nclass.eq.1) then
nsc(i) = nplant *kpatchsize/10000
else
nsc(i) = nint((nschelp(i)*nplant/nstot) + 0.5)
end if
end do
do i = 1,nclass
max_coh = max_coh + 1
! initialise tree_ini with zero
call coh_initial (tree_ini)
tree_ini%ident = max_coh
tree_ini%species = taxid
tree_ini%ntreea = nsc(i)
tree_ini%nta = tree_ini%ntreea
tree_ini%x_age = age
tree_ini%height = hei(i)
hhelp = tree_ini%height
IF (taxid.ne.2) tree_ini%x_sap = exp(( LOG(hhelp)-LOG(spar(taxid)%pheight1))/spar(taxid)%pheight2)/1000000.
IF (taxid.eq.2) THEN
x1 = 1.
x2 = 2.
xacc=(1.0e-10)*(x1+x2)/2
heihelp = tree_ini%height
hnspec = taxid
shelp=rtflsp(sapwood,x1,x2,xacc)
tree_ini%x_sap = (10**shelp)/1000000 ! transformation mg ---> kg
ENDIF
! Leaf mass
tree_ini%x_fol = (spar(taxid)%seeda*(tree_ini%x_sap** spar(taxid)%seedb)) ![kg]
tree_ini%Fmax = tree_ini%x_fol
! Fine root mass rough estimate
tree_ini%x_frt = tree_ini%x_fol
! cross sectional area of heartwood
tree_ini%x_crt = (tree_ini%x_sap + tree_ini%x_hrt) * spar(taxid)%alphac*spar(taxid)%cr_frac
tree_ini%x_tb = (tree_ini%x_sap + tree_ini%x_hrt) * spar(taxid)%alphac*(1.-spar(taxid)%cr_frac)
tree_ini%med_sla = spar(taxid)%psla_min + spar(taxid)%psla_a*0.5
tree_ini%t_leaf = tree_ini%med_sla* tree_ini%x_fol ! [m-2]
tree_ini%ca_ini = tree_ini%t_leaf
tree_ini%crown_area = tree_ini%ca_ini
! 1 fr Vincent kint, 2 oakchain
tree_ini%underst = 2
! initialize pheno state variables
IF(spar(tree_ini%species)%Phmodel==1) THEN
tree_ini%P=0
tree_ini%I=1
ELSE
tree_ini%P=0
tree_ini%I=0
tree_ini%Tcrit=0
END IF
IF(nsc(i).ne.0.) then
IF (.not. associated(pt%first)) THEN
ALLOCATE (pt%first)
pt%first%coh = tree_ini
NULLIFY(pt%first%next)
call root_depth (1, pt%first%coh%species, pt%first%coh%x_age, pt%first%coh%height, pt%first%coh%x_frt, pt%first%coh%x_crt, nr, troot2, pt%first%coh%x_rdpt, pt%first%coh%nroot)
pt%first%coh%nroot = nr
do j=1,nr
pt%first%coh%rooteff(j) = 1. ! assumption for the first use
enddo
do j=nr+1, nlay
pt%first%coh%rooteff(j) = 0. ! layers with no roots
enddo
ELSE
ALLOCATE(zeig)
zeig%coh = tree_ini
zeig%next => pt%first
pt%first => zeig
call root_depth (1, zeig%coh%species, zeig%coh%x_age, zeig%coh%height, zeig%coh%x_frt, zeig%coh%x_crt, nr, troot2, zeig%coh%x_rdpt, zeig%coh%nroot)
zeig%coh%nroot = nr
do j=1,nr
zeig%coh%rooteff(j) = 1. ! assumption for the first use
enddo
do j=nr+1, nlay
zeig%coh%rooteff(j) = 0. ! layers with no roots
enddo
END IF
anz_coh=anz_coh+1
END IF
end do
deallocate(hei)
deallocate(nschelp)
deallocate(nsc)
END SUBROUTINE gener_coh
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! weight
! seed mass function
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
function sapwood (x)
use data_help
use data_species
real :: x
real :: p1,p2,p3
p1 = spar(hnspec)%pheight1
p2 = spar(hnspec)%pheight2
p3 = spar(hnspec)%pheight3
sapwood = p3*(x**2) + p2*x +p1-alog10(heihelp)
end function sapwood
!*****************************************************************!
!* *!
!* 4C (FORESEE) *!
!* *!
!* *!
!* returns a random number N drawn from a Poisson distribution *!
!* with expected value U. I is a seed for *!
!* the random number generator *!
!* *!
!* Copyright (C) 1996-2018 *!
!* Potsdam Institute for Climate Impact Reserach (PIK) *!
!* Authors and contributors see AUTHOR file *!
!* This file is part of 4C and is licensed under BSD-2-Clause *!
!* See LICENSE file or under: *!
!* http://www.https://opensource.org/licenses/BSD-2-Clause *!
!* Contact: *!
!* https://gitlab.pik-potsdam.de/foresee/4C *!
!* *!
!*****************************************************************!
SUBROUTINE PRAND(U,N)
REAL UTOP
PARAMETER(UTOP=188.)
INTEGER N
REAL P,R,Q,U
! function declarations
REAL RAND
IF(U.GT.UTOP)STOP 'Failure in PRAND: expected value too high'
P=EXP(-U)
Q=P
R=RAND()
N=0
100 IF(Q.GE.R)RETURN
N=N+1
P=P*U/N
Q=Q+P
GOTO 100
END subroutine prand
!*****************************************************************!
!* *!
!* 4C (FORESEE) Simulation Model *!
!* *!
!* *!
!* Subroutines for: *!
!* *!
!* Contains the following subroutines: *!
!* *!
!* PREPARE_GLOBAL: general preparation of simulation *!
!* contains internal subroutines: *!
!* TOPMENU: main menu *!
!* EDITSIM: edit simulation file names *!
!* *!
!* Copyright (C) 1996-2018 *!
!* Potsdam Institute for Climate Impact Reserach (PIK) *!
!* Authors and contributors see AUTHOR file *!
!* This file is part of 4C and is licensed under BSD-2-Clause *!
!* See LICENSE file or under: *!
!* http://www.https://opensource.org/licenses/BSD-2-Clause *!
!* Contact: *!
!* https://gitlab.pik-potsdam.de/foresee/4C *!
!* *!
!*****************************************************************!
SUBROUTINE prepare_global
use data_simul
use data_out
use data_species
use data_stand
use data_site
use data_tsort
use data_climate
implicit none
character anf
logical ex
! main menu
DO
call topmenu
if (anf == '2') then
call editsim
call testfile(simfile,ex)
if(ex .eqv. .false.) cycle
call readsim
if (flag_mult910) print *,' Check the data from file:'
ELSE if (anf == '1' .or. anf == ' ') then
call testfile(simfile,ex)
if(ex .eqv. .false.) cycle
call readsim
if (flag_mult910) print *,' Check the data from file:'
end if
if (ex .eqv. .true.) exit
end DO
call outtest
contains
!---------------------------------------------------------------
SUBROUTINE topmenu
print *,' ****************************************************'
print *,' **************** Welcome to 4C *******************'
print *,' ****************************************************'
print *,' '
print *,' 1 <Enter>.. Start with default simulation control: ',trim(simfile)
print *,' '
print *,' 2...........Edit simulation control file name'
print *,' '
print *,' ****************************************************'
write(*,'(A)',advance='no') ' Make your choice: '
read(*,'(A)') anf
END subroutine topmenu
!-----------------------------------------------------------------------------
SUBROUTINE editsim
open(1000,file='user')
write(1000,'(A,A,A)',advance='no') ' Simulation control file (default= ',trim(simfile),'): '
read (*,'(A)') simfile
if (simfile == ' ') then
simfile = 'test0.sim'
end if
end subroutine editsim
!-----------------------------------------------------------------------------
END subroutine prepare_global
!**************************************************************
!*****************************************************************!
!* *!
!* 4C (FORESEE) *!
!* *!
!* *!
!* Subroutines: *!
!* PREPARE_SITE and PREPARE_CLIMATE *!
!* *!
!* Contains subroutines: *!
!* *!
!* PREPARE_SITE: *!
!* preparation of site specific simulation parameters *!
!* *!
!* contains internal subroutines: *!
!* SITEMENU: choice of inputs *!
!* EDITFILE: edit filenames *!
!* READSOIL: input of soil parameter *!
!* READCN: input of C-N-parameter *!
!* READVALUE: input of start values for *!
!* soil water and C-N-modeling *!
!* ALLOC_SOIL: allocate soil variables *!
!* STAND_BAL_INI: allocate and init stand variables *!
!* CONTROL_FILE: saving all parameters *!
!* and start conditions for each site *!
!* *!
!* READDEPO: reading deposition data *!
!* READREDN: reading values of redN *!
!* READLIT: reading initialisation data of litter fractions *!
!* *!
!* PREPARE_CLIMATE: reading of site specific climate input data *!
!* from file *!
!* contains internal subroutines: *!
!* READ_DWD *!
!* READ_CLI *!
!* CLIMFILL *!
!* *!
!* STORE_PARA: multi run - restore of changed parameter *!
!* *!
!* Copyright (C) 1996-2018 *!
!* Potsdam Institute for Climate Impact Reserach (PIK) *!
!* Authors and contributors see AUTHOR file *!
!* This file is part of 4C and is licensed under BSD-2-Clause *!
!* See LICENSE file or under: *!
!* http://www.https://opensource.org/licenses/BSD-2-Clause *!
!* Contact: *!
!* https://gitlab.pik-potsdam.de/foresee/4C *!
!* *!
!*****************************************************************!
subroutine prepare_site
! input of site specific data
use data_climate
use data_inter
use data_manag
use data_mess
use data_out
use data_par
use data_simul
use data_site
use data_soil
use data_soil_cn
use data_species
use data_stand
use data_tsort
use data_frost
implicit none
integer i,ios,help, help_ip
character a
character :: text
character(10) :: helpsim, text2
logical:: ex=.TRUE.
real parerr
real, external :: avg_sun_incl
character(100) :: helpx
if (flag_trace) write (unit_trace, '(I4,I10,A)') iday, time_cur, ' prepare_site'
WRITE(helpsim,'(I4)') anz_sim
read(helpsim,*) anh
IF(site_nr==1) THEN
help_ip=site_nr
ELSE
help_ip=ip
END IF
! Initialization of climate data
IF (flag_clim==1 .or. ip==1 .or. flag_multi .eq.5) THEN
call prepare_climate
END IF
if (flag_end .gt. 0) return
ios=0; help=0
do
if (ip==1 .and. flag_mult9) then
if (flag_trace) write (unit_trace, '(I4,I10,A,I3,A5,L5)') iday, time_cur, ' prepare_site ip=',ip,' ex=',ex
call readspec
call readsoil ! reading soil parameter
IF (flag_end .gt.0) return
if (flag_soilin .eq. 0) call readvalue ! Initialization of simulation start values for soil layers
! biochar
if (flag_bc .gt. 0) call bc_appl
! Deposition data
call readdepo
! Input redN
if (flag_multi .ne. 4 .or. flag_multi .ne. 8 ) call readredN
flag_mult9 = .FALSE.
else
if (flag_trace) write (unit_trace, '(I4,I10,A,I3,A5,L5)') iday, time_cur, ' prepare_site ip=',ip,' ex=',ex
! Deposition data
call readdepo
select case (flag_multi)
case (1,6)
call readspec
if (flag_soilin .eq. 0) call readvalue ! Initialization of simulation start values for soil layers
call readredN ! Input redN
call readsoil ! reading soil parameter
do
jpar = jpar + 1
if (vpar(jpar) .gt. -90.0) then
helpx = simpar(jpar)
call store_para(vpar(jpar), helpx, parerr)
IF (parerr .ne. 1.) then
CALL error_mess(time,'parameter variation: '//trim(simpar(jpar))//' not found',vpar(jpar))
write (*,*) '*** parameter variation: ', trim(simpar(jpar)), ' not found, see error log'
endif
else
exit
endif
enddo
! biochar
if (flag_bc .gt. 0 .or. flag_decomp .gt. 100) call bc_appl
case (2,4)
call readsoil ! reading soil parameter
if (flag_soilin .eq. 0) call readvalue ! Initialization of simulation start values for soil layers
case (5)
call readspec
call readsoil
if (flag_soilin .eq. 0) call readvalue ! Initialization of simulation start values for soil layers
call readredN ! Input redN
case (7)
call assign_co2par
call readsoil ! reading soil parameter
if (flag_soilin .eq. 0) call readvalue ! Initialization of simulation start values for soil layers
call readredN ! Input redN
case (8, 9, 10)
call readsoil ! reading soil parameter
IF (flag_end .gt.0) return
call readredN ! Input redN or test resp.
end select
endif
exit
enddo
! Setting flag_inth and prec_stad_red from flag_int
if (flag_int .lt. 1000) then
flag_inth = flag_int
else
! Conversion character ==> number and vice versa
write (helpsim,'(I4)') flag_int
text2 = helpsim(2:2)
read (text2,*) flag_inth
text2 = helpsim(3:4)
read (text2,*) prec_stand_red
endif
if (.not.flag_mult8910) then
unit_soil = getunit()
open (unit_soil,file=trim(dirout)//trim(site_name(help_ip))//'_soil.ini'//anh,status='replace')
WRITE (unit_soil,'(2A)') '! Soil initialisation, site name: ',site_name(help_ip)
endif
call stand_bal_ini !allocation of stand summation variables
! Initialization of CO2
call assign_co2par
! Initialisation litter compartments
call readlit
! Initialization of soil model with profile data
call soil_ini ! Aufruf ohne s_cn_ini
! Initialization disturbances
IF (flag_dis .eq. 1 .or. flag_dis .eq. 2) CALL dist_ini
! Initialization of stand
call prepare_stand
IF (flag_end .gt.0) return
! calculation of latitude in radians
xlat = lat/90.*pi*0.5
! calculation of average sun inclination
avg_incl = AVG_SUN_INCL(lat) ! degrees
beta=avg_incl*PI/180 ! radians
! read externally prescribed bud burst days
CALL readbudb
! Initialization management
IF(flag_mg.ne.0.and. flag_mg.ne.5) call manag_ini
IF(flag_mg.eq. 5) then
thin_dead = 1
allocate(thin_flag1(nspec_tree))
thin_flag1 = 0
end if
! Initialization of output file per site
call prep_out
call stand_balance
call CROWN_PROJ
call standup
call root_ini ! initialisation of root distribution
call s_cn_ini
! Initialization of soil temperature model with stand data
call s_t_ini
! control file for saving simulation environment
! output of first Litter-Input at start
if(flag_mult8910 .and. (anz_sim .gt. 1)) then
continue
else
IF ((ip .eq. 1 .or. flag_multi .eq. 1 .or. flag_multi .eq. 6) .and. (time_out .ne. -2) ) call control_file
endif
! hand over of the litter-initialising
call litter
if ((flag_decomp .eq. 20) .or. (flag_decomp .eq. 21)) then
call testfile(valfile(ip),ex)
if (ex .eqv. .true.) then
ios = 0
unit_litter = getunit()
open(unit_litter,file=valfile(ip),status='old',action='read')
if (flag_multi .ne. 9) print *,' *** Open file of litter input data ',valfile(ip),'...'
do
read(unit_litter,*) text
IF(text .ne. '!')then
backspace(unit_litter);exit
endif
enddo
endif
endif
call cn_inp
! read flux data
if (flag_eva .gt.10) call evapo_ini
! yearly output
IF (time_out .gt. 0) THEN
IF (mod(time,time_out) .eq. 0) CALL outyear (1)
IF (mod(time,time_out) .eq. 0) CALL outyear (2)
ENDIF
contains
!-------------------------------------------------------------------------------
subroutine readsoil ! Input of soil parameter
use data_par
use data_soil_t
use data_site
implicit none
integer :: inunit, helpnl, helpnr, ihelp
real helpgrw, hlong, hlat
character :: text
character(30) :: hor, boart, helpid
if (flag_trace) write (unit_trace, '(I4,I10,A)') iday, time_cur, ' readsoil'
! Setting of flag_surf from flag_cond
select case (flag_cond)
case (0,1,2,3)
flag_surf = 0
case (10,11,12,13)
flag_surf = 1
case (30,31,32,33)
flag_surf = 3
end select
! Setting of flag_bc from flag_decomp
if (flag_decomp .ge. 100) then
flag_decomp = flag_decomp - 100
flag_bc = 1
else
flag_bc = 0
endif
call testfile(sitefile(ip),ex)
IF (ex .eqv. .true.) then
inunit = getunit()
ios=0
open(inunit,file=sitefile(ip),iostat=ios,status='old',action='read')
if (.not.flag_mult8910) then
print *,'***** Reading soil parameter from file ',sitefile(ip),'...'
write (unit_err, *) 'Soil parameter from file ',trim(sitefile(ip))
endif
do
read(inunit,*) text
IF(text .ne. '!')then
backspace(inunit)
exit
endif
enddo
if (flag_multi .eq. 8.or. flag_multi.eq.5.or. flag_mult910) then
read(inunit,*) text
IF((text .eq. 'N') .or. (text .eq. 'n'))then
flag_soilin = 3
else
flag_soilin = 2
backspace(inunit)
endif
else
read(inunit,*) text
IF((text .eq. 'N') .or. (text .eq. 'n'))then
flag_soilin = 1
else
flag_soilin = 0
backspace(inunit)
endif
soilid(ip) = valfile(ip)
endif
if ((text .eq. 'S') .or. (text .eq. 's'))then
flag_soilin = 4
read(inunit,*) text
endif
if (.not.flag_mult8910) then
write (unit_err, *) 'Soil identity number ', trim(soilid(ip))
write (unit_err, *) 'Climate ID ', trim(clim_id(ip))
endif
if (flag_soilin .eq. 1 .or. flag_soilin .ge. 3) then
flag_hum = 1
endif
if (flag_cond .ge. 40) then
flag_hum = 0
endif
select case (flag_soilin)
case (0,1) ! single files f. j. site
read (inunit,*,iostat=ios) long
read (inunit,*,iostat=ios) lat
read (inunit,*,iostat=ios) nlay
read (inunit,*,iostat=ios) nroot_max
read (inunit,*,iostat=ios) helpgrw
if (helpgrw .gt. 1) then
grwlev = helpgrw
else
fakt = helpgrw
grwlev = 1000.
endif
read (inunit,*,iostat=ios) w_ev_d
read(inunit,*,iostat=ios) k_hum ! mineralization constants of humus
read(inunit,*,iostat=ios) k_hum_r
read(inunit,*,iostat=ios) k_nit ! nitrification constant
IF(help==0) call alloc_soil
read (inunit,*,iostat=ios) text
select case (flag_soilin)
case (0) ! old input structure
do i = 1, nlay
read (inunit,*,iostat=ios) text
read (inunit,*,iostat=ios) thick(i),pv_v(i),dens(i),f_cap_v(i), &
wilt_p_v(i),spheat(i),phv(i),wlam(i)
end do
skelv = 0.
case(1) ! new input structure
do i = 1, nlay
read (inunit,*,iostat=ios) helpnr, thick(i),pv_v(i),f_cap_v(i),wilt_p_v(i), &
dens(i),spheat(i),phv(i),wlam(i),skelv(i), sandv(i),clayv(i),humusv(i),&
C_hum(i), N_hum(i),NH4(i),NO3(i)
if (flag_wurz .eq. 4 .or. flag_wurz .eq. 6) then
if (phv(i) .le. 0.01) phv(i)=6.0 ! if flag_wurz 4 or 6 is used for calculation a pH-value is assumed
endif
end do
end select ! flag_soilin (0,1)
if (.not.flag_mult8910) print *, ' '
IF (ios .ne.0) then
print *,' >>>FORESEE message: Error during reading soil data!'
WRITE(*,'(A)',advance='no') ' Stop program (y/n)? '
read *, a
IF ( a .eq. 'y' .or. a .eq. 'Y') then
print *, ' STOP program!'
stop
endif
IF (help==1) call dealloc_soil
print *,' Check your input choice!!!'
endif ! ios
case (2) ! all sites are read from one file; old structure
ios = 0
do while (ios .eq. 0)
read (inunit,*,iostat=ios) helpid, helpnl, helpnr
if (trim(soilid(ip)) .ne. trim(helpid)) then
do i = 1, helpnl
read (inunit,*,iostat=ios) helpid
enddo
else
nlay = helpnl
nroot_max = helpnr
if (help==0) call alloc_soil
do i = 1, nlay
read (inunit,*,iostat=ios) helpnl, hor, boart, depth(i), thick(i),pv_v(i),dens(i), &
f_cap_v(i), wilt_p_v(i), spheat(i),phv(i),wlam(i), &
C_hum(i), N_hum(i), NH4(i), NO3(i), temps(i)
enddo
lat = latitude(ip)
grwlev = gwtable(ip)
exit
endif
enddo
IF (ios .lt. 0) then
if (.not.flag_mult8910) print *,' >>>FORESEE message: soil_id ', soilid(ip), ' not found'
if (.not.flag_mult8910) print *,' Check your input choice!!!'
if (help==1) call dealloc_soil
CALL error_mess(time,"soil identificator not found "//adjustl(soilid(ip))//" ip No. ",real(help_ip))
flag_end = 5
return
ENDIF ! ios
skelv = 0.
case (3) ! all sites are read from one file; new structure
ios = 0
do while (ios .eq. 0)
read (inunit,*,iostat=ios) helpid, helpnl, helpnr
if (trim(soilid(ip)) .ne. trim(helpid)) then
do i = 1, helpnl
read (inunit,*,iostat=ios) helpid
enddo
else
nlay = helpnl
nroot_max = helpnr
if (help==0) call alloc_soil
do i = 1, nlay
read (inunit,*,iostat=ios) helpnr, hor, boart, depth(i), thick(i),pv_v(i),f_cap_v(i), &
wilt_p_v(i),dens(i),spheat(i),phv(i),wlam(i),skelv(i), sandv(i), &
clayv(i),humusv(i),C_hum(i), N_hum(i),NH4(i),NO3(i)
if (flag_wurz .eq. 4 .or. flag_wurz .eq. 6) then
if (phv(i) .le. 0.01) phv(i)=6.0 ! if flag_wurz 4 or 6 is used for calculation a pH-value is assumed
endif
end do
lat = latitude(ip)
grwlev = gwtable(ip)
exit
endif
enddo
IF (ios .lt. 0) then
if (.not.flag_mult8910) print *,' >>>FORESEE message: soil_id ', soilid(ip), ' not found'
if (.not.flag_mult8910) print *,' Check your input choice!!!'
if (help==1) call dealloc_soil
CALL error_mess(time,"soil identificator not found "//adjustl(soilid(ip))//"ip No.",real(help_ip))
flag_end = 5
return
ENDIF ! ios
case (4) ! one file several sites
if (.not.flag_mult8910) print *,' Reading soil model parameter from soil type file... ', soilid(ip)
ios = 0
do while (ios .eq. 0)
read (inunit,*,iostat=ios) helpid
if (trim(soilid(ip)) .ne. trim(helpid)) then
read (inunit,*,iostat=ios) text
read (inunit,*,iostat=ios) text
read (inunit,*,iostat=ios) helpnl
do i = 1, helpnl+6
read (inunit,*,iostat=ios) boart
enddo
read (inunit,*,iostat=ios) boart
else
read (inunit,*,iostat=ios) hlong
read (inunit,*,iostat=ios) hlat
read (inunit,*,iostat=ios) nlay
read (inunit,*,iostat=ios) nroot_max
read (inunit,*,iostat=ios) helpgrw
if (flag_multi .eq. 8.or. flag_multi.eq.5.or. flag_mult910) then
if (abs(latitude(ip)) .gt. 90.) lat = latitude(ip)
grwlev = gwtable(ip)
else
if (helpgrw .gt. 1) then
grwlev = helpgrw
else
fakt = helpgrw
grwlev = 1000.
endif
long = hlong
lat = hlat
endif
read (inunit,*,iostat=ios) w_ev_d
read(inunit,*,iostat=ios) k_hum ! mineralization constants of humus
read(inunit,*,iostat=ios) k_hum_r
read(inunit,*,iostat=ios) k_nit ! nitrification constant
IF(help==0) call alloc_soil
read (inunit,*,iostat=ios) text
do i = 1, nlay
read (inunit,*,iostat=ios) helpnr, thick(i),pv_v(i),f_cap_v(i),wilt_p_v(i), &
dens(i),spheat(i),phv(i),wlam(i),skelv(i), sandv(i),clayv(i),humusv(i),&
C_hum(i), N_hum(i),NH4(i),NO3(i)
if (flag_wurz .eq. 4 .or. flag_wurz .eq. 6) then
if (phv(i) .le. 0.01) phv(i)=6.0 ! if flag_wurz 4 or 6 is used for calculation a pH-value is assumed
endif
end do
IF (ios .ne.0) then
print *,' >>>FORESEE message: Error during reading soil data!'
print *, ' Program stopped!'
IF (help==1) call dealloc_soil
flag_end = 7
return
endif ! ios
exit
endif
enddo
if (.not.flag_mult8910) print *, ' '
IF (ios .lt. 0) then
if (.not.flag_mult8910) then
print *,' >>>FORESEE message: soil_id ', soilid(ip), ' not found'
print *,' Check your input choice!!!'
endif
if (help==1) call dealloc_soil
CALL error_mess(time,"soil identificator not found "//adjustl(soilid(ip))//"ip No.",real(help_ip))
flag_end = 5
return
ENDIF ! ios
end select ! flag_soilin
close(inunit)
endif ! ex
if (nroot_max .lt. 0) then
do i=1, nlay
if (C_hum(i) .gt. zero) nroot_max = i
enddo
endif
if (.not.flag_mult8910) then
write (unit_err, *) 'Latitude ',lat
write (unit_err,*)
endif
end subroutine readsoil
!-------------------------------------------------------------------------
subroutine readvalue ! Input of cn-parameters and start values for soil model
integer :: inunit
character :: text
if (flag_trace) write (unit_trace, '(I4,I10,A)') iday, time_cur, ' readvalue'
call testfile(valfile(ip),ex)
IF (ex .eqv. .true.) then
ios = 0
inunit = getunit()
open(inunit,file=valfile(ip),status='old',action='read')
if (.not.flag_mult8910) print *,' *** Reading initial soil values from file ',valfile(ip),'...'
do
read(inunit,*) text
IF(text .ne. '!')then
backspace(inunit);exit
endif
enddo
! Soil temperature
read(inunit,*,iostat=ios) text
read(inunit,*,iostat=ios) (temps(i),i=1,nlay)
! C-content of humus
read(inunit,*,iostat=ios) text
read(inunit,*,iostat=ios) (C_hum(i),i=1,nlay)
! N-content of humus
read(inunit,*,iostat=ios) text
read(inunit,*,iostat=ios) (N_hum(i),i=1,nlay)
! NH4-content
read(inunit,*,iostat=ios) text
read(inunit,*,iostat=ios) (NH4(i),i=1,nlay)
! NO3-content
read(inunit,*,iostat=ios) text
read(inunit,*,iostat=ios) (NO3(i),i=1,nlay)
endif
IF (ios .ne. 0) then
print *,' >>>FORESEE message: Error during reading start values!'
WRITE(*,'(A)',advance='no') ' Stop program (y/n)? '
read *, a
IF ( a .eq. 'y' .or. a .eq. 'Y') then
print *, ' STOP program!'
stop
ELSE
call dealloc_soil
print *,' Check your input choice!!!'
end if
endif
close(inunit)
end subroutine readvalue
!--------------------------------------------------------------------------
subroutine alloc_soil
use data_soil_t
use data_soil
if (flag_trace) write (unit_trace, '(I4,I10,A)') iday, time_cur, ' alloc_soil'
help=0
allocate(thick(nlay))
allocate(mid(nlay))
allocate(depth(nlay))
allocate(pv(nlay))
allocate(pv_v(nlay))
allocate(dens(nlay))
allocate(f_cap_v(nlay))
allocate(field_cap(nlay))
allocate(wilt_p(nlay))
allocate(wilt_p_v(nlay))
allocate(vol(nlay))
allocate(quarzv(nlay))
allocate(sandv(nlay))
allocate(BDopt(nlay))
allocate(clayv(nlay))
allocate(siltv(nlay))
allocate(humusv(nlay))
allocate(fcaph(nlay))
allocate(wiltph(nlay))
allocate(pvh(nlay))
allocate(dmass(nlay))
allocate(skelv(nlay))
allocate(skelfact(nlay))
allocate(spheat(nlay))
allocate(phv(nlay))
allocate(wlam(nlay))
allocate(wats(nlay))
allocate(watvol(nlay))
allocate(wat_res(nlay))
wat_res = 0.
allocate(perc(nlay))
allocate(wupt_r(nlay))
allocate(wupt_ev(nlay))
allocate(s_drought(nlay))
allocate(root_fr(nlay))
!allocate(dp_rfr(nlay))
allocate(temps(nlay))
allocate (C_opm(nlay))
allocate (C_hum(nlay))
allocate (C_opmfrt(nlay))
allocate (C_opmcrt(nlay))
allocate (N_opm(nlay))
allocate (N_hum(nlay))
allocate (N_opmfrt(nlay))
allocate (N_opmcrt(nlay))
allocate (NH4(nlay))
allocate (NO3(nlay))
allocate (Nupt(nlay))
allocate (Nmin(nlay))
allocate (rmin_phv(nlay))
allocate (rnit_phv(nlay))
allocate (cnv_opm(nlay))
allocate (cnv_hum(nlay))
allocate(slit(nspecies))
allocate(slit_1(nspecies))
if (flag_bc .gt. 0) then
allocate (C_bc(nlay))
allocate (N_bc(nlay))
C_bc = 0.
N_bc = 0.
endif
do i=1,nspecies
slit(i)%C_opm_frt = 0.
slit(i)%N_opm_frt = 0.
slit(i)%C_opm_crt = 0.
slit(i)%N_opm_crt = 0.
slit(i)%C_opm_tb = 0.
slit(i)%N_opm_tb = 0.
slit(i)%C_opm_stem = 0.
slit(i)%N_opm_stem = 0.
enddo
nlay2 = nlay+2
mfirst = 1
allocate (sh(mfirst:nlay2))
allocate (sv(mfirst:nlay2))
allocate (sb(mfirst:nlay2))
allocate (sbt(mfirst:nlay2))
allocate (t_cb(mfirst:nlay2))
allocate (t_cond(mfirst:nlay2))
allocate (h_cap(mfirst:nlay2))
allocate (sxx(mfirst:nlay2))
allocate (svv(mfirst:nlay2))
allocate (svva(mfirst:nlay2))
allocate (soh(mfirst:nlay2))
allocate (son(mfirst:nlay2+1))
help=1
C_opm = 0
allocate(fr_loss(nlay))
allocate(redis(nlay))
end subroutine alloc_soil
!------------------------------------------------------------------
subroutine stand_bal_ini
use data_stand
implicit none
integer i
allocate(diam_class(num_class, nspecies)); diam_class=0
allocate(diam_class_t(num_class, nspecies)); diam_class_t=0
allocate(diam_class_h(num_class,nspecies)); diam_class_h=0
allocate(diam_class_age(num_class,nspecies)); diam_class_age=0
allocate(diam_class_mvol(num_class,nspecies)); diam_class_mvol=0
allocate(diam_classm(num_class,nspecies)); diam_classm=0
allocate(diam_classm_h(num_class,nspecies)); diam_classm_h=0
allocate(height_class(num_class)); height_class =0
! array of potential litter (dead stems and twigs/branches for the next years
allocate(dead_wood(nspec_tree))
do i = 1,nspec_tree
allocate(dead_wood(i)%C_tb(lit_year))
allocate(dead_wood(i)%N_tb(lit_year))
allocate(dead_wood(i)%C_stem(lit_year))
allocate(dead_wood(i)%N_stem(lit_year))
dead_wood(i)%C_tb = 0.
dead_wood(i)%N_tb = 0.
dead_wood(i)%C_stem = 0.
dead_wood(i)%N_stem = 0.
enddo
end subroutine stand_bal_ini
!--------------------------------------------------------------
subroutine control_file ! saving simulation parameter and start conditions for each site
real buckdepth
character(8) actdate
character(10) acttime
character(150) site_help
integer help_ip, j
TYPE(Coh_Obj), Pointer :: help_coh ! pointer to cohort list
IF(site_nr==1) THEN
help_ip=site_nr
ELSE
help_ip=ip
END IF
! Write soil initialisation file
if (flag_mult8910) then
site_help = site_name1
else
site_help = site_name(help_ip)
endif
if (.not.flag_mult8910 .or. (flag_mult8910 .and. anh .eq. "1") .or. (flag_mult8910 .and. time_out .gt. 0.)) then
if (.not.flag_mult8910) then
WRITE (unit_soil,'(26A)') 'Layer',' Depth(cm)',' F-cap(mm)',' F-cap(Vol%)',' Wiltp(mm)', &
' Wiltp(Vol%)',' Pore vol.',' Skel.(Vol%)',' Density',' Spheat',' pH',' Wlam', &
' Water(mm)',' Water(Vol%)',' Soil-temp.',' C_opm g/m2', &
' C_hum g/m2',' N_opm g/m2',' N_hum g/m2',' NH4 g/m2',' NO3 g/m2',' humus part',' d_mass g/m2', ' Clay',' Silt',' Sand'
do i = 1,nlay
WRITE (unit_soil,'(I5,2F10.2,3F12.2,F10.2,F12.2,4F8.2,F10.2,F12.2, 5F11.2,2F9.4,2E12.4, 3F6.1)') i,depth(i),field_cap(i),f_cap_v(i),wilt_p(i), &
wilt_p_v(i),pv_v(i), skelv(i)*100., dens(i),spheat(i),phv(i),wlam(i), &
wats(i),watvol(i),temps(i),c_opm(i),c_hum(i),n_opm(i), n_hum(i),nh4(i),no3(i),humusv(i),dmass(i), clayv(i)*100., siltv(i)*100., sandv(i)*100.
end do
endif
! Write control file
call date_and_time(actdate, acttime)
unit_ctr = getunit()
open(unit_ctr,file=trim(dirout)//trim(site_help)//'.ctr'//anh,status='replace')
WRITE(unit_ctr,'(2A)') '*** Site name: ',site_name(help_ip)
WRITE(unit_ctr,'(2A)') ' Appendix ' ,anh
WRITE(unit_ctr,'(A,F7.2)') ' Longitude: ', long
WRITE(unit_ctr,'(A,F7.2)') ' Latitude: ', lat
WRITE(unit_ctr,*) ' '
WRITE(unit_ctr,'(10A)') ' ---- Version: v2.2 ---- '
WRITE(unit_ctr,'(10A)') ' Date: ',actdate(7:8),'.',actdate(5:6),'.',actdate(1:4), &
' Time: ',acttime(1:2),':',acttime(3:4)
WRITE(unit_ctr,'(A,A)') ' Simulation control file: ',trim(simfile)
WRITE(unit_ctr,*) ' '
WRITE(unit_ctr,'(A)') '*** Data files:'
IF(flag_clim==1)then
WRITE(unit_ctr,'(A,A)') ' Climfile: ',trim(climfile(ip))
ELSE
WRITE(unit_ctr,'(A,A)') ' Climfile: ',trim(climfile(1))
endif
WRITE(unit_ctr,'(A,A)') ' Sitefile: ',trim(sitefile(help_ip))
WRITE(unit_ctr,'(A,A)') ' Start value file: ',trim(valfile(help_ip))
! Initialization of stand
IF( flag_multi==3 .OR. (site_nr>1 .AND. flag_stand>0) ) THEN
WRITE(unit_ctr,'(A,A)') ' Stand initialization: ',trim(treefile(ip))
ELSE IF( ip==1 .AND. flag_stand>0) THEN
WRITE(unit_ctr,'(A,A)') ' Stand initialization: ',trim(treefile(ip))
ELSE IF (flag_stand==0) THEN
WRITE(unit_ctr,'(A,A)') ' Stand initialization: none'
endif
IF (lmulti) WRITE(unit_ctr,'(A,A)') ' Stand identificator: ', adjustl(standid(ip))
WRITE(unit_ctr,*) ' '
IF(flag_mg.ne.0 .and. flag_mg.ne.5) then
WRITE(unit_ctr,'(A,A)') ' Management control file: ',trim(manfile(ip))
ELSE
WRITE(unit_ctr,'(A)') ' Management: none'
endif
WRITE(unit_ctr,'(A,A)') ' Deposition file: ',trim(depofile(ip))
WRITE(unit_ctr,'(A,A)') ' N reduction file: ',trim(redfile(ip))
WRITE(unit_ctr,'(A,A)') ' Litter initialisation file: ',trim(litfile(ip))
if (flag_stat .gt. 0) WRITE(unit_ctr,'(A,A)') ' File with measurements: ',trim(mesfile(1))
WRITE(unit_ctr,*) ' '
WRITE(unit_ctr,'(A)') '*** Soil description '
WRITE(unit_ctr,'(A,I3)') ' Number of soil layers: ',nlay
WRITE(unit_ctr,'(A,I3)') ' Number of rooting layers: ',nroot_max
WRITE(unit_ctr,'(A,I3)') ' Ground water from layer: ',nlgrw
WRITE(unit_ctr,'(A,F5.1)') ' Evaporation depth (cm): ',w_ev_d
call bucket(bucks_100, bucks_root, buckdepth)
buckdepth = buckdepth/100
WRITE(unit_ctr,'(A,F5.2,A,F7.2)') ' Bucket size (mm), ', buckdepth,' m depth: ',bucks_100
WRITE(unit_ctr,'(A,F7.2)') ' Bucket size (mm) of rooting zone: ',bucks_root
WRITE(unit_ctr,*) ' '
WRITE(unit_ctr,'(A)') '*** Soil water conditions'
WRITE(unit_ctr,'(12A)') 'Layer ','Depth(cm) ','F-cap(mm) ','F-cap(Vol%) ','Wiltp(mm) ', &
'Wiltp(Vol%) ','Pore vol. ','Density ','Spheat ','pH-value ',' Wlam',' skel. '
do i = 1,nlay
WRITE(unit_ctr,'(I5,12F10.2)') i,depth(i),field_cap(i),f_cap_v(i),wilt_p(i), &
wilt_p_v(i),pv_v(i),dens(i),spheat(i),phv(i),wlam(i),skelv(i)
end do
WRITE(unit_ctr,*) ' '
WRITE(unit_ctr,'(A)') '*** Soil initial values'
WRITE(unit_ctr,'(9A)') 'Layer ','Water-cont. ','Soil-temp. ','C_opm ', &
'C_hum ','N_opm ','N_hum ','NH4-cont. ','NO3-cont '
do i=1,nlay
WRITE(unit_ctr,'(I5, 2F10.2, 6F10.4)') i,wats(i),temps(i),c_opm(i),c_hum(i),n_opm(i), &
n_hum(i),nh4(i),no3(i)
end do
WRITE(unit_ctr,*) ' '
WRITE(unit_ctr,'(A)') ' N_tot C_tot N_antot N_humtot C_humtot C_opm_fol C_opm_tb C_opm_frt C_opm_crt C_opm_stem '
WRITE(unit_ctr,'(10F12.4)') N_tot, C_tot, N_an_tot, N_hum_tot, C_hum_tot, C_opm_fol, C_opm_tb, C_opm_frt, C_opm_crt, C_opm_stem
WRITE(unit_ctr,*) ' '
WRITE(unit_ctr,'(A)',advance='no') 'Mineralization constant of humus - humus layer (k_hum): '
WRITE(unit_ctr,'(F10.5)') k_hum
WRITE(unit_ctr,'(A)',advance='no') 'Mineralization constant of humus - mineral soil (k_hum_r): '
WRITE(unit_ctr,'(F10.5)') k_hum_r
WRITE(unit_ctr,'(A)',advance='no') 'Nitrification constant (k_nit): '
WRITE(unit_ctr,'(F10.5)') k_nit
WRITE(unit_ctr,*) ' '
if (flag_bc .gt.0) then
WRITE(unit_ctr,'(A)') '*** Biochar application '
WRITE(unit_ctr,'(A)') ' year C-content(%) C/N-ratio depth mass(kg/ha dry mass)'
do j = 1, n_appl_bc
WRITE(unit_ctr,'(I7,F14.1, F11.1, I7, F18.1)') &
y_bc(j), cpart_bc(j), cnv_bc(j), bc_appl_lay(j), C_bc_appl(j)
enddo
WRITE(unit_ctr,'(F10.5)')
endif
WRITE(unit_ctr,*) ' '
WRITE(unit_ctr,'(A)') '*** Stand initialisation'
WRITE(unit_ctr,'(A)')' Coh x_fol x_frt x_sap x_hrt x_Ahb height x_hbole x_age n sp DC DBH'
help_coh => pt%first
DO WHILE (ASSOCIATED(help_coh))
WRITE(unit_ctr,'(I5,5f12.5,2f10.0,i7,f7.0,i7, 2f12.5)') help_coh%coh%ident, help_coh%coh%x_fol, help_coh%coh%x_frt, help_coh%coh%x_sap, help_coh%coh%x_hrt, &
help_coh%coh%x_Ahb, help_coh%coh%height, help_coh%coh%x_hbole, help_coh%coh%x_age, &
help_coh%coh%nTreeA,help_coh%coh%species, help_coh%coh%dcrb, help_coh%coh%diam
help_coh => help_coh%next
END DO
WRITE(unit_ctr,*) ' '
WRITE(unit_ctr,'(A)') '*** Simulation control'
WRITE(unit_ctr,'(A66,I4)') 'Run option: ',flag_multi
WRITE(unit_ctr,'(A66,I4)') 'Start year: ',time_b
WRITE(unit_ctr,'(A66,I4)') 'Number of simulation years - year: ', year
WRITE(unit_ctr,'(A60,F12.1)') 'Patch size [m²] - kpatchsize: ',kpatchsize
WRITE(unit_ctr,'(A60,F12.1)') 'Thickness of leaf layers - dz: ',dz
WRITE(unit_ctr,'(A66,I4)') 'Time step for photosynthesis calculations (days) - ns_pro: ',ns_pro
WRITE(unit_ctr,'(A66,I4)') 'Mortality (0-OFF,1-ON stress, 2- ON stress+intr) - flag_mort: ',flag_mort
WRITE(unit_ctr,'(A66,I4)') 'Regeneration (0-OFF,1-ON, 2-weekly growth of seedl.) - flag_reg: ',flag_reg
WRITE(unit_ctr,'(A66,I4)') 'use FORSKA for regeneration (0-OFF,1-ON) - flag_forska: ',flag_lambda
WRITE(unit_ctr,'(A66,I4)') 'Stand initialization (0-no,1-from *.ini,2-generate) - flag_stand: ',flag_stand
WRITE(unit_ctr,'(A66,I4)') 'Ground vegetation initialization (0-no,1-generate) - flag_sveg: ',flag_sveg
WRITE(unit_ctr,'(A66,I4)') 'Stand management (0-no,1-yes, 2 - seed once) - flag_mg: ',flag_mg
WRITE(unit_ctr,'(A66,I4)') 'Disturbance (0-OFF, 1-ON ) - flag_dis: ',flag_dis
WRITE(unit_ctr,'(A66,I4)') 'Light absoption algorithm (1,2,3,4) - : ',flag_light
WRITE(unit_ctr,'(A66,I4)') 'Foliage-height relationship (0,1) - flag_folhei: ',flag_folhei
WRITE(unit_ctr,'(A66,I4)') 'Volume function trunc (0,1) - flag_volfunc: ',flag_volfunc
WRITE(unit_ctr,'(A66,I4)') 'Respiration model (0-0.5*NPP,1-organ specific) - flag_resp: ',flag_resp
WRITE(unit_ctr,'(A66,I4)') 'Limitation (0-NO,1-water, 2-N, 3-water+N) - flag_limi: ',flag_limi
WRITE(unit_ctr,'(A66,I4)') 'Flag for decomposition model - flag_decomp: ',flag_decomp
WRITE(unit_ctr,'(A66,I4)') 'Root spec. activity (0-const,1-varying) - flag_sign: ',flag_sign
WRITE(unit_ctr,'(A66,I4)') 'Water uptake function soil (1,2,3,4) - flag_wred: ',flag_wred
WRITE(unit_ctr,'(A66,I4)') 'Root distribution - flag_wurz: ',flag_wurz
WRITE(unit_ctr,'(A66,I4)') 'Heat conductance - flag_cond: ',flag_cond
WRITE(unit_ctr,'(A66,I4)') 'Interception - flag_int: ',flag_int
WRITE(unit_ctr,'(A66,I4)') 'Evapotranspiration - flag_eva: ',flag_eva
WRITE(unit_ctr,'(A66,I4)') 'CO2 (0-constant,1-historic increase,2-step change)- flag_co2: ',flag_co2
WRITE(unit_ctr,'(A66,I4)') 'Sort flag - flag_sort: ',flag_sort
WRITE(unit_ctr,'(A66,I4)') 'wpm flag - flag_wpm: ',flag_wpm
WRITE(unit_ctr,'(A66,I4)') 'Analysis of measurements - flag_stat: ',flag_stat
WRITE(unit_ctr,*) ' '
WRITE(unit_ctr,'(A66,A)') 'Species parameter file: ',trim(specfile(help_ip))
WRITE(unit_ctr,*) ' '
WRITE(unit_ctr,'(A)') '*** Species parameter description'
WRITE(unit_ctr,'(A51,I4)') ' Species number: ', nspecies
WRITE(unit_ctr,'(A51,I4)') ' Number of tree species: ', nspec_tree
WRITE(unit_ctr,*) ' ********** '
WRITE(unit_ctr,'(A25,A9,2X,A30)') 'Short Name', ' Spec-Nr', 'Latin Name '
WRITE(unit_ctr,*) ' '
do i=1,nspecies
WRITE(unit_ctr,'(A25,I9,2X,A30)') trim(spar(i)%species_short_name), i, spar(i)%species_name
enddo
WRITE(unit_ctr,*) ' ********** '
WRITE(unit_ctr,'(A51,15A16)') ' Species name: ', (trim(spar(i)%species_short_name),i=1,nspecies)
WRITE(unit_ctr,1010) ' Maximal age - max_age: ', (spar(i)%max_age,i=1,nspecies)
WRITE(unit_ctr,1010) ' Stress rec. time - yrec: ', (spar(i)%yrec,i=1,nspecies)
WRITE(unit_ctr,1010) ' Shade tolerance - stol: ', (spar(i)%stol,i=1,nspecies)
WRITE(unit_ctr,1000) ' Extinction coeff - pfext: ', (spar(i)%pfext,i=1,nspecies)
WRITE(unit_ctr,1000) ' Root activity rate - sigman: ', (spar(i)%sigman,i=1,nspecies)
WRITE(unit_ctr,1000) ' Respiration coeff - respcoeff: ', (spar(i)%respcoeff,i=1,nspecies)
WRITE(unit_ctr,1000) ' Growth resp. par. - prg: ', (spar(i)%prg,i=1,nspecies)
WRITE(unit_ctr,1000) ' Maint.resp.par./sapwood - prms: ', (spar(i)%prms,i=1,nspecies)
WRITE(unit_ctr,1000) ' Maint.resp.par./fineroot - prmr: ', (spar(i)%prmr,i=1,nspecies)
WRITE(unit_ctr,1000) ' Senesc.par. foliage - psf: ', (spar(i)%psf,i=1,nspecies)
WRITE(unit_ctr,1000) ' Senesc.par. sapwood - pss: ', (spar(i)%pss,i=1,nspecies)
WRITE(unit_ctr,1000) ' Senesc.par. fineroot - psr: ', (spar(i)%psr,i=1,nspecies)
WRITE(unit_ctr,1000) ' N/C ratio of biomass - pcnr: ', (spar(i)%pcnr,i=1,nspecies)
WRITE(unit_ctr,1000) ' N concentration of foliage - ncon_fol: ', (spar(i)%ncon_fol,i=1,nspecies)
WRITE(unit_ctr,1000) ' N concentration of fine roots - ncon_frt: ', (spar(i)%ncon_frt,i=1,nspecies)
WRITE(unit_ctr,1000) ' N concentration of coarse roots - ncon_crt: ', (spar(i)%ncon_crt,i=1,nspecies)
WRITE(unit_ctr,1000) ' N concentration of twigs and branches - ncon_tbc: ', (spar(i)%ncon_tbc,i=1,nspecies)
WRITE(unit_ctr,1000) ' N concentration of stemwood - ncon_stem: ', (spar(i)%ncon_stem,i=1,nspecies)
WRITE(unit_ctr,1000) ' Reallocation parameter of foliage - reallo_fol: ', (spar(i)%reallo_fol,i=1,nspecies)
WRITE(unit_ctr,1000) ' Reallocation parameter of fine root - reallo_frt: ', (spar(i)%reallo_frt,i=1,nspecies)
WRITE(unit_ctr,1000) ' Ratio of coarse wood - alphac: ', (spar(i)%alphac,i=1,nspecies)
WRITE(unit_ctr,1000) ' Coarse root fraction of coarse wood - cr_frac: ', (spar(i)%cr_frac,i=1,nspecies)
WRITE(unit_ctr,1000) ' Sapwood density - prhos: ', (spar(i)%prhos,i=1,nspecies)
WRITE(unit_ctr,1000) ' Proport.const.(pipe mod.) - pnus: ', (spar(i)%pnus,i=1,nspecies)
IF(flag_folhei==0) THEN
WRITE(unit_ctr,1000) ' Height growth parameter - pha: ', (spar(i)%pha,i=1,nspecies)
ELSEIF(flag_folhei==1) THEN
WRITE(unit_ctr,1000) ' Height growth par. 1 - pha_v1: ', (spar(i)%pha_v1,i=1,nspecies)
WRITE(unit_ctr,1000) ' Height growth par. 2 - pha_v2: ', (spar(i)%pha_v2,i=1,nspecies)
WRITE(unit_ctr,1000) ' Height growth par. 3 - pha_v3: ', (spar(i)%pha_v3,i=1,nspecies)
ELSE
WRITE(unit_ctr,'(A51,I3)') ' non valid flag value - flag_folhei : ',flag_folhei
ENDIF
WRITE(unit_ctr,1000) ' Height growth parameter coeff 1 - pha_coeff1: ', (spar(i)%pha_coeff1,i=1,nspecies)
WRITE(unit_ctr,1000) ' Height growth parameter coeff 2 - pha_coeff2: ', (spar(i)%pha_coeff2,i=1,nspecies)
WRITE(unit_ctr,1000) ' Crown radius - DBH ratio parameter a - crown_a: ', (spar(i)%crown_a,i=1,nspecies)
WRITE(unit_ctr,1000) ' Crown radius - DBH ratio parameter b - crown_b: ', (spar(i)%crown_b,i=1,nspecies)
WRITE(unit_ctr,1000) ' Crown radius - DBH ratio parameter c - crown_c: ', (spar(i)%crown_c,i=1,nspecies)
WRITE(unit_ctr,1000) ' Minimum specific leaf area - psla_min: ', (spar(i)%psla_min,i=1,nspecies)
WRITE(unit_ctr,1000) ' Light dep. specific leaf area - psla_a: ', (spar(i)%psla_a,i=1,nspecies)
WRITE(unit_ctr,1000) ' Efficiency parameter - phic: ', (spar(i)%phic,i=1,nspecies)
WRITE(unit_ctr,1000) ' N content - pnc: ', (spar(i)%pnc,i=1,nspecies)
WRITE(unit_ctr,1000) ' kco2_25: ', (spar(i)%kCO2_25,i=1,nspecies)
WRITE(unit_ctr,1000) ' ko2_25: ', (spar(i)%kO2_25,i=1,nspecies)
WRITE(unit_ctr,1000) ' CO2/O2 specif. value - pc_25: ', (spar(i)%pc_25,i=1,nspecies)
WRITE(unit_ctr,1000) ' Q10_kco2: ', (spar(i)%q10_kCO2,i=1,nspecies)
WRITE(unit_ctr,1000) ' Q10_ko2: ', (spar(i)%q10_kO2,i=1,nspecies)
WRITE(unit_ctr,1000) ' Q10_pc: ', (spar(i)%q10_pc,i=1,nspecies)
WRITE(unit_ctr,1000) ' Rd to Vm ratio - pb: ', (spar(i)%pb,i=1,nspecies)
WRITE(unit_ctr,1000) ' PIM: Inhibitor min temp. - PItmin: ', (spar(i)%PItmin,i=1,nspecies)
WRITE(unit_ctr,1000) ' PIM: Inhibitor opt temp. - PItopt: ', (spar(i)%PItopt,i=1,nspecies)
WRITE(unit_ctr,1000) ' PIM: Inhibitor max temp. - PItmax: ', (spar(i)%PItmax,i=1,nspecies)
WRITE(unit_ctr,1000) ' PIM: Inhibitor scaling factor - PIa: ', (spar(i)%PIa,i=1,nspecies)
WRITE(unit_ctr,1000) ' PIM: Promotor min temp. - PPtmin: ', (spar(i)%PPtmin,i=1,nspecies)
WRITE(unit_ctr,1000) ' PIM: Promotor opt temp. - PPtopt: ', (spar(i)%PPtopt,i=1,nspecies)
WRITE(unit_ctr,1000) ' PIM: Promotor max temp. - PPtmax: ', (spar(i)%PPtmax,i=1,nspecies)
WRITE(unit_ctr,1000) ' PIM: Promotor scaling factor - PPa: ', (spar(i)%PPa,i=1,nspecies)
WRITE(unit_ctr,1000) ' PIM: Promotor scaling factor - PPb: ', (spar(i)%PPb,i=1,nspecies)
WRITE(unit_ctr,1000) ' CSM: chilling base temp. - CSTbC: ', (spar(i)%CSTbC,i=1,nspecies)
WRITE(unit_ctr,1000) ' CSM: base temp. - CSTbT: ', (spar(i)%CSTbT,i=1,nspecies)
WRITE(unit_ctr,1000) ' CSM: scaling factor - CSa: ', (spar(i)%CSa,i=1,nspecies)
WRITE(unit_ctr,1000) ' CSM: scaling factor - CSb: ', (spar(i)%CSb,i=1,nspecies)
WRITE(unit_ctr,1000) ' TSM: base temp. - LTbT: ', (spar(i)%LTbT,i=1,nspecies)
WRITE(unit_ctr,1000) ' TSM: critical temperature sum - LTcrit: ', (spar(i)%LTcrit,i=1,nspecies)
WRITE(unit_ctr,1010) ' TSM: start day after 1.11. - Lstart: ', (spar(i)%Lstart,i=1,nspecies)
WRITE(unit_ctr,1000) ' usefd pheno model - Phmodel: ', (spar(i)%Phmodel,i=1,nspecies)
WRITE(unit_ctr,1000) ' End day for phenology - end_bb: ', (spar(i)%end_bb,i=1,nspecies)
WRITE(unit_ctr,1000) ' Fpar_mod - fpar_mod: ', (spar(i)%fpar_mod,i=1,nspecies)
WRITE(unit_ctr,1000) ' Intercep.cap. - ceppot_spec: ', (spar(i)%ceppot_spec,i=1,nspecies)
WRITE(unit_ctr,1000) ' photosynthesis response to N-limitation - Nresp: ', (spar(i)%Nresp,i=1,nspecies)
WRITE(unit_ctr,1000) ' Regeneration flag - regflag: ', (spar(i)%regflag,i=1,nspecies)
WRITE(unit_ctr,1000) ' Seedrate: ', (spar(i)%seedrate,i=1,nspecies)
WRITE(unit_ctr,1000) ' Seedmass: ', (spar(i)%seedmass,i=1,nspecies)
WRITE(unit_ctr,1000) ' Standard dev. of seedrate - seedsd: ', (spar(i)%seedsd,i=1,nspecies)
WRITE(unit_ctr,1000) ' all. parameter - seeda: ', (spar(i)%seeda,i=1,nspecies)
WRITE(unit_ctr,1000) ' all. parameter - seedb: ', (spar(i)%seedb,i=1,nspecies)
WRITE(unit_ctr,1000) ' all. parameter - pheight1: ', (spar(i)%pheight1,i=1,nspecies)
WRITE(unit_ctr,1000) ' all. parameter - pheight2: ', (spar(i)%pheight2,i=1,nspecies)
WRITE(unit_ctr,1000) ' all. parameter - pheight3: ', (spar(i)%pheight3,i=1,nspecies)
WRITE(unit_ctr,1000) ' all. parameter - pdiam1: ', (spar(i)%pdiam1,i=1,nspecies)
WRITE(unit_ctr,1000) ' all. parameter - pdiam2: ', (spar(i)%pdiam2,i=1,nspecies)
WRITE(unit_ctr,1000) ' all. parameter - pdiam3: ', (spar(i)%pdiam3,i=1,nspecies)
WRITE(unit_ctr,1000) ' decomp. parameter foliage - k_opm_fol: ', (spar(i)%k_opm_fol,i=1,nspecies)
WRITE(unit_ctr,1000) ' synth. parameter foliage - k_syn_fol: ', (spar(i)%k_syn_fol,i=1,nspecies)
WRITE(unit_ctr,1000) ' decomp. parameter fine roots - k_opm_frt: ', (spar(i)%k_opm_frt,i=1,nspecies)
WRITE(unit_ctr,1000) ' synth. parameter fine roots - k_syn_frt: ', (spar(i)%k_syn_frt,i=1,nspecies)
WRITE(unit_ctr,1000) ' decomp. parameter coarse roots - k_opm_crt: ', (spar(i)%k_opm_crt,i=1,nspecies)
WRITE(unit_ctr,1000) ' synth. parameter coarse roots - k_syn_crt: ', (spar(i)%k_syn_crt,i=1,nspecies)
WRITE(unit_ctr,1000) ' decomp. parameter twigs/branches - k_opm_tb: ', (spar(i)%k_opm_tb,i=1,nspecies)
WRITE(unit_ctr,1000) ' synth. parameter twigs/branches - k_syn_tb: ', (spar(i)%k_syn_tb,i=1,nspecies)
WRITE(unit_ctr,1000) ' decomp. parameter stem - k_opm_stem: ', (spar(i)%k_opm_stem,i=1,nspecies)
WRITE(unit_ctr,1000) ' synth. parameter dtem - k_syn_stem: ', (spar(i)%k_syn_stem,i=1,nspecies)
WRITE(unit_ctr,1000)
WRITE(unit_ctr,1000) ' spec_rl: ', (spar(i)%spec_rl,i=1,nspecies)
WRITE(unit_ctr,1000) ' tbase: ', (spar(i)%tbase,i=1,nspecies)
WRITE(unit_ctr,1000) ' topt: ', (spar(i)%topt,i=1,nspecies)
WRITE(unit_ctr,1000) ' bdmax_coef: ', (spar(i)%bdmax_coef,i=1,nspecies)
WRITE(unit_ctr,1000) ' porcrit_coef: ', (spar(i)%porcrit_coef,i=1,nspecies)
WRITE(unit_ctr,1000) ' ph_opt_max: ', (spar(i)%ph_opt_max,i=1,nspecies)
WRITE(unit_ctr,1000) ' ph_opt_min: ', (spar(i)%ph_opt_min,i=1,nspecies)
WRITE(unit_ctr,1000) ' ph_max: ', (spar(i)%ph_max,i=1,nspecies)
WRITE(unit_ctr,1000) ' ph_min : ', (spar(i)%ph_min ,i=1,nspecies)
WRITE(unit_ctr,1000) ' v_growth: ', (spar(i)%v_growth,i=1,nspecies)
WRITE(unit_ctr,1000)
WRITE(unit_ctr,1000) ' C/N ratio of foliage - cnr_fol: ', (spar(i)%cnr_fol,i=1,nspecies)
WRITE(unit_ctr,1000) ' C/N ratio of fine roots - cnr_frt: ', (spar(i)%cnr_frt,i=1,nspecies)
WRITE(unit_ctr,1000) ' C/N ratio of coarse roots - cnr_crt: ', (spar(i)%cnr_crt,i=1,nspecies)
WRITE(unit_ctr,1000) ' C/N ratio of twigs and branches - cnr_tbc: ', (spar(i)%cnr_tbc,i=1,nspecies)
WRITE(unit_ctr,1000) ' C/N ratio of stemwood - cnr_stem: ', (spar(i)%cnr_stem,i=1,nspecies)
WRITE(unit_ctr,1000)
WRITE(unit_ctr,1000) ' Reduction factor - RedN: ', (svar(i)%RedN, i=1,nspecies)
WRITE(unit_ctr,*) ' '
WRITE(unit_ctr,'(A)') '****** Model parameter ******'
WRITE(unit_ctr,1020) 'Optimum ratio of ci to ca [-] - Lambda: ',lambda
WRITE(unit_ctr,1020) 'Molar mass of carbon [g/mol] - Cmass: ',Cmass
WRITE(unit_ctr,1020) 'Minimum conductance [mol/(m2*d)] - gmin: ',gmin
WRITE(unit_ctr,1020) 'Shape of PS response curve - ps: ',ps
WRITE(unit_ctr,1020) 'Slope of N function at 20 °C [g(N) (mymol s-1)-1] - pn: ',pn
WRITE(unit_ctr,1020) 'Minimum N content [g/g] - nc0: ',nc0
WRITE(unit_ctr,1020) 'C3 quantum efficiency - qco2: ',qco2
WRITE(unit_ctr,1020) 'Scaling parameter - qco2a: ',qco2a
WRITE(unit_ctr,1020) 'Partial pressure of oxygen (kPa) - o2: ',o2
WRITE(unit_ctr,1020) 'Atmospheric CO2 content (mol/mol) - co2: ',co2_st
WRITE(unit_ctr,1020) 'Albedo of the canopy - pfref: ',pfref
WRITE(unit_ctr,1020) 'Part of C in biomass [-] - cpart: ',cpart
WRITE(unit_ctr,1020) 'Ratio of molecular weights of water and air - rmolw: ',rmolw
WRITE(unit_ctr,1020) 'Universal gas constant [J/mol/K] = [Pa/m3/K] - R_gas: ',R_gas
WRITE(unit_ctr,1020) 'von Karman''s constant [-] - c_karman: ',c_karman
WRITE(unit_ctr,1020) 'Specific heat of air at const. pressure [J/g/K] - c_air: ',c_air
WRITE(unit_ctr,1020) 'Psychrometer constant [hPa/K] - psycro: ',psycro
WRITE(unit_ctr,1020) 'Breast height for inventory measurements [cm] - h_breast: ',h_breast
WRITE(unit_ctr,1020) 'Height for sapling allometry - h_sapini: ',h_sapini
WRITE(unit_ctr,1020) 'Min. diff. b. height of crown base and breast height- h_bo_br_diff: ',h_bo_br_diff
WRITE(unit_ctr,1020) 'Parameter variable for calculation of CO2 scenario - p1_co2: ',p1_co2
WRITE(unit_ctr,1020) 'Parameter variable for calculation of CO2 scenario - p2_co2: ',p2_co2
WRITE(unit_ctr,1020) 'Parameter variable for calculation of CO2 scenario - p3_co2: ',p3_co2
WRITE(unit_ctr,1020) 'Parameter variable for calculation of CO2 scenario - p4_co2: ',p4_co2
WRITE(unit_ctr,1020) 'Parameter variable for calculation of CO2 scenario - p5_co2: ',p5_co2
WRITE(unit_ctr,1020) 'Parameter variable for calculation of historical CO2 scenario - p1_co2h: ',p1_co2h
WRITE(unit_ctr,1020) 'Parameter variable for calculation of historical CO2 scenario - p2_co2h: ',p2_co2h
WRITE(unit_ctr,1020) 'Parameter variable for calculation of historical CO2 scenario - p3_co2h: ',p3_co2h
WRITE(unit_ctr,1020) 'Parameter variable for calculation of historical CO2 scenario - p4_co2h: ',p4_co2h
WRITE(unit_ctr,1020) 'Threshold of air temperature for snow accumulation [°C] - temp_snow: ',temp_snow
WRITE(unit_ctr,1020) 'Parameter for calculation of transpiration demand - alfm: ',alfm
WRITE(unit_ctr,1020) 'Parameter for calculation of transpiration demand [mol/(m2*d)] - gpmax: ',gpmax
WRITE(unit_ctr,1020) 'Parameter for growing degree day calculation - thr_gdd: ',thr_gdd
IF (flag_multi==2) THEN
WRITE(unit_ctr,*) ' '
WRITE(unit_ctr,*) 'runs with climate scenarios produced by adding summands to every daily temperature'
WRITE(unit_ctr,*) 'and modifying every single precipitation value by a multiplicand'
WRITE(unit_ctr,*) 'run ident deltaT delta P factor'
ENDIF
! mangament parameter adaptation management
IF (flag_mg.eq.2. .and. flag_reg .eq. 0) then
WRITE(unit_ctr,*) ' '
WRITE(unit_ctr,*) '***Managment parameter case flag_mg = 2 (user specified) ***'
WRITE(unit_ctr,'(A35,4F15.5)') 'height for management control(cm)', ho1,ho2,ho3,ho4
WRITE(unit_ctr,'(A35,5I15)') 'management flags thr1-thr5' , thr1,thr2, thr3,thr4,thr5
WRITE(unit_ctr,'(A35,F15.5)') 'height for directional felling', thr6
WRITE(unit_ctr,'(A35,I15)') 'measure at rotation', thr7
WRITE(unit_ctr,'(A35,I15)') 'regeneration measure', mgreg
WRITE(unit_ctr,'(A35,F15.5)') 'lower/upper limit of height(cm)', limit
WRITE(unit_ctr,'(A35,I15)') 'number of years between thinning',thinstep
WRITE(unit_ctr,'(A35,F15.5)') 'rel. value for directional felling', direcfel
WRITE(unit_ctr,'(A35,5F15.5)')'number of Zielbaeume(spec.)', (zbnr(i),i=1,nspec_tree)
WRITE(unit_ctr,'(A35,5F15.5)')'rel. value for tending of pl.',(tend(i), i =1,nspec_tree)
WRITE(unit_ctr,'(A35,5I15)')'rotation ',(rot(i), i =1,nspec_tree)
WRITE(unit_ctr,'(A35,5I15)')'age of nat./pl. regeneration',(regage(i), i =1,nspec_tree)
end IF
IF (flag_multi .ne. 2.and. flag_mg.ne.2 .and. flag_reg .eq.0) close(unit_ctr)
endif ! flag_mult8910
1000 FORMAT (A51,15 F16.5)
1010 FORMAT (A51,15 I16)
1020 FORMAT(A70,F15.5)
end subroutine control_file
end subroutine prepare_site
!******************************************************************************
SUBROUTINE readbudb
use data_simul
use data_species
use data_stand
implicit none
DO ns=1,nspecies
IF(spar(ns)%phmodel==4) THEN
WRITE(*,*) 'Please type the day of budburst for 4C species number ',ns,':'
READ(*,*) svar(ns)%ext_daybb
ENDIF
ENDDO
END subroutine readbudb
!******************************************************************************
SUBROUTINE readdepo
use data_climate
use data_depo
use data_out
use data_simul
use data_site
implicit none
character text
integer hx, unit_dep, i,j,ios, ii
!integer realrec
integer id,im,iy,itz1, itz2, hyear1, hyear2, hyear3, hy
logical ex
real hNO, hNH
if (flag_trace) write (unit_trace, '(I4,I10,A)') iday, time_cur, ' readdepo'
if (.not.allocated(NOd)) allocate (NOd (1:366,1:year))
if (.not.allocated(NHd)) allocate (NHd (1:366, 1:year))
! for areal usage standard/constant deposition is set as concentration:
if (flag_multi .eq. 8 .or. flag_mult910) then
flag_depo = 2
NOd = NOdep(ip) ! concentration mg/l
NHd = NHdep(ip) ! concentration mg/l
return
endif
NOd = 0.
NHd = 0.
if (.not.flag_mult8910) print *
inquire (File = depofile(ip), exist = ex) ! test whether file exists
IF(ex .eqv. .false.) then
if (.not.flag_mult8910) then
hx = 0
print *,' >>>FORESEE message: Cannot find deposition data - all data set to zero!'
CALL error_mess(hx,'Cannot find deposition data - all data set to ',REAL(hx))
endif
else
if (.not.flag_mult8910) print *, ' >>>FORESEE message: Now reading DEPOSITION data from file, please wait...'
! now read data from file
unit_dep = getunit()
OPEN (unit_dep,FILE=depofile(ip),IOSTAT=ios,STATUS='OLD',ACTION='READ')
flag_depo = 1
read(unit_dep,*) text
select case (text)
case ('C', 'c') ! concentrations mg/l
flag_depo = 2
read(unit_dep,*) text
case ('Y', 'y') ! Yearly constant deposition mg/m2
flag_depo = 3
read(unit_dep,*) text
case ('A', 'a') ! Annual sum of deposition g/m2
flag_depo = 4
read(unit_dep,*) text
end select
do
IF (text .ne. '!') then
backspace(unit_dep)
exit
endif
read(unit_dep,*) text
enddo
! assignment of dates
! fill in missing values with current values until current date
! fill in missing values at the end
hyear1 = 0
hyear2 = 0
hyear3 = 1
itz1 = 1
itz2 = 1
select case (flag_depo)
case(4)
do while ((ios .eq. 0) .and. (hyear1 .lt. year))
read(unit_dep,*,iostat=ios) iy, hNO, hNH
if (ios .eq.0) then
if (iy .gt. time_b+year) then
hyear1 = year
else
hyear1 = iy - time_b + 1
endif
if ((hyear1 .le. year) .and. (hyear1 .gt. 0)) then ! save from simulation start year onwards
do i = 1,366
NOd(i,hyear1) = hNO * 1000./366. ! report of year [g/m2] in daily values [mg/m2]
NHd(i,hyear1) = hNH * 1000./366.
enddo
hy = hyear1-1
do while ((hy .gt. hyear2) .and. (hy .gt. 0))
do i = 366, 1, -1
NOd(i,hy) = hNO * 1000./366.
NHd(i,hy) = hNH * 1000./366.
enddo
hy = hy - 1
enddo
hyear2 = hyear1
endif ! 0 < hyear1 < year
else ! ios .ne. 0
if (hyear1 .le. 0) then
hyear1 = 1
hyear2 = 1
endif
continue
endif ! ios = 0
enddo
case default
do while ((ios .eq. 0) .and. (hyear1 .lt. year))
read(unit_dep,*,iostat=ios) id,im,iy, hNO, hNH
if (ios .eq.0) then
call daintz(id,im,iy,itz1)
if (iy .gt. time_b+year) then
hyear1 = year
else
hyear1 = iy - time_b + 1
endif
if ((hyear1 .le. year) .and. (hyear1 .gt. 0)) then ! save from simulation start year onwards
NOd(itz1,hyear1) = hNO
NHd(itz1,hyear1) = hNH
select case (flag_depo)
case(1,2)
if (hyear1 .eq. hyear3) then
if (itz1 .gt. 1) then
do i = itz1-1, itz2, -1
NOd(i,hyear1) = hNO
NHd(i,hyear1) = hNH
enddo
endif
else
if (itz2 .lt. recs(hyear3)) then
do i = itz2+1, recs(hyear3)
NOd(i,hyear3) = hNO
NHd(i,hyear3) = hNH
enddo
endif
itz2 = 1
if (itz1 .gt. 1) then
do i = itz1-1, itz2, -1
NOd(i,hyear1) = hNO
NHd(i,hyear1) = hNH
enddo
endif
hy = hyear1-1
do while ((hy .gt. hyear3) .and. (hy .gt. 0))
do i = 366, 1, -1
NOd(i,hy) = hNO
NHd(i,hy) = hNH
enddo
hy = hy - 1
enddo
endif ! hyear1 .eq. hyear3
hyear3 = hyear1
itz2 = itz1
hyear2 = hyear3
case(3) ! fill in of constant year values
do i = 1,366
NOd(i,hyear1) = hNO
NHd(i,hyear1) = hNH
enddo
hy = hyear1-1
do while ((hy .gt. hyear2) .and. (hy .gt. 0))
do i = 366, 1, -1
NOd(i,hy) = hNO
NHd(i,hy) = hNH
enddo
hy = hy - 1
enddo
hyear2 = hyear1
itz2 = 366
end select ! flag_depo 1-3
endif ! 0 < hyear1 < year
else ! ios .ne. 0
if (hyear1 .le. 0) then
hyear1 = 1
hyear2 = 1
endif
continue
endif ! ios = 0
enddo
end select ! flag_depo
! fill in of the missing data at the end
select case (flag_depo)
case (3)
if (hyear1 .lt. year) then
hy = hyear1+1
do while (hy .le. year)
do i = 366, 1, -1
NOd(i,hy) = hNO
NHd(i,hy) = hNH
enddo
hy = hy + 1
enddo
else ! if date is outside the simulation period, it will be completly filled in
do j = 1, year
do i = 1, 366
NOd(i,j) = hNO
NHd(i,j) = hNH
enddo
enddo
endif
case default
if (hyear2 .le. year) then
if (itz2 .lt. recs(hyear2)) then
if (.not.flag_mult8910) then
hx = iy
CALL error_mess(hx,' Not enough data records in deposition file, iostat = ',REAL(ios))
WRITE (unit_err,*) ' >>>FORESEE message: Fill next values with same data '
WRITE (unit_err,'(A,2I4,A,2I4)')' from internal simulation time', itz2, hyear2, ' to', recs(hyear2), year
endif
do j = hyear2, year
ii = 1
if (j .eq. hyear2) ii = itz2
do i = ii, 366
NOd(i,j) = hNO
NHd(i,j) = hNH
enddo
enddo
else
hy = hyear2+1
do while (hy .le. year)
do i = 366, 1, -1
NOd(i,hy) = hNO
NHd(i,hy) = hNH
enddo
hy = hy + 1
enddo
endif
else ! if date is outside the simulation period, it will be completly filled in
do j = 1, year
do i = 1, 366
NOd(i,j) = hNO
NHd(i,j) = hNH
enddo
enddo
endif
end select
close (unit_dep)
endif
write (*,*)
END subroutine readdepo
!******************************************************************************
SUBROUTINE readredN
use data_out
use data_site
use data_species
use data_stand
use data_simul
implicit none
character text
integer hx, unit_red, i,ios
logical ex
if (.not.flag_mult8910) print *
if (flag_multi .lt. 8) then
inquire (File = "./input/.", exist = ex) ! test whether file exists
inquire (File = redfile(ip), exist = ex) ! test whether file exists
IF(ex .eqv. .false.) then
print *,' >>>FORESEE message: Cannot find data of RedN - internal calculation'
hx = 0
CALL error_mess(hx,'Cannot find data of RedN - internal calculation ',REAL(hx))
else
print *, ' >>>FORESEE message: Now reading RedN data from file, please wait...'
unit_red = getunit()
OPEN (unit_red,FILE=redfile(ip),IOSTAT=ios,STATUS='OLD',ACTION='READ')
DO
READ(unit_red,*) text
IF (text .ne. '!') THEN
backspace(unit_red)
EXIT
ENDIF
ENDDO
read (unit_red,*,iostat=ios) (svar(i)%RedN, i=1,nspecies)
close (unit_red)
endif ! ex
else
do i = 1, nspecies
svar(i)%RedN = RedN_list(i, ip)
enddo
endif ! flag_multi
IF(flag_limi==0 .OR. flag_limi==1) THEN
DO i=1,nspecies
svar(i)%RedN = 1.
ENDDO
ENDIF
do i = 1,nspecies
if (svar(i)%RedN .lt. 0) then ! no values; internal calculation
if (flag_multi .lt. 8) then
print *,' >>>FORESEE message: Cannot find data of RedN - internal calculation for', spar(i)%species_short_name
write (unit_err, '(A,I3,1X,A)') 'Cannot find data of RedN - internal calculation for species ',i, spar(i)%species_short_name
endif
flag_redn = .TRUE.
endif
enddo
if (.not.flag_mult8910) write (*,*)
END subroutine readredN
!******************************************************************************
SUBROUTINE readlit
!use data_climate
use data_out
use data_soil_cn
use data_species
use data_stand
use data_simul
implicit none
character text
integer unit_lit, i,ios
integer nspec_lit
logical ex
real help, hx
real, dimension(22) :: helpin
flag_lit = 0
if (flag_mult8910) then
inquire (File = litfile(1), exist = ex) ! test whether file exists
else
print *
inquire (File = litfile(ip), exist = ex) ! test whether file exists
endif
IF(ex .eqv. .false.) then
if (.not.flag_mult8910) then
print *,' >>>FORESEE message: Cannot find data of litter initialisation - internal calculation'
hx = 0.
write (unit_err,*)
write (unit_err,*) 'Cannot find data of litter initialisation - internal calculation '
endif
else
if (.not.flag_mult8910) print *, ' >>>FORESEE message: Now reading litter initialisation data from file, please wait...'
! now read data from file
unit_lit = getunit()
OPEN (unit_lit,FILE=litfile(ip),IOSTAT=ios,STATUS='OLD',ACTION='READ')
do
read(unit_lit,*) text
IF (text .ne. '!') then
backspace(unit_lit)
exit
endif
enddo
helpin = 0.
slit%C_opm_fol = 0.
read (unit_lit,*) nspec_lit
read (unit_lit,*,iostat=ios) text, (slit(i)%C_opm_fol, i=1,nspec_lit)
read (unit_lit,*,iostat=ios) text, (slit(i)%C_opm_tb , i=1,nspec_lit)
read (unit_lit,*,iostat=ios) text, (slit(i)%C_opm_frt(1), i=1,nspec_lit)
read (unit_lit,*,iostat=ios) text, (slit(i)%C_opm_crt(1), i=1,nspec_lit)
read (unit_lit,*,iostat=ios) text, (slit(i)%C_opm_stem,i=1,nspec_lit)
flag_lit = 1
help = 0.
hx = 1.
do i=1,nspecies
if (slit(i)%C_opm_fol .gt. 0) then
totfol_lit = totfol_lit + slit(i)%C_opm_fol
totfrt_lit = totfrt_lit + slit(i)%C_opm_frt(1)
tottb_lit = tottb_lit + slit(i)%C_opm_tb
totcrt_lit = totcrt_lit + slit(i)%C_opm_crt(1)
totstem_lit = totstem_lit + slit(i)%C_opm_stem
else
hx = -1.
endif
enddo
help = totfol_lit
if ((help .gt. 0.) .or. (hx .gt. 0) .and. .not.flag_mult8910) then
CALL error_mess(0,'Using data of litter initialisation from file '//trim(litfile(ip)), hx)
else
! no values; internal calculation of litter initialisation
if (.not.flag_mult8910) then
print *,' >>>FORESEE message: No data of litter initialisation - internal calculation'
hx = 0.
CALL error_mess(0,'No data of litter initialisation - internal calculation ', hx)
endif
flag_lit = 0
endif
close (unit_lit)
endif ! ex
if (.not.flag_mult8910) write (*,*)
END subroutine readlit
!******************************************************************************
subroutine prepare_climate
! read climate file
use data_climate
use data_out
use data_simul
use data_stand
implicit none
type clifile ! new data type for all climate parameters
integer :: day,mon,ye
real :: m1, m2, m3, m4, m5, m6, m7, m8, m9, m10, m11
end type clifile
type (clifile), allocatable,dimension(:,:) :: climall !variable for data type climfile
character(1) c
character :: text
integer :: i,j,ios, unit_cli
integer :: realrec = 0
integer :: repflag = 0
logical :: ex
if (.not.flag_mult8910) then
print *, ' '
print *, ' Input of climate data: '
endif
call testfile(climfile(ip),ex) !input filename, test whether file exists
IF(ex .eqv. .false.) then
print *,' >>>FORESEE message: Cannot find climate data - program STOP!'
stop
endif
if (.not.flag_mult8910) print *, ' >>>FORESEE message: Now reading CLIMATE data from file, please wait...'
!now read data from file
unit_cli = getunit()
OPEN (unit_cli,FILE=climfile(ip),IOSTAT=ios,STATUS='OLD',ACTION='READ')
allocate (recs (1:year))
allocate (dd (1:366,1:year));allocate (mm (1:366, 1:year))
allocate (yy (1:year));allocate (tp (-2:366,1:year))
allocate (hm (0:366,1:year));allocate (prc (0:366,1:year))
allocate (prs (0:366,1:year));allocate (rd (0:366,1:year))
allocate (tn (0:366,1:year))
allocate (tx (0:366,1:year))
allocate (vp (0:366,1:year))
allocate (sdu (0:366,1:year))
allocate (wd (0:366,1:year))
allocate (sde (0:366,1:year))
allocate (bw (0:366,1:year))
dd = -99.9
mm = -99.9
yy = -99.9
tn = -99.9
tx = -99.9
wd = -99.9 ! wind initialisation
IF (index(climfile(ip),'.cli') .ne. 0) then
flag_climtyp = 1
do
read(unit_cli,*) text
IF (text .ne. '!') then
IF (text .eq. 'N') then
flag_climtyp = 2
else IF(text.eq.'T') then
flag_climtyp = 3
else
backspace(unit_cli)
exit
endif
endif
enddo
else if (index(climfile(ip),'.txt') .ne. 0) then
flag_climtyp = 4
else
flag_climtyp = 5
end IF
call read_cli
close(unit_cli)
if (flag_end .gt. 0) return
IF (realrec < year .and. repflag == 0) then
year = realrec
else
IF (repflag == 1) then
call climfill
end IF
end IF
med_rad1 = 0.
do j = 1, year-1
tp(0,j+1) = tp(recs(j),j)
tp(-1,j+1)= tp(recs(j)-1,j)
tp(-2,j+1)= tp(recs(j)-2,j)
hm(0,j+1) = hm(recs(j),j);prc(0,j+1) = prc(recs(j),j);prs(0,j+1) = prs(recs(j),j)
rd(0,j+1) = rd(recs(j),j)
wd(0,j+1) = wd(recs(j),j)
bw(0,j+1) = bw(recs(j),j)
vp(0,j+1) = vp(recs(j),j)
sdu(0,j+1) = sdu(recs(j),j)
sde(0,j+1) = sde(recs(j),j)
tx(0,j+1) = tx(recs(j),j)
tn(0,j+1) = tn(recs(j),j)
if( yy(j) .eq.time_b) then
do i=1, recs(j)
med_rad1 = med_rad1 + rd(i, j)
end do
med_rad1 = med_rad1/recs(1)
end if
end do
tp(-2,1) = tp(1,1); tp(-1,1) = tp(1,1); tp(0,1) = tp(1,1)
hm(0,1) = hm(1,1);prc(0,1) = prc(1,1);prs(0,1) = prs(1,1)
rd(0,1) = rd(1,1)
wd(0,1)=wd(1,1)
vp(0,1) = vp(1,1)
bw(0,1) = bw(1,1)
tn(0,1) = tn(1,1)
tx(0,1) = tx(1,1)
sdu(0,1) =sdu(1,1)
sde(0,1) = sde(1,1)
contains
!--------------------------------------------------------------
subroutine read_dwd
character(3) text
integer help, help1, help2, help3
allocate (climall (0:366,1:year))
j=1
c = 'n'
do
IF (j > year) then
realrec = year
exit
end IF
if (.not.flag_mult8910) print *, 'Year ',j
read(unit_cli,*) text
if(text.ne.'ta ') then
backspace(unit_cli)
end if
do i = 1, 366
read (unit_cli,*,IOSTAT=ios) climall(i,j)
help2 = climall(i,j)%day
help3 = climall(i,j)%mon
help = climall(i,j)%ye
help1 = climall(i-1,j)%ye
if (help.eq.2099 .and.help1.eq.2100.and. i.eq.366) then
end if
end do
IF (climall(365,j)%ye == climall(366,j)%ye) then
recs(j) = 366
else
backspace unit_cli
climall(366,j)%day = 0
climall(366,j)%mon = 0
climall(366,j)%ye = 0
recs(j) = 365
help = help-1
end IF
IF (j < year .and. ios < 0 .and. c .eq. 'n') then
realrec = j
if (.not.flag_mult8910) then
print *, ' >>>FORESEE message: Not enough climate data records in file!'
call error_mess(0,'read_cli: Not enough data records in climate file; number of complete years: ',real(realrec))
write(unit_err,'(A,I5)')' read_cli: Fill next values with same from first year, day: ',i_exit
write(unit_err,'(A,I5)')' read_cli: Fill next values with same data up to years: ',year
repflag = 1
exit
endif
else if(j.eq.year.and.ios < 0) then
realrec = year
exit
end IF
j=j+1
if(help.lt.time_b) j = j-1
end do
do j = 1, realrec
yy(j) = climall(1,j)%ye
do i = 1, recs(j)
dd(i,j) = climall(i,j)%day
mm(i,j) = climall(i,j)%mon
tx(i,j) = climall(i,j)%m1
tp(i,j) = climall(i,j)%m2
tn(i,j) = climall(i,j)%m3
prc(i,j) = climall(i,j)%m4
hm(i,j) = climall(i,j)%m5
prs(i,j) = climall(i,j)%m6
vp(i,j) = climall(i,j)%m7
sdu(i,j) = climall(i,j)%m8
bw(i,j) = climall(i,j)%m9
rd(i,j) = climall(i,j)%m10
wd(i,j) = climall(i,j)%m11
end do
end do
close(9)
deallocate (climall)
end subroutine read_dwd
!--------------------------------------------------------------
subroutine read_cli
implicit none
integer :: testtext, hp
character(11) :: text2
character(4) :: text
testtext=0
c = 'n'
j = 1
hp = 0
read(unit_cli,'(A)') text2
hp = index(text2,'.')
backspace(unit_cli)
do
IF(j > year) exit
select case(flag_climtyp)
case (1)
do i=1,366
if (hp .gt. 0) then
read(unit_cli,*,iostat=ios) text2,tp(i,j),hm(i,j),prc(i,j),prs(i,j),rd(i,j)
text = text2(1:2)
write (text,'(A)') text2(1:2)
read (text,*) dd(i,j)
write (text,'(A)') text2(4:5)
read (text,*) mm(i,j)
write (text,'(A)') text2(7:10)
read (text,*) yy(j)
else
read(unit_cli,*,iostat=ios) dd(i,j),mm(i,j),yy(j),tp(i,j),hm(i,j),prc(i,j),prs(i,j),rd(i,j)
endif ! hp
i_exit = i
if ((dd(i,j) .eq. 31) .and. (mm(i,j) .eq. 12)) then
recs(j) = i
write (*,*) 'Year ',j, yy(j)
realrec = j
if (j .eq. year) ios = -10
exit
endif
if (ios .ne. 0) exit
end do
case (2)
do i=1,366
read(unit_cli,*) dd(i,j),mm(i,j),yy(j),&
tp(i,j),hm(i,j),prc(i,j),prs(i,j),rd(i,j),wd(i,j)
i_exit = i
if ((dd(i,j) .eq. 31) .and. (mm(i,j) .eq. 12)) then
recs(j) = i
write (*,*) 'Year ',j, yy(j)
realrec = j
if (j .eq. year) ios = -10
exit
endif
if (ios .ne. 0) exit
end do
case (3)
do i=1,366
if (hp .gt. 0) then
read(unit_cli,*,iostat=ios) text2, &
tp(i,j),hm(i,j),prc(i,j),prs(i,j),rd(i,j),wd(i,j), tx(i,j),tn(i,j)
text = text2(1:2)
write (text,'(A)') text2(1:2)
read (text,*) dd(i,j)
write (text,'(A)') text2(4:5)
read (text,*) mm(i,j)
write (text,'(A)') text2(7:10)
read (text,*) yy(j)
else
read(unit_cli,*,iostat=ios) dd(i,j),mm(i,j),yy(j),&
tp(i,j),hm(i,j),prc(i,j),prs(i,j),rd(i,j),wd(i,j), tx(i,j),tn(i,j)
endif
i_exit = i
if ((dd(i,j) .eq. 31) .and. (mm(i,j) .eq. 12)) then
recs(j) = i
write (*,*) 'Year ',j, yy(j)
realrec = j
if (j .eq. year) ios = -10
exit
endif
if (ios .ne. 0) exit
end do
case (4) ! suffix 'txt'
if (j .eq. 1 .and. testtext.eq.0) then
read(unit_cli,*) text
testtext = 1
end if
do i=1,366
read(unit_cli,*,iostat=ios) dd(i,j),mm(i,j),yy(j),&
tx(i,j),tp(i,j),tn(i,j),prc(i,j),hm(i,j),prs(i,j),rd(i,j),wd(i,j)
i_exit = i
if ((dd(i,j) .eq. 31) .and. (mm(i,j) .eq. 12)) then
recs(j) = i
write (*,*) 'Year ',j, yy(j)
realrec = j
if (j .eq. year) ios = -10
exit
endif
if (ios .ne. 0) exit
end do
case (5 )
call read_dwd
exit
end select
IF (realrec .lt. year .and. ios .ne. 0 .and. c .eq. 'n') then
if (dd(i_exit,j) .gt. 0) i_exit = i_exit+1
if (i_exit .ge. 365) i_exit = 1
repflag = 1
if (.not.flag_mult8910) then
print *, ' >>>FORESEE message: Not enough data records in file'
print *, ' IOSTAT = ', ios
WRITE (*,'(A,I5)') ' >>>FORESEE message: Fill next values with same data from day number', i_exit
CALL error_mess(0,'read_cli: Not enough data records in meteorology file; number of complete years: ',real(realrec))
write(unit_err,'(A,I5)')' read_cli: Fill next values with same from first year, day: ',i_exit
write(unit_err,'(A,I5)')' read_cli: Fill next values with same data up to years: ',year
exit
endif
end if
if (ios .ne. 0) exit
if (yy(j) .ge. time_b) then
if ((j .eq. 1) .and. (yy(j) .gt. time_b)) then
CALL error_mess(0,'read_cli: No climate data in meteorology file for year ',real(time_b))
flag_end = 6
return
endif
j = j+1
endif
end do
end subroutine read_cli
!--------------------------------------------------------------
subroutine climfill
integer istart
istart = i_exit
if(istart.eq.0) istart =istart +1
do j=realrec+1,year
print *,'Year ',j
yy(j)=yy(j-realrec)
recs(j)=recs(j-realrec)
do i=istart,366
dd(i,j) = dd(i,j-realrec)
mm(i,j) = mm(i,j-realrec)
tp(i,j) = tp(i,j-realrec)
hm(i,j) = hm(i,j-realrec)
prc(i,j) = prc(i,j-realrec)
prs(i,j) = prs(i,j-realrec)
rd(i,j) = rd(i,j-realrec)
wd(i,j) = wd(i,j-realrec)
tx(i,j) = tx(i,j-realrec)
tn(i,j) = tn(i,j-realrec)
end do
end do
end subroutine climfill
END subroutine prepare_climate
!**************************************************************
SUBROUTINE store_para(hpara, simpara, parerr)
use data_simul
use data_out
use data_par
use data_species
use data_soil_cn
use data_stand
use data_tsort
implicit none
integer inum
real hpara, parerr
character(100):: simpara, hchar1
integer, external :: array_num
if (flag_trace) write (unit_trace, '(I4,I10,A)') iday, time_cur, ' store_para'
parerr = 0.
if (trim(simpara) .eq. 'year') then
year=hpara
parerr = 1.
return
endif
if (trim(simpara) .eq. 'time_b') then
time_b=hpara
parerr = 1.
return
endif
if (trim(simpara) .eq. 'kpatchsize') then
kpatchsize=hpara
parerr = 1.
return
endif
if (trim(simpara) .eq. 'dz') then
dz=hpara
parerr = 1.
return
endif
if (trim(simpara) .eq. 'ns_pro') then
ns_pro=hpara
parerr = 1.
return
endif
if (trim(simpara) .eq. 'flag_mort') then
flag_mort=hpara
parerr = 1.
return
endif
if (trim(simpara) .eq. 'flag_reg') then
flag_reg=hpara
parerr = 1.
return
endif
if (trim(simpara) .eq. 'flag_stand') then
flag_stand=hpara
parerr = 1.
return
endif
if (trim(simpara) .eq. 'flag_sveg') then
flag_sveg=hpara
parerr = 1.
return
endif
if (trim(simpara) .eq. 'flag_mg') then
flag_mg=hpara
parerr = 1.
return
endif
if (trim(simpara) .eq. 'flag_dis') then
flag_dis=hpara
parerr = 1.
return
endif
if (trim(simpara) .eq. 'flag_light') then
flag_light=hpara
parerr = 1.
return
endif
if (trim(simpara) .eq. 'flag_folhei') then
flag_folhei=hpara
parerr = 1.
return
endif
if (trim(simpara) .eq. 'flag_volfunc') then
flag_volfunc=hpara
parerr = 1.
return
endif
if (trim(simpara) .eq. 'flag_resp') then
flag_resp=hpara
parerr = 1.
return
endif
if (trim(simpara) .eq. 'flag_limi') then
flag_limi=hpara
parerr = 1.
return
endif
if (trim(simpara) .eq. 'flag_sign') then
flag_sign=hpara
parerr = 1.
return
endif
if (trim(simpara) .eq. 'flag_decomp') then
flag_decomp=hpara
parerr = 1.
return
endif
if (trim(simpara) .eq. 'flag_wred') then
flag_wred=hpara
parerr = 1.
return
endif
if (trim(simpara) .eq. 'flag_wurz') then
flag_wurz=hpara
parerr = 1.
return
endif
if (trim(simpara) .eq. 'flag_cond') then
flag_cond=hpara
parerr = 1.
return
endif
if (trim(simpara) .eq. 'flag_int') then
flag_int=hpara
parerr = 1.
return
endif
if (trim(simpara) .eq. 'flag_eva') then
flag_eva=hpara
parerr = 1.
return
endif
if ((trim(simpara) .eq. 'flag_co2') .or.(trim(simpara) .eq. 'flag_CO2')) then
flag_co2=hpara
parerr = 1.
return
endif
if (adjustl(trim(simpara)) .eq. 'flag_sort') then
flag_sort = hpara
parerr = 1.
return
endif
if (adjustl(trim(simpara)) .eq. 'flag_wpm') then
flag_wpm = hpara
parerr = 1.
return
endif
if (trim(simpara) .eq. 'time_out') then
time_out=hpara
parerr = 1.
return
endif
if (trim(simpara) .eq. 'flag_dayout') then
flag_dayout=hpara
parerr = 1.
return
endif
if (trim(simpara) .eq. 'flag_cohout') then
flag_cohout=hpara
parerr = 1.
return
endif
if (trim(simpara) .eq. 'flag_sum') then
flag_sum=hpara
parerr = 1.
return
endif
if (trim(simpara) .eq. 'k_hum') then
k_hum=hpara
parerr = 1.
return
endif
if (trim(simpara) .eq. 'k_hum_r') then
k_hum_r=hpara
parerr = 1.
return
endif
if (trim(simpara) .eq. 'k_nit') then
k_nit=hpara
parerr = 1.
return
endif
if (adjustl(trim(simpara)) .eq. 'alfm') then
alfm = hpara
parerr = 1.
return
endif
if (adjustl(trim(simpara)) .eq. 'gpmax') then
gpmax = hpara
parerr = 1.
return
endif
if (adjustl(trim(simpara)) .eq. 'alfm') then
alfm = hpara
parerr = 1.
return
endif
! Species parameter
hchar1 = adjustl(simpara)
inum = array_num(hchar1)
if (hchar1(1:9) .eq. 'k_opm_fol') then
if (inum .gt. 0 .and. inum .le. nspecies) then
spar(inum)%k_opm_fol = hpara
parerr = 1.
return
endif
endif
if (hchar1(1:9) .eq. 'k_opm_frt') then
inum = array_num(hchar1)
if (inum .gt. 0 .and. inum .le. nspecies) then
spar(inum)%k_opm_frt = hpara
parerr = 1.
return
endif
endif
if (hchar1(1:9) .eq. 'k_syn_fol') then
inum = array_num(hchar1)
if (inum .gt. 0 .and. inum .le. nspecies) then
spar(inum)%k_syn_fol = hpara
parerr = 1.
return
endif
endif
if (hchar1(1:9) .eq. 'k_syn_frt') then
if (inum .gt. 0 .and. inum .le. nspecies) then
spar(inum)%k_syn_frt = hpara
parerr = 1.
return
endif
endif
if (hchar1(1:3) .eq. 'psf') then
inum = array_num(hchar1)
if (inum .gt. 0 .and. inum .le. nspecies) then
spar(inum)%psf = hpara
parerr = 1.
return
endif
endif
if (hchar1(1:7) .eq. 'Phmodel') then
inum = array_num(hchar1)
if (inum .gt. 0 .and. inum .le. nspecies) then
spar(inum)%Phmodel = hpara
parerr = 1.
return
endif
endif
if ((hchar1(1:4) .eq. 'pnus') .or. (hchar1(1:4) .eq. 'Pnus')) then
inum = array_num(hchar1)
if (inum .gt. 0 .and. inum .le. nspecies) then
spar(inum)%pnus = hpara
parerr = 1.
return
endif
endif
if ((hchar1(1:4) .eq. 'RedN') .or. (hchar1(1:4) .eq. 'redn')) then
inum = array_num(hchar1)
if (inum .gt. 0 .and. inum .le. nspecies) then
svar(inum)%RedN = hpara
parerr = 1.
return
endif
endif
if (hchar1(1:4) .eq. 'prms') then
inum = array_num(hchar1)
if (inum .gt. 0 .and. inum .le. nspecies) then
spar(inum)%prms = hpara
parerr = 1.
return
endif
endif
if (hchar1(1:4) .eq. 'prmr') then
inum = array_num(hchar1)
if (inum .gt. 0 .and. inum .le. nspecies) then
spar(inum)%prmr = hpara
parerr = 1.
return
endif
endif
END subroutine store_para
!**************************************************************
integer FUNCTION array_num(string)
! reads the field numbre out of an array and hands it back as integer
implicit none
integer ipos1, ipos2, inum
character (100) string
character (10) help, hchar
ipos1 = scan(string, '(' )
ipos2 = scan(string, ')' )
ipos1 = ipos1+1
ipos2 = ipos2-1
hchar = string(ipos1:ipos2)
write(help,'(A3)') hchar
read(help,*) inum
array_num = inum
end function array_num
!*****************************************************************!
!* *!
!* 4C (FORESEE) Simulation Model *!
!* *!
!* *!
!* Stand initialisation *!
!* *!
!* CONTAINS SUBROUTINES : *!
!* PREPARE_STAND *!
!* internal subroutines: *!
!* SLA_INI *!
!* *!
!* CALC_INT *!
!* CALC_WEIBLA *!
!* READ_STAND (treeunit) *!
!* COH_INITIAL (coh) *!
!* CREATE_MISTLETOE *!
!* CREATE_SOILVEG *!
!* *!
!* CONTAiNS FUNCTIONS : *!
!* SURVAGE *!
!* *!
!* Copyright (C) 1996-2018 *!
!* Potsdam Institute for Climate Impact Reserach (PIK) *!
!* Authors and contributors see AUTHOR file *!
!* This file is part of 4C and is licensed under BSD-2-Clause *!
!* See LICENSE file or under: *!
!* http://www.https://opensource.org/licenses/BSD-2-Clause *!
!* Contact: *!
!* https://gitlab.pik-potsdam.de/foresee/4C *!
!* *!
!*****************************************************************!
SUBROUTINE prepare_stand
USE data_simul
USE data_site
USE data_stand
USE data_species
use data_climate
use data_par
USE data_manag
IMPLICIT NONE
CHARACTER :: a, with_storage
CHARACTER(30) :: text
CHARACTER(50) :: test_stand_id
INTEGER :: ios,treeunit
LOGICAL :: exs, lstin
INTEGER :: help_ip, test_vf
REAL :: test_patchsize, xx
REAL help_height_top ! auxiliary var. for setting mistletoe height at uppermost crown layer
INTEGER which_cohort
INTEGER nr_infect_trees
INTEGER nr_mist_per_tree
INTEGER i
TYPE(Coh_Obj), Pointer :: p ! pointer to cohort list
IF(site_nr==1) THEN
help_ip=site_nr
ELSE
help_ip=ip
END IF
pt = neu()
anz_coh=0
max_coh=0
ios = -1
nr_mist_per_tree=0
IF(flag_stand>0) then
exs = .false.
stand_id = standid(help_ip)
! reading stand information from treefile
inquire (File = treefile(help_ip), exist = exs)
IF((exs .eqv. .false.) .or. (flag_stand==2)) then
IF(exs .eqv. .false.) write(*,*) ' Stand initialization file not exists!'
IF(flag_stand==2) write(*,*)' Stand initialization with new file'
write(*,'(A)',advance='no') ' Creating new file (y/n): '
READ *, a
IF(a.eq.'y'.or. a.eq.'Y') CALL initia
! planting of small trees
if(flag_reg.eq.20) then
call planting
flag_reg=100
end if
flag_stand=1
exs=.true.
ENDIF
! read values from treefile
IF (exs.eqv. .true.) then
treeunit=getunit()
OPEN(treeunit,file=treefile(help_ip),action='read', pad='YES') !!!! NSC implementation for ini-file
READ(treeunit,'(A1,2X,I1,1F12.0)',iostat=ios)with_storage
backspace treeunit
if(with_storage .eq. 'C') then !flag_dis .eq. 2 .and.
READ(treeunit,'(A1,2X,I1,1F12.0)',iostat=ios)with_storage,test_vf, test_patchsize
call read_stand_with_nsc (treeunit)
CLOSE(treeunit)
kpatchsize = test_patchsize
anz_coh = max_coh
coh_ident_max = anz_coh
else
READ(treeunit,'(I1,F12.0)',iostat=ios) test_vf, test_patchsize
! write(8888,*) ip, test_vf, flag_volfunc
if(flag_multi.ne.4 .or. (flag_multi.eq.4.and.ip.eq.1) .or. (flag_multi.eq.8.and.ip.eq.1)) then
IF(test_vf.NE.flag_volfunc) THEN
if (.not.flag_mult8910) then
CALL error_mess(time,"volume function in sim-file and the one used for initialisation do not match",REAL(flag_volfunc))
CALL error_mess(time,"volume function (flag_volfunc) is set to",REAL(test_vf))
endif
flag_volfunc = test_vf
ENDIF
endif
IF(test_patchsize .GT. 0.) THEN
lmulti = .FALSE.
IF(test_patchsize.NE.kpatchsize) THEN
if (.not.flag_mult8910) then
CALL error_mess(time,"patch size in sim-file and the one used for initialisation do not match",kpatchsize)
CALL error_mess(time,"value in ini-file",test_patchsize)
CALL error_mess(time,"value in sim-file",kpatchsize)
endif
kpatchsize = test_patchsize
ENDIF
ELSE
lmulti = .TRUE.
ENDIF
do
READ(treeunit,'(A)',iostat=ios) a
IF (a .ne. '!') exit
end do
backspace treeunit
! generation of mistletoe cohort; mistletoe cohort need to be generated BEFORE tree cohorts as otherwise the light model becomes messy
if (flag_dis.eq.1) then
do i= 1, dis_row_nr
if (dis_type(i) .eq. 'M') then
if (flag_mistle.eq.0) then !set #of mist. only once
print *,"!! Note, implementation of mistletoe is restricted to trees of Pinus sylvestris"
nr_mist_per_tree = dis_rel(i)
flag_mistle=1 ! flag indicating mistletoes
call create_mistletoe ! initialisation of Mistletoe
endif
anz_coh = max_coh
endif
enddo
endif
lstin = .TRUE.
if(flag_multi.eq.4 .or. flag_multi.eq.8) stand_id = standid(help_ip)
do while (lstin)
IF (lmulti) THEN
read(treeunit,*,iostat=ios) test_stand_id, test_patchsize,text
IF (ios .lt. 0) then
if (.not.flag_mult8910) then
CALL error_mess(time,"stand identificator not found"//adjustl(stand_id)//"ip No.",real(help_ip))
write (*,*) '*** PREPSTAND: program aborted'
write (*,*) ' stand identificator',stand_id,' not found'
write (*,'(A, 2x,A)') ' in initialisation file',treefile(help_ip)
endif
flag_end = 2
return
ENDIF
IF (test_stand_id .ne. stand_id) THEN
read (treeunit,*) xx
do while (xx .gt. -90.0)
read (treeunit,*) xx
enddo ! xx
ELSE
lstin = .FALSE.
kpatchsize = test_patchsize
call read_stand (treeunit)
END IF ! stand_id
ELSE
lstin = .FALSE.
call read_stand (treeunit)
END IF ! lmulti
end do ! lstin
CLOSE(treeunit)
anz_coh = max_coh
coh_ident_max = anz_coh
endif !w/o storage
ENDIF !exs.eqv. .true.
END IF !if stand >0
!if treefile not exists and not created:
IF(ios .ne. 0 .or. exs .eqv. .false.)THEN
if (.not.flag_mult8910) PRINT *,' >>> No Stand Initialization possible '
flag_stand=0
END IF
! Setting of height and number of mistletoe
if (flag_mistle.ne.0) then
help_height_top=1.
p=>pt%first
DO WHILE (ASSOCIATED(p))
if (p%coh%species.eq.3 .AND. p%coh%height.gt.help_height_top) then !only on Pinus
help_height_top=p%coh%height
which_cohort=p%coh%ident
nr_infect_trees=p%coh%nTreeA
end if
p=>p%next
end do
p=>pt%first
DO WHILE (ASSOCIATED(p))
if (p%coh%species.eq.nspec_tree+2) then
p%coh%height = help_height_top !upper crown
p%coh%x_hbole = p%coh%height-50. !lower crown
p%coh%nTreeA = nr_infect_trees*nr_mist_per_tree !number of mistletoes
end if
if (p%coh%ident.eq.which_cohort) then !mark uppermost tree cohort with flag mistletoe
p%coh%mistletoe=1
end if
p=>p%next
end do
end if ! end set height/number of mistletoe
! Soil Vegetation
if (flag_sveg .gt. 0) then
call create_soilveg ! initialisation of ground vegetation
anz_coh = max_coh
endif
IF(flag_stand>0) CALL sla_ini
IF(flag_stand>0) CALL stand_bal_spec
CALL calc_int
CALL calc_weibla
if(flag_mg.ne.33) call overstorey
contains
SUBROUTINE sla_ini
USE data_stand
USE data_species
IMPLICIT NONE
TYPE(Coh_Obj), Pointer :: p ! pointer to cohort list
p => pt%first
DO WHILE (ASSOCIATED(p))
ns=p%coh%species
p%coh%med_sla=spar(ns)%psla_min+spar(ns)%psla_a*0.5
p%coh%t_leaf = p%coh%med_sla * p%coh%x_fol
p =>p%next
END DO
end subroutine sla_ini
end subroutine prepare_stand
!*************************************************************************
subroutine calc_int ! calculation of intrinsic mortality rate
use data_species
implicit none
INTEGER j
do j=1,nspecies
spar(j)%intr = -log(0.01)/spar(j)%max_age
end do
end subroutine calc_int
!*************************************************************************
subroutine calc_weibla
! calculation of parameter lamda for Weibull-distribution of sress mortality
use data_species
implicit none
INTEGER j
REAL survage
do j=1,nspecies
spar(j)%weibla = -log(0.01)/(survage(j)**weibal)
end do
end subroutine calc_weibla
!*************************************************************************
REAL function survage(ispec)
! calculation of survival time per species depending on shade tolerance class stol
use data_species
implicit none
INTEGER :: ispec
IF(spar(ispec)%stol.eq.1) survage=20.
IF (spar(ispec)%stol.eq.2) survage=40.
IF (spar(ispec)%stol.eq.3) survage=60.
IF (spar(ispec)%stol.eq.4) survage=80.
IF (spar(ispec)%stol.eq.5) survage=100.
end function
!*************************************************************************
SUBROUTINE read_stand (treeunit)
! Read of stand initialisation
USE data_par
USE data_simul
USE data_species
USE data_stand
IMPLICIT NONE
TYPE(cohort) :: coh_ini
REAL :: hdquo ! help variable for stress initilization
INTEGER :: ios,treeunit, loc, i
logical :: treegroup_decid
integer, dimension(5) :: decidous = (/1, 4, 5, 8, 11/)
do
call coh_initial (coh_ini)
READ(treeunit,'(5f12.5,2f10.0,i7, f10.0,i7, f9.5, f12.5)',iostat=ios) coh_ini%x_fol, coh_ini%x_frt, coh_ini%x_sap, coh_ini%x_hrt, &
coh_ini%x_Ahb, coh_ini%height, coh_ini%x_hbole, coh_ini%x_age, &
coh_ini%nTreeA,coh_ini%species, coh_ini%dcrb, coh_ini%diam
IF(ios<0 .or. coh_ini%x_fol .lt. -90.0) exit
coh_ini%nTreeD = 0.
coh_ini%x_crt = (coh_ini%x_sap + coh_ini%x_hrt) * spar(coh_ini%species)%alphac*spar(coh_ini%species)%cr_frac
coh_ini%x_tb = (coh_ini%x_sap + coh_ini%x_hrt) * spar(coh_ini%species)%alphac*(1.-spar(coh_ini%species)%cr_frac)
!NSC Speicher initialisieren
!hier neue version auslesen
treegroup_decid = .False.
do i = 1, 5
if (decidous(i) .eq. coh_ini%species) then
treegroup_decid = .True.
exit
endif
end do
If (treegroup_decid .eq. .True.) then
coh_ini%x_nsc_sap = coh_ini%x_sap * decid_sap_allo * cpart !*0.5 umrechnung von kg DW zu kg C
coh_ini%x_nsc_sap_max = coh_ini%x_nsc_sap
coh_ini%x_nsc_tb = coh_ini%x_tb * decid_tb_allo * cpart
coh_ini%x_nsc_tb_max = coh_ini%x_nsc_tb
coh_ini%x_nsc_crt = coh_ini%x_crt * decid_crt_allo * cpart
coh_ini%x_nsc_crt_max = coh_ini%x_nsc_crt
endif
If (treegroup_decid .eq. .False.) then
coh_ini%x_nsc_sap = coh_ini%x_sap * conif_sap_allo * cpart
coh_ini%x_nsc_sap_max = coh_ini%x_nsc_sap
coh_ini%x_nsc_tb = coh_ini%x_tb * conif_tb_allo * cpart
coh_ini%x_nsc_tb_max = coh_ini%x_nsc_tb
coh_ini%x_nsc_crt = coh_ini%x_crt * conif_crt_allo * cpart
coh_ini%x_nsc_crt_max = coh_ini%x_nsc_crt
endif
coh_ini%ident = max_coh + 1
coh_ini%Fmax = coh_ini%x_fol
coh_ini%x_health = 0
coh_ini%x_hsap = 0.
ns = coh_ini%species
coh_ini%N_fol=coh_ini%x_fol*spar(coh_ini%species)%ncon_fol ! kg * mg/g --> g
if (coh_ini%dcrb.eq.0..and.coh_ini%diam.eq.0..and.coh_ini%height.gt.h_sapini) then
CALL CALC_DBH(coh_ini%x_hbole,coh_ini%height,coh_ini%x_sap,coh_ini%x_hrt,coh_ini%x_Ahb,coh_ini%Ahc,coh_ini%ident,coh_ini%diam,coh_ini%dcrb,coh_ini%x_hsap,coh_ini%asapw)
else
coh_ini%x_hsap = (2*coh_ini%x_hbole + coh_ini%height)/3.
coh_ini%Asapw = coh_ini%x_sap/(spar(coh_ini%species)%prhos*coh_ini%x_hsap)
end if
! Stress calculation
IF (coh_ini%diam.ne. 0.) THEN
hdquo = coh_ini%height/ (coh_ini%diam*100)
IF (hdquo.gt. 1. .and. (coh_ini%x_age .gt. 10..and. coh_ini%x_age .lt.50) ) THEN
coh_ini%x_stress = coh_ini%x_age/2
ELSE IF ( hdquo.gt. 1. .and. coh_ini%x_age .gt.50) THEN
coh_ini%x_stress = coh_ini%x_age*3./7.
ELSE
coh_ini%x_stress = 0.
END IF
ELSE
coh_ini%x_stress = 0.
END IF ! coh_ini
coh_ini%x_stress = 0.
coh_ini%nta = coh_ini%nTreeA
IF (.not. associated(pt%first)) THEN
max_coh = 0
allocate(pt%first)
pt%first%coh = coh_ini
nullify(pt%first%next)
ELSE
allocate(zeig)
zeig%coh = coh_ini
zeig%next => pt%first
pt%first => zeig
END IF
max_coh = max_coh + 1
enddo
END SUBROUTINE read_stand
!*************************************************************************
SUBROUTINE read_stand_with_nsc (treeunit)
! Read of stand initialisation
USE data_par
USE data_simul
USE data_species
USE data_stand
IMPLICIT NONE
TYPE(cohort) :: coh_ini
REAL :: hdquo ! help variable for stress initilization
INTEGER :: ios,treeunit, loc, i
logical :: treegroup_decid
integer, dimension(5) :: decidous = (/1, 4, 5, 8, 11/)
character :: a
do
READ(treeunit,'(A)',iostat=ios) a
IF (a .ne. '!') exit
end do
backspace treeunit
do
call coh_initial (coh_ini)
! READ(treeunit,'(5f12.5,2f10.0,i7, f7.0,i7, 2f12.5)',iostat=ios) coh_ini%x_fol, coh_ini%x_frt, coh_ini%x_sap, coh_ini%x_hrt, &
READ(treeunit,'(5f12.5,2f10.0,i7,f7.0,i7, 5f12.5)',iostat=ios) coh_ini%x_fol, coh_ini%x_frt, coh_ini%x_sap, coh_ini%x_hrt, &
coh_ini%x_Ahb, coh_ini%height, coh_ini%x_hbole, coh_ini%x_age, &
coh_ini%nTreeA,coh_ini%species, coh_ini%dcrb, coh_ini%diam, coh_ini%x_nsc_tb, coh_ini%x_nsc_crt, coh_ini%x_nsc_sap
IF(ios<0 .or. coh_ini%x_fol .lt. -90.0) exit
coh_ini%nTreeD = 0.
coh_ini%x_crt = (coh_ini%x_sap + coh_ini%x_hrt) * spar(coh_ini%species)%alphac*spar(coh_ini%species)%cr_frac
coh_ini%x_tb = (coh_ini%x_sap + coh_ini%x_hrt) * spar(coh_ini%species)%alphac*(1.-spar(coh_ini%species)%cr_frac)
!hier nur den NSC Max-Speicher initialisieren
!hier neue version auslesen
treegroup_decid = .False.
do i = 1, 5
if (decidous(i) .eq. coh_ini%species) then
treegroup_decid = .True.
exit
endif
end do
If (treegroup_decid .eq. .True.) then
coh_ini%x_nsc_sap_max = coh_ini%x_sap * decid_sap_allo * cpart !*0.5 umrechnung von kg DW zu kg C
coh_ini%x_nsc_tb_max = coh_ini%x_tb * decid_tb_allo * cpart
coh_ini%x_nsc_crt_max = coh_ini%x_crt * decid_crt_allo * cpart
endif
If (treegroup_decid .eq. .False.) then
coh_ini%x_nsc_sap_max = coh_ini%x_sap * conif_sap_allo * cpart
coh_ini%x_nsc_tb_max = coh_ini%x_tb * conif_tb_allo * cpart
coh_ini%x_nsc_crt_max = coh_ini%x_crt * conif_crt_allo * cpart
endif
! IF(coh_ini%species==3.and.coh_ini%height.le.900) then
! coh_ini%x_stress =6
! ELSE IF(coh_ini%species==1.and.coh_ini%height.le.2500) then
! coh_ini%x_stress =25
! ELSE
! coh_ini%x_stress = 0
! ENDIF
coh_ini%ident = max_coh + 1
coh_ini%Fmax = coh_ini%x_fol
coh_ini%x_health = 0
coh_ini%x_hsap = 0.
ns = coh_ini%species
coh_ini%N_fol=coh_ini%x_fol*spar(coh_ini%species)%ncon_fol ! kg * mg/g --> g
! calculate diameter at breast height and pipe length by call of subroutine in partitio
if (coh_ini%dcrb.eq.0..and.coh_ini%diam.eq.0..and.coh_ini%height.gt.h_sapini) then
! if (coh_ini%dcrb.eq.0..and.coh_ini%diam.eq.0..and.coh_ini%height.gt.137.) then
CALL CALC_DBH(coh_ini%x_hbole,coh_ini%height,coh_ini%x_sap,coh_ini%x_hrt,coh_ini%x_Ahb,coh_ini%Ahc,coh_ini%ident,coh_ini%diam,coh_ini%dcrb,coh_ini%x_hsap,coh_ini%asapw)
else
coh_ini%x_hsap = (2*coh_ini%x_hbole + coh_ini%height)/3.
coh_ini%Asapw = coh_ini%x_sap/(spar(coh_ini%species)%prhos*coh_ini%x_hsap)
end if
! Stress calculation
IF (coh_ini%diam.ne. 0.) THEN
hdquo = coh_ini%height/ (coh_ini%diam*100)
IF (hdquo.gt. 1. .and. (coh_ini%x_age .gt. 10..and. coh_ini%x_age .lt.50) ) THEN
coh_ini%x_stress = coh_ini%x_age/2
ELSE IF ( hdquo.gt. 1. .and. coh_ini%x_age .gt.50) THEN
coh_ini%x_stress = coh_ini%x_age*3./7.
ELSE
coh_ini%x_stress = 0.
END IF
ELSE
coh_ini%x_stress = 0.
END IF ! coh_ini
! provisorisch stress auf Null setzen
coh_ini%x_stress = 0.
coh_ini%nta = coh_ini%nTreeA
IF (.not. associated(pt%first)) THEN
max_coh = 0
allocate(pt%first)
pt%first%coh = coh_ini
nullify(pt%first%next)
ELSE
allocate(zeig)
zeig%coh = coh_ini
zeig%next => pt%first
pt%first => zeig
END IF
max_coh = max_coh + 1
enddo
END SUBROUTINE read_stand_with_nsc
!*************************************************************************
SUBROUTINE coh_initial (coh_ini)
USE data_simul
USE data_soil
USE data_stand
USE data_species
IMPLICIT NONE
TYPE(cohort) :: coh_ini
coh_ini%nTreeA = 0.
coh_ini%nTreeD = 0.
coh_ini%nTreeM = 0.
coh_ini%nTreet = 0.
coh_ini%nta = 0.
coh_ini%mistletoe = 0
coh_ini%x_age = 0.
coh_ini%x_fol = 0.
coh_ini%x_sap = 0.
coh_ini%x_frt = 0.
coh_ini%x_hrt = 0.
coh_ini%x_crt = 0.
coh_ini%x_tb = 0.
coh_ini%x_hsap = 0.
coh_ini%x_hbole= 0.
coh_ini%x_Ahb = 0.
coh_ini%x_stress = 0
coh_ini%x_health = 0
coh_ini%bes = 0.
coh_ini%med_sla = 0.
coh_ini%Fmax = 0
coh_ini%totBio = 0.
coh_ini%Dbio = 0.
coh_ini%height = 0.
coh_ini%deltaB = 0.
coh_ini%dcrb = 0.
coh_ini%diam = 0.
coh_ini%assi = 0.
coh_ini%LUE = 0.
coh_ini%resp = 0.
coh_ini%netAss = 0.
coh_ini%NPP = 0.
coh_ini%weekNPP = 0.
coh_ini%NPPpool = 0.
coh_ini%t_Leaf = 0.
coh_ini%geff = 0.
coh_ini%Asapw = 0.
coh_ini%crown_area = 0.
coh_ini%BG = 0.
coh_ini%leafArea = 0.
coh_ini%sleafArea = 0.
coh_ini%FPAR = 0.
coh_ini%antFPAR = 0.
coh_ini%Irel = 0.
coh_ini%totFPAR = 0
coh_ini%IrelCan = 0
coh_ini%botLayer = 0
coh_ini%topLayer = 0
coh_ini%survp = 0.
coh_ini%rel_fol = 0.
coh_ini%gfol = 0.
coh_ini%gfrt = 0.
coh_ini%gsap = 0.
coh_ini%sfol = 0.
coh_ini%sfrt = 0.
coh_ini%ssap = 0.
coh_ini%grossass = 0.
coh_ini%maintres = 0.
coh_ini%respsap = 0.
coh_ini%respfrt = 0.
coh_ini%respbr = 0.
coh_ini%height_ini = 0.
coh_ini%ca_ini = 0.
coh_ini%rel_dbh_cl = 0
coh_ini%underst = 0
coh_ini%fol_inc = 0.
coh_ini%fol_inc_old = 0.
coh_ini%bio_inc = 0.
coh_ini%stem_inc = 0.
coh_ini%frt_inc = 0.
coh_ini%notViable = .FALSE.
coh_ini%intcap = 0.
coh_ini%prel = 0.
coh_ini%interc = 0.
coh_ini%prelCan = 0.
coh_ini%interc_st= 0.
coh_ini%aev_i = 0.
coh_ini%demand = 0.
coh_ini%supply = 0.
coh_ini%watuptc = 0.
coh_ini%gp = 0.
coh_ini%drIndd = 0.
coh_ini%drIndPS = 0.
coh_ini%drIndAl = 0.
coh_ini%nDaysGr = 0
coh_ini%isGrSDay = .false.
coh_ini%litC_fol = 0.
coh_ini%litC_fold = 0.
coh_ini%litN_fol = 0.
coh_ini%litN_fold = 0.
coh_ini%litC_frt = 0.
coh_ini%litC_frtd = 0.
coh_ini%litN_frt = 0.
coh_ini%litN_frtd = 0.
coh_ini%litC_stem = 0.
coh_ini%litN_stem = 0.
coh_ini%litC_tb = 0.
coh_ini%litC_crt = 0.
coh_ini%litC_tbcd = 0.
coh_ini%litN_tb = 0.
coh_ini%litN_crt = 0.
coh_ini%litN_tbcd = 0.
coh_ini%Nuptc_c = 0.
coh_ini%Nuptc_d = 0.
coh_ini%Ndemc_d = 0.
coh_ini%RedNc = 1.
coh_ini%N_pool = 0.
coh_ini%N_fol = 0.
coh_ini%wat_mg = 0. ! soley forflag_wred=9
coh_ini%nroot = 0
coh_ini%shelter = 0
coh_ini%day_bb = 0
coh_ini%x_nsc_sap = 0.
coh_ini%x_nsc_tb = 0.
coh_ini%x_nsc_crt = 0.
coh_ini%x_nsc_sap_max = 0.
coh_ini%x_nsc_tb_max = 0.
coh_ini%x_nsc_crt_max = 0.
if (coh_ini%species .ne. nspec_tree+2) then ! no root allocation for mistletoe
allocate (coh_ini%frtrel(nlay))
allocate (coh_ini%frtrelc(nlay))
if (flag_wred .eq. 9) then
allocate (coh_ini%rld(nlay))
coh_ini%rld = 0.
endif
allocate (coh_ini%rooteff(nlay))
coh_ini%frtrel = 0.
coh_ini%rooteff = 0.
end if ! end exclude mistletoe
END SUBROUTINE coh_initial
!*************************************************************************
SUBROUTINE create_mistletoe
USE data_plant
USE data_simul
USE data_species
USE data_stand
USE data_climate
USE data_soil
USE data_species
USE data_par
IMPLICIT NONE
TYPE(cohort) :: coh_ini
real :: help_height_top, help_height_bot
REAL, EXTERNAL :: fi_lf, dfi_lf, ddfi_lf
! initialising of cohort of mistletoe
call coh_initial (coh_ini)
! set mistletoe here to 20 m height, will be changed after, when cohorts of trees will be initialised
help_height_top=2000
help_height_bot=help_height_top-50
! following values are from sample calcul. of 10 year old V.austr. from Pfiz 2010
coh_ini%ident = max_coh + 1
coh_ini%species = nspec_tree+2 ! Species = species after all tree species and ground veg.
coh_ini%nTreeA = 1 ! #of mistletoes, to be read-in in management file
coh_ini%nTreeD = 0 ! dead trees
coh_ini%nta = coh_ini%nTreeA ! alive trees internal calc.
coh_ini%x_age = 10
coh_ini%x_fol = mistletoe_x_fol ! fol biomass per tree [kg DW/tree], 1 Viscum (10years) see Pfiz 2010
coh_ini%x_sap = 0. ! set near-zero for partitioning
coh_ini%x_frt = 0. ! set near-zero for partitioning
coh_ini%height = help_height_top ! highest_layer ! highest_layer of all cohorts
coh_ini%x_hbole = help_height_bot !
coh_ini%med_sla = 0. ! average cohort specific leaf area [m2/kg] is being calculated internal
coh_ini%Fmax = 0 ! anual change of leaf biomass, for now: now change
coh_ini%crown_area = 0.0189 ! max. projected crown area (m2) per individuum, calculated from Pfiz 2010
coh_ini%t_leaf = coh_ini%med_sla* coh_ini%x_fol !leaf area per tree [m2] !
coh_ini%day_bb = 1 ! evergreen
! no partitioning of NPP into stem/leaf etc.
! no root allocation
allocate(zeig)
zeig%coh = coh_ini
zeig%next => pt%first
pt%first => zeig
max_coh = max_coh + 1
END SUBROUTINE create_mistletoe
!*************************************************************************
SUBROUTINE create_soilveg
! Read of stand initialisation
USE data_plant
USE data_simul
USE data_species
USE data_stand
USE data_climate
USE data_soil
IMPLICIT NONE
TYPE(cohort) :: coh_ini
real :: lai_help, irel_help, FRsum
integer :: age_stand, nr, j
integer :: flag_SV_allo, rnum
real :: troot2
REAL, EXTERNAL :: fi_lf, dfi_lf, ddfi_lf
age_stand = 0
lai_help = 0.
irel_help = 0.
call wclas(waldtyp)
zeig=>pt%first
DO WHILE (ASSOCIATED(zeig))
ns = zeig%coh%species
lai_help = lai_help + zeig%coh%ntreea*zeig%coh%x_fol* spar(ns)%psla_min
age_stand = MAX(zeig%coh%x_age,age_stand)
zeig=>zeig%next
end do
IF((flag_stand==0 .or. age_stand .le. 5) .AND. flag_sveg ==2) THEN
NPP_est = 10.
ELSE if(age_stand.le.5) then
if(ns.eq.4) then
NPP_est = 5
else
NPP_est = 10.
end if
ELSE if(flag_reg.ne.0) then
NPP_est = 10
ELSE
lai_help = lai_help/kpatchsize
irel_help = exp(-0.5*lai_help)
if( svar(nspec_tree+1)%RedN .lt.0.) then
NPP_est = irel_help * med_rad1 * 365./100. *0.5
else
NPP_est = irel_help * med_rad1 * 365./100. *0.5 * svar(nspec_tree+1)%RedN
end if
ENDIF
call coh_initial (coh_ini)
coh_ini%species = nspec_tree+1 ! numbre of species determined automatically
ns = coh_ini%species
flag_SV_allo=1
IF(flag_SV_allo==0) THEN
! the parameters pdiam in the species.par file are used for allocation fractions
coh_ini%x_sap = spar(ns)%pdiam3 * NPP_est/1000.*kpatchsize
coh_ini%x_fol = spar(ns)%pdiam1 * NPP_est/1000.*kpatchsize
coh_ini%x_frt = spar(ns)%pdiam2 * NPP_est/1000.*kpatchsize
ELSE
FRsum=0.8*NPP_est/1000. ! start value as fraction of NPP in kg DM m-2
CALL newt (FRsum, fi_lf, dfi_lf, ddfi_lf, 0.001, 100, rnum)
IF(rnum==-1) THEN
if (.not.flag_mult8910) CALL error_mess(time,'no solution found for allocation for groundvegetation cohort: ',real(ns))
coh_ini%x_sap = spar(ns)%pdiam3 * NPP_est/1000.*kpatchsize
coh_ini%x_fol = spar(ns)%pdiam1 * NPP_est/1000.*kpatchsize
coh_ini%x_frt = spar(ns)%pdiam2 * NPP_est/1000.*kpatchsize
ELSE
coh_ini%x_sap = (ksi*FRsum**kappa)*kpatchsize
coh_ini%x_fol = (FRsum/2.)*kpatchsize
coh_ini%x_frt = (FRsum/2.)*kpatchsize
ENDIF
ENDIF
coh_ini%height = 60.
coh_ini%x_age = 1
coh_ini%nTreeA = 1
coh_ini%ident = max_coh + 1
coh_ini%Fmax = coh_ini%x_fol
coh_ini%med_sla = spar(coh_ini%species)%psla_min + spar(coh_ini%species)%psla_a*irel_help
coh_ini%t_leaf = coh_ini%med_sla* coh_ini%x_fol ! [m2]
coh_ini%nta = coh_ini%nTreeA
coh_ini%ca_ini = kpatchsize
coh_ini%day_bb = 100 ! assumption budding on 8.April
! root allocation
IF (.not. associated(pt%first)) THEN
max_coh = 0
allocate(pt%first)
pt%first%coh = coh_ini
nullify(pt%first%next)
call root_depth (1, pt%first%coh%species, pt%first%coh%x_age, pt%first%coh%height, pt%first%coh%x_frt, pt%first%coh%x_crt, nr, troot2, pt%first%coh%x_rdpt, pt%first%coh%nroot)
pt%first%coh%nroot = nr
do j=1,nr
pt%first%coh%rooteff = 1. ! assumption for the first use
enddo
do j=nr+1, nlay
pt%first%coh%rooteff = 0. ! layers with no roots
enddo
ELSE
allocate(zeig)
zeig%coh = coh_ini
zeig%next => pt%first
pt%first => zeig
call root_depth (1, zeig%coh%species, zeig%coh%x_age, zeig%coh%height, zeig%coh%x_frt, zeig%coh%x_crt, nr, troot2, zeig%coh%x_rdpt, zeig%coh%nroot)
zeig%coh%nroot = nr
do j=1,nr
zeig%coh%rooteff = 1. ! assumption for the first use
enddo
do j=nr+1, nlay
zeig%coh%rooteff = 0. ! layers with no roots
enddo
END IF
max_coh = max_coh + 1
END SUBROUTINE create_soilveg
!*************************************************************************
!***************************!
! FUNCTION fi_lf *!
!***************************!
REAL FUNCTION fi_lf(x)
USE data_stand
USE data_plant
USE data_species
REAL :: x
fi_lf = spar(nspec_tree+1)%pss*ksi*x**kappa + (spar(nspec_tree+1)%psf+spar(nspec_tree+1)%psr)/2.*x - NPP_est/1000.
END ! FUNCTION fi_lf
!***************************!
! FUNCTION dfi_lf *!
!***************************!
REAL FUNCTION dfi_lf(x)
USE data_stand
USE data_plant
USE data_species
REAL :: x
dfi_lf = spar(nspec_tree+1)%pss*ksi*kappa*x**(kappa-1.) + (spar(nspec_tree+1)%psf+spar(nspec_tree+1)%psr)/2.
END ! FUNCTION dfi_lf
!***************************!
! FUNCTION ddfi_lf *!
!***************************!
REAL FUNCTION ddfi_lf(x)
USE data_stand
USE data_plant
USE data_species
REAL :: x
ddfi_lf = spar(nspec_tree+1)%pss*ksi*kappa*(kappa-1.)*x**(kappa-2.)
END ! FUNCTION ddfi_lf
!*****************************************************************!
!* *!
!* 4C (FORSEE) Simulation Model *!
!* *!
!* *!
!* Function: *!
!* Algorithm as described in APPL. STATIST. 31:2 (1982) *!
!* The function returns a pseudo-random number uniformly *!
!* distributed between 0 and 1. *!
!* *!
!* Copyright (C) 1996-2018 *!
!* Potsdam Institute for Climate Impact Reserach (PIK) *!
!* Authors and contributors see AUTHOR file *!
!* This file is part of 4C and is licensed under BSD-2-Clause *!
!* See LICENSE file or under: *!
!* http://www.https://opensource.org/licenses/BSD-2-Clause *!
!* Contact: *!
!* https://gitlab.pik-potsdam.de/foresee/4C *!
!* *!
!*****************************************************************!
REAL FUNCTION RAND()
INTEGER IE,IM,IG
! IE, IM and IG should be set to integer values between
! 1 and 30000 before the first entry.
COMMON /RANDOM/ IE,IM,IG
IE=171*MOD(IE,177)-2* (IE/177)
IM=172*MOD(IM,176)-35*(IM/176)
IG=170*MOD(IG,178)-63*(IG/178)
IF (IE.LT.0)IE=IE+30269
IF (IM.LT.0)IM=IM+30307
IF (IG.LT.0)IG=IG+30323
RAND = AMOD(FLOAT(IE) /30269.0+FLOAT(IM)/30307.0+ FLOAT(IG) /30323.0,1.0)
RETURN
END function rand
!*****************************************************************!
!* *!
!* 4C (FORESEE) Simulation Model *!
!* *!
!* *!
!* Subroutines for: *!
!* readspec: Read species parameters from file *!
!* *!
!* Copyright (C) 1996-2018 *!
!* Potsdam Institute for Climate Impact Reserach (PIK) *!
!* Authors and contributors see AUTHOR file *!
!* This file is part of 4C and is licensed under BSD-2-Clause *!
!* See LICENSE file or under: *!
!* http://www.https://opensource.org/licenses/BSD-2-Clause *!
!* Contact: *!
!* https://gitlab.pik-potsdam.de/foresee/4C *!
!* *!
!*****************************************************************!
SUBROUTINE readspec
! input of species data from file
use data_par
use data_simul
use data_species
use data_stand
use data_soil_cn
use data_soil
implicit none
integer i,ios,nowunit
character text
logical ex
nowunit=getunit()
if (.not.flag_mult8910) then
print *,' '
print *,' >>>foresee message: now reading species parameter file...'
endif
do
call testfile(specfile(ip),ex)
if (.not.flag_mult8910) print *,' '
if(ex .eqv. .false.) cycle
exit
end do
open(nowunit, FILE=trim(specfile(ip)), ACTION="READ")
do
read(nowunit,'(A)') text
if (text .ne. '!') then
exit
end if
end do
backspace nowunit
read(nowunit,*) text, nspecies
read(nowunit,*) text, nspec_tree
if(.not.allocated(spar)) allocate(spar(nspecies))
if(.not.allocated(svar)) allocate(svar(nspecies))
if(.not.allocated(nrspec)) allocate(nrspec(nspecies))
nrspec = 0
! read intermediate lines
do
read(nowunit,'(A)') text
if (text .ne. '!') then
exit
end if
end do
backspace nowunit
do i=1,nspecies
read(nowunit,*) text,spar(i)%species_name
if (text .ne. '!') then
svar(i)%daybb = 0
svar(i)%ext_daybb = 0
svar(i)%sum_nTreeA = 0
svar(i)%anz_coh = 0
svar(i)%RedN = -99.0
svar(i)%RedNm = 0.0
svar(i)%med_diam = 0.0
svar(i)%dom_height = 0.0
svar(i)%drIndAl = 0.0
svar(i)%sumNPP = 0.0
svar(i)%sum_bio = 0.0
svar(i)%sum_lai = 0.0
svar(i)%act_sum_lai= 0.0
svar(i)%fol = 0.0
svar(i)%hrt = 0.0
svar(i)%sap = 0.0
svar(i)%frt = 0.0
svar(i)%totsteminc = 0.0
svar(i)%totstem_m3 = 0.0
svar(i)%sumvsab = 0.0
svar(i)%sumvsdead = 0.0
svar(i)%sumvsdead_m3 = 0.
svar(i)%crown_area = 0.0
svar(i)%Ndem = 0.0
svar(i)%basal_area = 0.0
svar(i)%sumvsab = 0.0
else
write (*,*) '! *** not enough species in ', specfile(ip), (i-1),' of ', nspecies
call errorfile (specfile(ip), 0, nowunit)
call error_mess(time, 'not enough species in '//specfile(ip), real(i-1))
exit
endif
enddo
! read intermediate lines
read(nowunit,'(A)') text
if (text .ne. '!') then
do
read(nowunit,'(A)') text
if (text .eq. '!') then
do
read(nowunit,'(A)') text
if (text .ne. '!') then
exit
end if
end do
exit
end if
end do
else
do
read(nowunit,'(A)') text
if (text .ne. '!') then
exit
end if
end do
endif
backspace nowunit
read(nowunit,*) text,(spar(i)%species_short_name,i=1,nspecies) ! read abbreviated names
read(nowunit,*) text,(spar(i)%max_age,i=1,nspecies)
read(nowunit,*) text,(spar(i)%yrec,i=1,nspecies)
read(nowunit,*) text,(spar(i)%stol,i=1,nspecies)
read(nowunit,*) text,(spar(i)%pfext, i=1,nspecies)
read(nowunit,*) text,(spar(i)%sigman,i=1,nspecies)
read(nowunit,*) text,(spar(i)%respcoeff,i=1,nspecies)
read(nowunit,*) text,(spar(i)%prg,i=1,nspecies)
read(nowunit,*) text,(spar(i)%prms,i=1,nspecies)
read(nowunit,*) text,(spar(i)%prmr,i=1,nspecies)
read(nowunit,*) text,(spar(i)%psf,i=1,nspecies)
read(nowunit,*) text,(spar(i)%pss,i=1,nspecies)
read(nowunit,*) text,(spar(i)%psr,i=1,nspecies)
read(nowunit,*) text,(spar(i)%pcnr,i=1,nspecies)
read(nowunit,*) text,(spar(i)%ncon_fol,i=1,nspecies)
read(nowunit,*) text,(spar(i)%ncon_frt,i=1,nspecies)
read(nowunit,*) text,(spar(i)%ncon_crt,i=1,nspecies)
read(nowunit,*) text,(spar(i)%ncon_tbc,i=1,nspecies)
read(nowunit,*) text,(spar(i)%ncon_stem,i=1,nspecies)
read(nowunit,*) text,(spar(i)%reallo_fol,i=1,nspecies)
read(nowunit,*) text,(spar(i)%reallo_frt,i=1,nspecies)
read(nowunit,*) text,(spar(i)%alphac,i=1,nspecies)
read(nowunit,*) text,(spar(i)%cr_frac,i=1,nspecies)
read(nowunit,*) text,(spar(i)%prhos,i=1,nspecies)
read(nowunit,*) text,(spar(i)%pnus,i=1,nspecies)
read(nowunit,*) text,(spar(i)%pha,i=1,nspecies)
read(nowunit,*) text,(spar(i)%pha_coeff1,i=1,nspecies)
read(nowunit,*) text,(spar(i)%pha_coeff2,i=1,nspecies)
read(nowunit,*) text,(spar(i)%pha_v1,i=1,nspecies)
read(nowunit,*) text,(spar(i)%pha_v2,i=1,nspecies)
read(nowunit,*) text,(spar(i)%pha_v3,i=1,nspecies)
read(nowunit,*) text,(spar(i)%crown_a,i=1,nspecies)
read(nowunit,*) text,(spar(i)%crown_b,i=1,nspecies)
read(nowunit,*) text,(spar(i)%crown_c,i=1,nspecies)
read(nowunit,*) text,(spar(i)%psla_min,i=1,nspecies)
read(nowunit,*) text,(spar(i)%psla_a,i=1,nspecies)
read(nowunit,*) text,(spar(i)%phic,i=1,nspecies)
read(nowunit,*) text,(spar(i)%pnc,i=1,nspecies)
read(nowunit,*) text,(spar(i)%kCO2_25,i=1,nspecies)
read(nowunit,*) text,(spar(i)%kO2_25,i=1,nspecies)
read(nowunit,*) text,(spar(i)%pc_25,i=1,nspecies)
read(nowunit,*) text,(spar(i)%q10_kCO2,i=1,nspecies)
read(nowunit,*) text,(spar(i)%q10_kO2,i=1,nspecies)
read(nowunit,*) text,(spar(i)%q10_pc,i=1,nspecies)
read(nowunit,*) text,(spar(i)%pb,i=1,nspecies)
read(nowunit,*) text,(spar(i)%PItmin,i=1,nspecies)
read(nowunit,*) text,(spar(i)%PItopt,i=1,nspecies)
read(nowunit,*) text,(spar(i)%PItmax,i=1,nspecies)
read(nowunit,*) text,(spar(i)%PIa,i=1,nspecies)
read(nowunit,*) text,(spar(i)%PPtmin,i=1,nspecies)
read(nowunit,*) text,(spar(i)%PPtopt,i=1,nspecies)
read(nowunit,*) text,(spar(i)%PPtmax,i=1,nspecies)
read(nowunit,*) text,(spar(i)%PPa,i=1,nspecies)
read(nowunit,*) text,(spar(i)%PPb,i=1,nspecies)
read(nowunit,*) text,(spar(i)%CSTbC,i=1,nspecies)
read(nowunit,*) text,(spar(i)%CSTbT,i=1,nspecies)
read(nowunit,*) text,(spar(i)%CSa,i=1,nspecies)
read(nowunit,*) text,(spar(i)%CSb,i=1,nspecies)
read(nowunit,*) text,(spar(i)%LTbT,i=1,nspecies)
read(nowunit,*) text,(spar(i)%LTcrit,i=1,nspecies)
read(nowunit,*) text,(spar(i)%Lstart,i=1,nspecies)
read(nowunit,*) text,(spar(i)%Phmodel,i=1,nspecies)
read(nowunit,*) text,(spar(i)%end_bb,i=1,nspecies)
read(nowunit,*) text,(spar(i)%fpar_mod,i=1,nspecies)
read(nowunit,*) text,(spar(i)%ceppot_spec,i=1,nspecies)
read(nowunit,*) text,(spar(i)%Nresp,i=1,nspecies)
read(nowunit,*) text,(spar(i)%regflag, i=1,nspecies)
read(nowunit,*) text,(spar(i)%seedrate, i=1,nspecies)
read(nowunit,*) text,(spar(i)%seedmass, i=1,nspecies)
read(nowunit,*) text,(spar(i)%seedsd, i=1,nspecies)
read(nowunit,*) text,(spar(i)%seeda, i=1,nspecies)
read(nowunit,*) text,(spar(i)%seedb, i=1,nspecies)
read(nowunit,*) text,(spar(i)%pheight1, i=1,nspecies)
read(nowunit,*) text,(spar(i)%pheight2, i=1,nspecies)
read(nowunit,*) text,(spar(i)%pheight3, i=1,nspecies)
read(nowunit,*) text,(spar(i)%pdiam1, i=1,nspecies)
read(nowunit,*) text,(spar(i)%pdiam2, i=1,nspecies)
read(nowunit,*) text,(spar(i)%pdiam3, i=1,nspecies)
read(nowunit,*) text,(spar(i)%k_opm_fol , i=1,nspecies)
read(nowunit,*) text,(spar(i)%k_syn_fol , i=1,nspecies)
read(nowunit,*) text,(spar(i)%k_opm_frt , i=1,nspecies)
read(nowunit,*) text,(spar(i)%k_syn_frt , i=1,nspecies)
read(nowunit,*) text,(spar(i)%k_opm_crt , i=1,nspecies)
read(nowunit,*) text,(spar(i)%k_syn_crt , i=1,nspecies)
read(nowunit,*) text,(spar(i)%k_opm_tb , i=1,nspecies)
read(nowunit,*) text,(spar(i)%k_syn_tb , i=1,nspecies)
read(nowunit,*) text,(spar(i)%k_opm_stem, i=1,nspecies)
read(nowunit,*) text,(spar(i)%k_syn_stem, i=1,nspecies)
read(nowunit,*) text,(spar(i)%spec_rl, i=1,nspecies)
read(nowunit,*) text,(spar(i)%tbase, i=1,nspecies)
read(nowunit,*) text,(spar(i)%topt, i=1,nspecies)
read(nowunit,*) text,(spar(i)%bdmax_coef, i=1,nspecies)
read(nowunit,*) text,(spar(i)%porcrit_coef, i=1,nspecies)
read(nowunit,*) text,(spar(i)%ph_opt_max, i=1,nspecies)
read(nowunit,*) text,(spar(i)%ph_opt_min, i=1,nspecies)
read(nowunit,*) text,(spar(i)%ph_max, i=1,nspecies)
read(nowunit,*) text,(spar(i)%ph_min, i=1,nspecies)
read(nowunit,*) text,(spar(i)%v_growth, i=1,nspecies)
ios = 0
call errorfile (specfile(ip), ios, nowunit)
do i=1,nspecies
spar(i)%cnr_fol = cpart / (spar(i)%ncon_fol / 1000.)
spar(i)%cnr_frt = cpart / (spar(i)%ncon_frt / 1000.)
spar(i)%cnr_crt = cpart / (spar(i)%ncon_crt / 1000.)
spar(i)%cnr_tbc = cpart / (spar(i)%ncon_tbc / 1000.)
spar(i)%cnr_stem = cpart / (spar(i)%ncon_stem / 1000.)
enddo
close(nowunit)
end subroutine readspec
!------------------------------------------------------------------------
!*****************************************************************!
!* *!
!* 4C (FORESEE) Simulation Model *!
!* *!
!* Subroutines for: *!
!* - READSIM: Read simulation options from file *!
!* - ALLOFILE: Allocate simulation files *!
!* - READCON *!
!* *!
!* Copyright (C) 1996-2018 *!
!* Potsdam Institute for Climate Impact Reserach (PIK) *!
!* Authors and contributors see AUTHOR file *!
!* This file is part of 4C and is licensed under BSD-2-Clause *!
!* See LICENSE file or under: *!
!* http://www.https://opensource.org/licenses/BSD-2-Clause *!
!* Contact: *!
!* https://gitlab.pik-potsdam.de/foresee/4C *!
!* *!
!*****************************************************************!
SUBROUTINE readsim
! read simulation options from file
use data_mess
use data_out
use data_par
use data_simul
use data_species
use data_stand
use data_site
use data_tsort
use data_climate
implicit none
logical ex
integer i, ios, ios1, nowunit, nowunit1, k, anzclim, j, l, helpi, helpw, helpy, ihelp, ilen
integer ltsunit
character:: a, ttext
character (150) tspec, tname, tclim, tval, tsite, tman, ttree, tdepo, tred, tlit, tsoilid, &
pathdir1, pathdir2,pathdir3, pathdir4, pathdir5, pathdir6, pathdir7, &
climszen, siteall, climall,site_name_all
character(50), dimension(:), allocatable:: site_name_ad
character(50), dimension(:), allocatable:: climfile_ad
character(50), dimension(:), allocatable:: sitefile_ad
character(50), dimension(:), allocatable:: manfile_ad
character(50), dimension(:), allocatable:: treefile_ad
character(50), dimension(:), allocatable:: wpmfile_ad
character(50), dimension(:), allocatable:: depofile_ad
character(50), dimension(:), allocatable:: redfile_ad
character(50), dimension(:), allocatable:: litfile_ad
character(150):: text
character(50) :: istand
character(10) :: helpsim, text4
integer :: spec1, spec2, tm
real :: h1, h2
real, dimension(:), allocatable:: clim_long, clim_lat, clim_height ! coordinates and height of climate stations
character(10), dimension(:), allocatable:: climnum
character(50), dimension(:), allocatable:: clim_nam
nowunit = getunit()
ios = 0
nvar = 0
call testfile(simfile,ex)
if(ex .eqv. .false.) return
open(nowunit,file=simfile,iostat=ios,status='old',action='read')
read(nowunit,*,iostat=ios) flag_multi
if(flag_multi .ge. 1) then
read(nowunit,*,iostat=ios) site_nr
if(flag_multi .eq. 9 .or. flag_multi .eq. 10) then
flag_mult910 = .True.
else
flag_mult910 = .False.
endif
if((flag_mult910 .or. flag_multi .eq. 8) .and. (site_nr .gt.1)) then
flag_mult8910 = .True.
else
flag_mult8910 = .False.
endif
repeat_number = site_nr
allocate(sitenum(site_nr))
allocate(clim_id(site_nr))
allocate(soilid(site_nr))
allocate(gwtable(site_nr))
allocate(NOdep(site_nr))
allocate(NHdep(site_nr))
clim_id = "xxx"
NOdep = 0.
NHdep = 0.
endif
select case (flag_multi)
case (1, 4)
flag_clim = 1
case (7, 8, 9, 10)
flag_clim = 1
flag_trace = .FALSE.
case default
flag_clim = 0
end select
read(nowunit,*,iostat=ios) ! skip comment line 'simulation specifications'
read(nowunit,*,iostat=ios) year
read(nowunit,*,iostat=ios) time_b
read(nowunit,*,iostat=ios) kpatchsize
read(nowunit,*,iostat=ios) dz
read(nowunit,*,iostat=ios) ns_pro
read(nowunit,*,iostat=ios) ! skip comment line 'choice of model options'
read(nowunit,*,iostat=ios) flag_mort
read(nowunit,*,iostat=ios) flag_reg
read(nowunit,*,iostat=ios) flag_lambda
read(nowunit,*,iostat=ios) flag_stand
read(nowunit,*,iostat=ios) flag_sveg
read(nowunit,*,iostat=ios) flag_mg
read(nowunit,*,iostat=ios) flag_dis
read(nowunit,*,iostat=ios) flag_light
read(nowunit,*,iostat=ios) flag_folhei
read(nowunit,*,iostat=ios) flag_volfunc
read(nowunit,*,iostat=ios) flag_resp
read(nowunit,*,iostat=ios) flag_limi
read(nowunit,*,iostat=ios) flag_decomp
read(nowunit,*,iostat=ios) flag_sign
read(nowunit,*,iostat=ios) flag_wred
read(nowunit,*,iostat=ios) flag_wurz
read(nowunit,*,iostat=ios) flag_cond
read(nowunit,*,iostat=ios) flag_int
read(nowunit,*,iostat=ios) flag_eva
read(nowunit,*,iostat=ios) flag_co2
read(nowunit,*,iostat=ios) flag_sort
read(nowunit,*,iostat=ios) flag_wpm
read(nowunit,*,iostat=ios) flag_stat
read(nowunit,*,iostat=ios) ! skip comment line 'output specifications'
read(nowunit,*,iostat=ios) time_out
! test lamda_ts
if(flag_lambda.eq.1) then
allocate(lambda_ts(168,3))
ltsunit=getunit()
open (ltsunit,file='input/lambdats_oak_pine.par', IOSTAT=ios,status='old')
read (ltsunit,*), text, spec1, spec2
!write(4567,*)text, spec1,spec2
do j=1,168
read(ltsunit,*) tm, h1, h2
lambda_ts(j,1)= tm
lambda_ts(j,2) = h1
lambda_ts(j,3) = h2
! write(4567,*) lambda_ts(j,1), lambda_ts(j,2), lambda_ts(j,3)
end do
end if
! define name of yearly output variables
nyvar = 1
read(nowunit,*,iostat=ios) outy_file(nyvar)
do while (trim(outy_file(nyvar)) .ne. 'end')
nyvar = nyvar + 1
read(nowunit,*) outy_file(nyvar)
enddo
read(nowunit,*,iostat=ios) flag_dayout
! define name of daily output variables
ndvar = 1
read(nowunit,*) outd_file(ndvar)
do while (trim(outd_file(ndvar)) .ne. 'end')
ndvar = ndvar + 1
read(nowunit,*) outd_file(ndvar)
enddo
read(nowunit,*,iostat=ios) flag_cohout
! define name of cohort output variables
ncvar = 1
read(nowunit,*) outc_file(ncvar)
do while (trim(outc_file(ncvar)) .ne. 'end')
ncvar = ncvar + 1
read(nowunit,*) outc_file(ncvar)
enddo
read(nowunit,*,iostat=ios) flag_sum
read(nowunit,*,iostat=ios) ! skip comment line 'input'
if (.not.flag_mult910) call allofile
SELECT CASE(flag_multi)
CASE (0,1,2,3,6)
jpar = 0
DO i=1,site_nr
if(i .gt. 1)then
read(nowunit,*,iostat=ios) ! skip comment line 'run number'
do
jpar = jpar + 1
read(nowunit,*) vpar(jpar), simpar(jpar)
if (vpar(jpar) .lt. -90.0) exit
enddo
endif
read(nowunit,'(A)',iostat=ios) specfile(i)
read(nowunit,'(A)') site_name(i)
read(nowunit,'(A)') climfile(i)
read(nowunit,'(A)') sitefile(i)
read(nowunit,'(A)') valfile(i)
read(nowunit,'(A)') treefile(i)
read(nowunit,'(A)') standid(i)
read(nowunit,'(A)') manfile(i)
read(nowunit,'(A)') depofile(i)
read(nowunit,'(A)') redfile(i)
read(nowunit,'(A)',iostat=ios) litfile(i)
! fill clim_id
clim_id(i) = climfile(i)
ios1=-1
! measurements
if(flag_multi.ne.2) then
if (ios .eq. 0) read(nowunit,'(A)',iostat=ios1) text
if (ios1 .eq. 0) then
if (flag_stat .gt. 0 .and. i .eq. 1) then
allocate (mesfile(anz_mesf))
mesfile(1) = text
ttext = adjustl(text)
if (ttext .eq. '!' .or. ttext .eq. '*') then
backspace (nowunit)
else
if (.not.flag_mult8910) write (*, '(A, I3,A,A)')' >>>foresee message: site_nr ',i,'; filename of measurements: ', trim(mesfile(1))
endif
else
ttext = adjustl(text)
if (ttext .eq. '!' .or. ttext .eq. '*') backspace (nowunit)
endif
endif
end if
if (.not.flag_mult8910) print *, ' >>>foresee message: site_nr ',i,'; input of filenames completed'
end DO
CASE (4, 5, 8)
allocate(latitude(site_nr))
allocate(RedN_list(15, site_nr))
RedN_list = -99.9
read(nowunit,'(A)',iostat=ios) specfile(1)
read(nowunit,'(A)') site_name(1)
read(nowunit,'(A)') treefile(1)
read(nowunit,'(A)') manfile(1)
read(nowunit,'(A)') siteall ! control xxx.con
read(nowunit,'(A)') climall ! climate stations with coordination
read(nowunit,'(A)') pathdir1 ! path for climate scenarios
read(nowunit,'(A)') pathdir2 ! path for soil file xxx.sop or name of total soil file (flag_multi=8)
read(nowunit,'(A)') climszen ! labeling climate scenarios
if (flag_multi .eq. 8.or.flag_multi.eq.5) read(nowunit,*) text ! BRB / BAWUE / DEU
if (.not.flag_mult8910) print *, ' >>>foresee message: Input of filenames completed'
site_name1 = site_name(1)
! define name of output variables
nvar = 1
read(nowunit,*) outvar(nvar)
do while (trim(outvar(nvar)) .ne. 'end')
nvar = nvar + 1
read(nowunit,*) outvar(nvar)
enddo
if (nvar .gt. 1) allocate(output_var(nvar,site_nr,0:year))
helpw = 0
helpi = 0
do i = 1, nvar-1
select case (trim(outvar(i)))
case ('AET_mon','AETmon','aetmon','aet_mon','cwb_mon','cwbmon','PET_mon','PETmon','petmon','pet_mon', &
'GPP_mon','GPPmon','gppmon','gpp_mon','NEP_mon','NEPmon','nepmon','nep_mon','NPP_mon','NPPmon','nppmon','npp_mon', &
'perc_mon','percmon','temp_mon','tempmon','prec_mon','precmon', 'resps_mon','respsmon','TER_mon','TERmon','ter_mon','termon')
flag_cum = 1
helpi = helpi + 1
output_var(i,1,0) = 1.*helpi ! field numbre of monthly value
case ('AET_week','AETweek','aetweek','aet_week','cwb_week','cwbweek','PET_week','PETweek','petweek','pet_week', &
'GPP_week','GPPweek','gppweek','gpp_week','NEP_week','NEPweek','nepweek','nep_week','NPP_week','NPPweek','nppweek','npp_week', &
'perc_week','percweek','temp_week','tempweek','prec_week','precweek', 'resps_week','respsweek', 'TER_week','TERweek','ter_week','terweek')
flag_cum = 1
helpw = helpw + 1
output_var(i,1,0) = 1.*helpw ! field numbre of weekly values
end select ! outvar
enddo
if (helpi .gt. 0) then
allocate(output_varm(helpi,site_nr,year,12))
endif
if (helpw .gt. 0) then
allocate(output_varw(helpw,site_nr,year,52))
endif
call errorfile(simfile, ios, nowunit)
! reading file with description of climate stations used
allocate(climnum(3000))
allocate(clim_long(3000))
allocate(clim_lat(3000))
allocate(clim_height(3000))
allocate(clim_nam(3000))
call testfile(climall,ex)
if (ex .eqv. .false.) return
nowunit1 = getunit()
ios1 = 0
open(nowunit1,file=climall,iostat=ios,status='old',action='read')
k=1
do
READ(nowunit1,'(A)',iostat=ios1) a
IF (a .ne. '!') exit
end do
backspace nowunit1
do
read(nowunit1,*,iostat=ios1) climnum(k), clim_long(k),clim_lat(k), &
clim_height(k)
if(ios1 .lt. 0) exit
k = k+1
end do
anzclim = k-1
ios1 = 0
call errorfile(climall, ios1, nowunit1)
! reading control file with site-id, climate-id, soil-id, gwtabe-id
call testfile(siteall,ex)
if (ex .eqv. .false.) return
nowunit1 = getunit()
open(nowunit1,file=siteall,iostat=ios1,status='old',action='read')
do
READ(nowunit1,'(A)',iostat=ios1) a
IF (a .ne. '!') exit
end do
backspace nowunit1
! if (flag_multi .eq. 8) read(nowunit1,*) text ! BRB / BAWUE / DEU
select case (trim(text))
case ('BRB')
flag_climnam = 1
case ('BAWUE')
flag_climnam = 2
case ('DEU')
flag_climnam = 3
case ('REMO')
flag_climnam = 4
case('WETTREG')
flag_climnam =5
end select
do i=1,site_nr
select case (flag_multi)
case (4)
read(nowunit1,*,iostat=ios1) sitenum(i), clim_id(i), soilid(i), gwtable(i)
flag_climnam = 1
sitefile(i) =trim(pathdir2)//'wbuek'//trim(soilid(i))//'.sop'
valfile(i) =trim(pathdir2)//'wbuek'//trim(soilid(i))//'.soi'
standid(i) = sitenum(i)
case (5,8)
call readcon(i, nowunit1)
soilid(i) = adjustl(soilid(i))
ihelp = len(trim(soilid(i)))
sitefile(i) = trim(pathdir2)
if( flag_climnam.eq.3) then
climfile(i) = trim(pathdir1)//trim(clim_id(i))//trim(climszen)//'.dat'
end if
if(flag_climnam.eq.4) then
climfile(i) = trim(pathdir1)//'gp_'//trim(clim_id(i))//'_'//trim(climszen)//'.txt'
end if
if(flag_climnam.eq.5) then
climfile(i) = trim(pathdir1)//trim(clim_id(i))//'_'//trim(climszen)//'.dat'
end if
end select
do j = 1,anzclim
if(clim_id(i).eq.climnum(j)) then
select case (flag_climnam)
case (1) ! WK
if(flag_climtyp .eq. 5) then
climfile(i) = trim(pathdir1)//trim(clim_nam(j))//trim(climszen)//'.dat'
else
climfile(i) = trim(pathdir1)//trim(clim_nam(j))//trim(climszen)//'.cli'
end if
case (2) ! Klara
climfile(i) = trim(pathdir1)//trim(climnum(j))//trim(climszen)//'.dat'
end select
latitude(i) = clim_lat(j)
exit
end if
if (j .eq. anzclim) then
write (unit_err,*) '*** 4C-error - searching in file:', trim(climall)
write (unit_err,*) ' no climate station found for climate id: ', clim_id(i)
write (unit_err,*)
endif
end do
! fill in sitefile
site_name(i) = site_name(1)
specfile(i) = specfile(1)
treefile(i) = treefile(1)
manfile(i) = manfile(1)
depofile(i) = 'dummy.dep'
redfile = 'dummy.red'
litfile = 'dummy.lit'
enddo
if ((.not.flag_mult8910) .and. (ios1 .lt. 0)) print *, 'no information for site number ', i
call errorfile(siteall, ios1, nowunit1)
deallocate(climnum)
deallocate(clim_long)
deallocate(clim_lat)
deallocate(clim_height)
deallocate(clim_nam)
close(nowunit1)
! variation of flag_multi= 5, especially for SILVISTRAT
CASE (7)
allocate(site_name_ad(site_nr))
allocate(climfile_ad(site_nr))
allocate(sitefile_ad(site_nr))
allocate(manfile_ad(site_nr))
allocate(treefile_ad(site_nr))
allocate(depofile_ad(site_nr))
allocate(redfile_ad(site_nr))
allocate(litfile_ad(site_nr))
allocate(fl_co2(site_nr))
read(nowunit,'(A)',iostat=ios) specfile(1)
read(nowunit,'(A)') site_name_all
read(nowunit,'(A)') siteall
read(nowunit,'(A)') pathdir1 ! path climate file
read(nowunit,'(A)') pathdir2 ! path soil file
read(nowunit,'(A)') pathdir3 ! path treeini file
read(nowunit,'(A)') pathdir4 ! path management file
read(nowunit,'(A)') pathdir5 ! path deposition file
read(nowunit,'(A)') pathdir6 ! path RedN file
read(nowunit,'(A)') pathdir7 ! path litter file
call errorfile(simfile, ios, nowunit)
! reading control file with site-id,name, climate scenario, soil-id, man-file, treeini-file, dep-file
call testfile(siteall,ex)
if (ex .eqv. .false.) return
nowunit1 = getunit()
open(nowunit1,file=siteall,iostat=ios1,status='old',action='read')
do
READ(nowunit1,'(A)',iostat=ios1) a
IF (a .ne. '!') exit
end do
backspace nowunit1
do i=1,site_nr
read(nowunit1,*,iostat=ios1) sitenum(i),site_name_ad(i), climfile_ad(i),sitefile_ad(i),treefile_ad(i), &
manfile_ad(i),depofile_ad(i),redfile_ad(i),litfile_ad(i), fl_co2(i)
specfile(i) = specfile(1)
standid(i) = sitenum(i)
site_name(i)= trim(site_name_all)//trim(site_name_ad(i))
climfile(i) = trim(pathdir1)//trim(climfile_ad(i))
sitefile(i) = trim(pathdir2)//trim(sitefile_ad(i))
treefile(i) = trim(pathdir3)//trim(treefile_ad(i))
manfile(i) = trim(pathdir4)//trim(manfile_ad(i))
depofile(i) = trim(pathdir5)//trim(depofile_ad(i))
redfile(i) = trim(pathdir6)//trim(redfile_ad(i))
litfile(i) = trim(pathdir7)//trim(litfile_ad(i))
enddo
call errorfile(siteall, ios1, nowunit1)
deallocate(site_name_ad)
deallocate(climfile_ad)
deallocate(sitefile_ad)
deallocate(manfile_ad)
deallocate(treefile_ad)
deallocate(depofile_ad)
deallocate(redfile_ad)
deallocate(litfile_ad)
if (allocated(wpmfile_ad)) deallocate(wpmfile_ad)
close(nowunit1)
CASE (9, 10)
! read once only per climate station
allocate(sitefile(site_nr))
allocate(climfile(site_nr))
allocate(treefile(site_nr))
allocate(manfile(site_nr))
allocate(standid(site_nr))
allocate(latitude(site_nr))
allocate(site_name(site_nr))
allocate(RedN_list(15, site_nr))
RedN_list = -99.9
! read once only
allocate(specfile(1))
allocate(depofile(1))
allocate(redfile(1))
allocate(litfile(1))
allocate(valfile(1))
read(nowunit,'(A)',iostat=ios) specfile(1)
read(nowunit,'(A)') site_name(1)
read(nowunit,'(A)') treefile(1)
read(nowunit,'(A)') manfile(1)
read(nowunit,'(A)') siteall ! control file xxx.con
read(nowunit,'(A)') climall ! climate station with coordiantes
read(nowunit,'(A)') pathdir1 ! path of climate scenarios
read(nowunit,'(A)') pathdir2 ! path of soil file xxx.sop or name of total soil file (flag_multi=8)
read(nowunit,'(A)') climszen ! labeling climate scenarios
read(nowunit,'(A)') text ! degree of climate scenarios
read(nowunit,*) nrreal ! amount of realisations/implementations
if (.not.flag_mult8910) print *, ' >>>foresee message: Input of filenames completed'
depofile(1) = 'dummy.dep'
redfile(1) = 'dummy.red'
litfile(1) = 'dummy.lit'
site_name = site_name(1)
site_name1 = site_name(1)
ilen = len(trim(text))
text = adjustl(text)
nrclim = 0
do while (ilen .gt. 0)
nrclim = nrclim + 1
ihelp = scan(text, ' ')
typeclim(nrclim) = adjustl(text(1:ihelp-1))
text = adjustl(text(ihelp:))
ilen = len(trim(text))
enddo
! processing of nrreal realisations/implementations of climate scenarios
site_anz = nrreal * nrclim * site_nr
allocate(climszenfile(site_nr, nrclim, nrreal))
! define name of output variables
nvar = 1
read(nowunit,*) outvar(nvar)
do while (trim(outvar(nvar)) .ne. 'end')
nvar = nvar + 1
read(nowunit,*) outvar(nvar)
enddo
if (nvar .gt. 1) then
allocate(output_var(nvar-1,1,0:year))
allocate(output_unit(nvar-1))
allocate(climszenres(nvar-1,site_nr,nrclim,nrreal))
output_unit = -99
output_unit_all = -99
helpy = 0
helpi = 0
helpw = 0
do i = 1, nvar-1
select case (trim(outvar(i)))
case ('AET_year','AETyear','aetyear','aet_year','cwb_year','cwbyear','PET_year','PETyear','petyear','pet_year', &
'GPP_year','GPPyear','gppyear','gpp_year','NEP_year','NEPyear','nepyear','nep_year','NPP_year','NPPyear','nppyear','npp_year', &
'perc_year','percyear','temp_year','tempyear','prec_year','precyear', 'resps_year','respsyear','TER_year','TERyear','ter_year','teryear')
flag_cum = 1
helpy = helpy + 1
output_var(i,1,0) = 1.*helpy ! field numbre of yearly values
case ('AET_mon','AETmon','aetmon','aet_mon','cwb_mon','cwbmon','PET_mon','PETmon','petmon','pet_mon', &
'GPP_mon','GPPmon','gppmon','gpp_mon','NEP_mon','NEPmon','nepmon','nep_mon','NPP_mon','NPPmon','nppmon','npp_mon', &
'perc_mon','percmon','temp_mon','tempmon','prec_mon','precmon', 'resps_mon','respsmon','TER_mon','TERmon','ter_mon','termon')
flag_cum = 1
helpi = helpi + 1
output_var(i,1,0) = 1.*helpi ! field numbre of monthly values
case ('AET_week','AETweek','aetweek','aet_week','cwb_week','cwbweek','PET_week','PETweek','petweek','pet_week', &
'GPP_week','GPPweek','gppweek','gpp_week','NEP_week','NEPweek','nepweek','nep_week','NPP_week','NPPweek','nppweek','npp_week', &
'perc_week','percweek','temp_week','tempweek','prec_week','precweek', 'resps_week','respsweek', 'TER_week','TERweek','ter_week','terweek')
flag_cum = 1
helpw = helpw + 1
output_var(i,1,0) = 1.*helpw ! field numbre of weekly values
end select ! outvar
enddo
if (helpy .gt. 0) then
allocate(climszenyear(helpy,site_nr,nrclim,nrreal,year))
endif
if (helpi .gt. 0) then
allocate(climszenmon(helpi,site_nr,nrclim,nrreal,12))
allocate(output_varm(helpi,1,year,12))
endif
if (helpw .gt. 0) then
allocate(climszenweek(helpw,site_nr,nrclim,nrreal,52))
allocate(output_varw(helpw,1,year,52))
endif
endif ! nvar
call errorfile(simfile, ios, nowunit)
! reading file with description of climate stations used
allocate(climnum(3000))
allocate(clim_long(3000))
allocate(clim_lat(3000))
allocate(clim_height(3000))
allocate(clim_nam(3000))
call testfile(climall,ex)
if (ex .eqv. .false.) return
nowunit1 = getunit()
ios1 = 0
open(nowunit1,file=climall,iostat=ios,status='old',action='read')
k=1
do
READ(nowunit1,'(A)',iostat=ios1) a
IF (a .ne. '!') exit
end do
backspace nowunit1
do
read(nowunit1,*,iostat=ios1) climnum(k), clim_long(k),clim_lat(k), clim_height(k)
if(ios1 .lt. 0) exit
k = k+1
end do
anzclim = k-1
ios1 = 0
call errorfile(climall, ios1, nowunit1)
! reading control file with site-id, climate-id, soil-id, gwtabe-id
call testfile(siteall,ex)
if (ex .eqv. .false.) return
nowunit1 = getunit()
open(nowunit1,file=siteall,iostat=ios1,status='old',action='read')
do
READ(nowunit1,'(A)',iostat=ios1) a
IF (a .ne. '!') exit
end do
backspace nowunit1
do i=1,site_nr
call readcon(i, nowunit1)
sitefile(i) = trim(pathdir2)
if(i.gt.1) treefile(i)= treefile(1)
if(i.gt.1) manfile(i) = manfile(1)
k = 1
do while (clim_id(i).ne.climnum(k))
k = k + 1
if (k .gt. anzclim) then
write (unit_err,*)
write (unit_err,*) ' >>>foresee message: Climate ID ', trim(clim_id(i)), ' not in file ',trim(climall)
write (unit_err,*) ' Site number ',sitenum(i)
write (*,*)
write (*,*) ' >>>foresee message: Climate ID ', trim(clim_id(i)), ' not in file ',trim(climall)
write (*,*) ' Site number ',sitenum(i)
print *,' Program will stop!'
flag_end = 4
return
endif
enddo
latitude(i) = clim_lat(k)
do l = 1, nrclim
do j = 1, nrreal
write (helpsim,'(I5)') j
read (helpsim,*) text4
select case (flag_multi)
case (9)
climszenfile(i,l,j) = trim(pathdir1)//trim(typeclim(l))//'/real_'//trim(text4)//'/'//trim(clim_id(i))//trim(climszen)//'.dat'
case (10)
if (j .lt. 10) then
text4 = '00'//text4
else if (j .lt. 100) then
text4 = '0'//text4
endif
climszenfile(i,l,j) = trim(pathdir1)//'/q'//trim(text4)//'/'//trim(clim_id(i))//trim(climszen)//'.dat'
end select
enddo !j
end do !l
enddo
if ((.not.flag_mult8910) .and. (ios1 .lt. 0)) print *, 'no information for site number ', i
call errorfile(siteall, ios1, nowunit1)
deallocate(climnum)
deallocate(clim_long)
deallocate(clim_lat)
deallocate(clim_height)
deallocate(clim_nam)
close(nowunit1)
END SELECT
jpar = 0 ! reset jpar for restore
if(flag_multi .eq. 2)then
read (nowunit,*) step_sum_T,n_T_downsteps,n_T_upsteps
read (nowunit,*) step_fac_P,n_P_downsteps,n_P_upsteps
site_nr = (1+n_T_downsteps+n_T_upsteps) * (1+n_P_downsteps+n_P_upsteps)
repeat_number = site_nr
tspec = specfile(1)
tname = site_name(1)
tclim = climfile(1)
tsite = sitefile(1)
tval = valfile(1)
ttree = treefile(1)
tman = manfile(1)
tdepo = depofile(1)
tred = redfile(1)
tlit = litfile(1)
istand = standid(1)
tsoilid = soilid(1)
deallocate (specfile)
deallocate (site_name)
deallocate (climfile)
deallocate (clim_id)
deallocate (sitefile)
deallocate (valfile)
deallocate (treefile)
deallocate (manfile)
deallocate (depofile)
deallocate (redfile)
deallocate (litfile)
deallocate (wpmfile)
deallocate (standid)
deallocate (soilid)
allocate (specfile(site_nr))
allocate (site_name(site_nr))
allocate (climfile(site_nr))
allocate (clim_id(site_nr))
allocate (sitefile(site_nr))
allocate (valfile(site_nr))
allocate (treefile(site_nr))
allocate (manfile(site_nr))
allocate (depofile(site_nr))
allocate (standid(site_nr))
allocate (soilid(site_nr))
allocate (redfile(site_nr))
allocate (litfile(site_nr))
allocate (wpmfile(site_nr))
specfile = tspec
site_name = tname
climfile = tclim
sitefile = tsite
valfile = tval
treefile = ttree
manfile = tman
depofile = tdepo
redfile = tred
litfile = tlit
standid = istand
soilid = tsoilid
call errorfile(simfile, ios, nowunit)
endif ! flag_multi = 2
close(nowunit)
END subroutine readsim
!**************************************************************
SUBROUTINE allofile
use data_simul
implicit none
allocate(site_name(site_nr))
allocate(climfile(repeat_number))
allocate(sitefile(site_nr))
allocate(valfile(site_nr))
allocate(treefile(repeat_number))
allocate(standid(repeat_number))
allocate(manfile(repeat_number))
allocate(depofile(repeat_number))
allocate(redfile(repeat_number))
allocate(litfile(repeat_number))
allocate(wpmfile(repeat_number))
allocate(specfile(repeat_number))
end subroutine allofile
!**************************************************************
SUBROUTINE readcon (ii, unitnum)
use data_depo
use data_out
use data_par
use data_simul
use data_site
implicit none
integer ii, ihelp, unitnum, ios1, ilen, helpi
character(150):: text
character(10):: helpsim, text4
read(unitnum,'(A)',iostat=ios1) text
! text disassemble
! sitenum
ilen = len(trim(text))
text = adjustl(text)
ihelp = verify(text, charset)
text4 = adjustl(text(1:ihelp-1))
sitenum(ii) = text4
text = adjustl(text(ihelp+1:))
ilen = len(trim(text))
ihelp = scan(text, charset)
text = text(ihelp:)
ihelp = verify(text, charset)
clim_id(ii) = adjustl(text(1:ihelp-1))
text = adjustl(text(ihelp+1:))
ilen = len(trim(text))
ihelp = scan(text, charset)
text = text(ihelp:)
ihelp = verify(text, charset)
soilid(ii) = adjustl(text(1:ihelp-1))
! gwtable
text = adjustl(text(ihelp+1:))
ilen = len(trim(text))
ihelp = scan(text, charset)
text = text(ihelp:)
ihelp = verify(text, charset)
text4 = adjustl(text(1:ihelp-1))
write (helpsim,'(A)') text4
read (helpsim,*) gwtable(ii)
! standid
text = adjustl(text(ihelp+1:))
ilen = len(trim(text))
ihelp = scan(text, charset)
text = text(ihelp:)
ihelp = verify(text, charset)
text4 = adjustl(text(1:ihelp-1))
standid(ii) = text4
! deposition
text = adjustl(text(ihelp+1:))
ilen = len(trim(text))
if (ilen .gt. 0) then
text = adjustl(text)
ihelp = verify(text, charset)
text4 = adjustl(text(1:ihelp-1))
write (helpsim,'(A)') text4
read (helpsim,*) NOdep(ii) ! hand over in readdepo as concentration
text = adjustl(text(ihelp+1:))
ilen = len(trim(text))
ihelp = scan(text, charset)
text = text(ihelp:)
ihelp = verify(text, charset)
text4 = adjustl(text(1:ihelp-1))
write (helpsim,'(A)') text4
read (helpsim,*) NHdep(ii) ! hand over in readdepo as concentration
! RedN
text = adjustl(text(ihelp+1:))
ilen = len(trim(text))
do while (ilen .gt. 0)
ihelp = verify(text, charset)
text4 = adjustl(text(1:ihelp-1))
write (helpsim,'(A)') text4
read (helpsim,*) helpi
text = adjustl(text(ihelp+1:))
ihelp = verify(text, charset)
text4 = adjustl(text(1:ihelp-1))
write (helpsim,'(A)') text4
read (helpsim,*) RedN_list(helpi, ii)
text = adjustl(text(ihelp+1:))
ilen = len(trim(text))
enddo
else
NOdep(ii) = 0.
NHdep(ii) = 0.
endif
End SUBROUTINE readcon
!*****************************************************************!
!* *!
!* 4C (FORESEE) Simulation Model *!
!* *!
!* *!
!* Subroutines for: *!
!* Root distribution *!
!* *!
!* - ROOT_DISTR *!
!* - ROOT_EFF *!
!* - ROOT_DEPTH *!
!* - ROOT_INI *!
!* - DEALLOC_ROOT *!
!* - ROOTC_NEW (nicht benutzt wegen Problemen bei Verkettung) *!
!* - CR_DEPTH *!
!* *!
!* Copyright (C) 1996-2018 *!
!* Potsdam Institute for Climate Impact Reserach (PIK) *!
!* Authors and contributors see AUTHOR file *!
!* This file is part of 4C and is licensed under BSD-2-Clause *!
!* See LICENSE file or under: *!
!* http://www.https://opensource.org/licenses/BSD-2-Clause *!
!* Contact: *!
!* https://gitlab.pik-potsdam.de/foresee/4C *!
!* *!
!*****************************************************************!
SUBROUTINE root_distr
! Calculation of root distribution for each cohorte
use data_simul
use data_soil
use data_stand
use data_par
use data_species
implicit none
integer specn ! species type (number)
integer i, j, nj, k, jlay
integer nr ! aux. var. for nroot (rooting depth)
integer rkind ! kind of calculation of root depth
real frtrel_1, frtrel_j ! rel fine root fraction of previous layer
real frtrel_s ! Sum of fine root fractions
real radius ! radius of cylyndric space created by roots of the root length density
real beta ! base of power
real help
real alpha, b ! Parameters for Arora function
real troot2 ! theoretical root biomass of population (coarse and fine roots) only for Arora funktion spereated according to cohorts [kg/m]
real :: part_coef=0.0 ! Verteilungskoeffizient um Verhltnis zwischen fr_loss und redis zu bestimmen
real, dimension (1:nlay) :: fr_loss1, valspace, frtrelcoh !auxiliary vectors
rkind = rdepth_kind
if ((anz_tree + anz_sveg) .eq. 0) return
select case (flag_wurz)
case (0)
root_fr = 0.
zeig => pt%first
do while (associated(zeig))
call root_depth (rkind, zeig%coh%species, zeig%coh%x_age, zeig%coh%height, zeig%coh%x_frt, zeig%coh%x_crt, nr, troot2, zeig%coh%x_rdpt, zeig%coh%nroot)
zeig%coh%nroot = nr
zeig%coh%frtrel = thick/depth(nr)
specn = zeig%coh%species
do j = 1, nr
root_fr(j) = root_fr(j) + zeig%coh%frtrel(j) * zeig%coh%ntreeA
enddo
do j = nr+1, nlay
zeig%coh%frtrel(j) = 0.
enddo
zeig%coh%rooteff = 0. ! zero after use
zeig => zeig%next
enddo
case (1) ! Funktion
root_fr = 0.
zeig => pt%first
do while (associated(zeig))
call root_depth (rkind, zeig%coh%species, zeig%coh%x_age, zeig%coh%height, zeig%coh%x_frt, zeig%coh%x_crt, nr, troot2, zeig%coh%x_rdpt, zeig%coh%nroot) !nderung MG: bergabe von Grob und Feinwurzelmasse an root_depth
zeig%coh%nroot = nr
specn = zeig%coh%species
if (specn .eq. 2 .or. specn .eq. 3) then
beta = 0.976
else
beta = 0.966
endif
frtrel_1 = 1.
zeig%coh%frtrel = 0.
do j=1,nr
frtrel_j = beta ** depth(j)
zeig%coh%frtrel(j) = frtrel_1 - frtrel_j
frtrel_1 = frtrel_j
enddo
frtrel_s = SUM(zeig%coh%frtrel)
frtrel_s = 1./frtrel_s
do j=1,nr
! scaling of root distribution
zeig%coh%frtrel(j) = zeig%coh%frtrel(j) * frtrel_s
root_fr(j) = root_fr(j) + zeig%coh%frtrel(j) * zeig%coh%ntreeA
enddo
zeig%coh%rooteff = 0. ! zero after use
zeig => zeig%next
enddo
case (2) ! read/use default distribution; not changed
root_fr = 0.
zeig => pt%first
do while (associated(zeig))
if (zeig%coh%frtrel(1) .gt. 0.) then
do j = 1,nroot_max
root_fr(j) = root_fr(j) + zeig%coh%frtrel(j) * zeig%coh%ntreeA
enddo
else
root_fr = 0.
call root_depth (1, zeig%coh%species, zeig%coh%x_age, zeig%coh%height, zeig%coh%x_frt, zeig%coh%x_crt, nr, troot2, zeig%coh%x_rdpt, zeig%coh%nroot)
zeig%coh%nroot = nr
specn = zeig%coh%species
if (specn .eq. 2 .or. specn .eq. 3) then
beta = 0.98
else
beta = 0.967
endif
frtrel_1 = 1.
zeig%coh%frtrel = 0.
do j=1,nr
frtrel_j = beta ** depth(j)
zeig%coh%frtrel(j) = frtrel_1 - frtrel_j
frtrel_1 = frtrel_j
enddo
frtrel_s = SUM(zeig%coh%frtrel)
frtrel_s = 1./frtrel_s
do j=1,nr
zeig%coh%frtrel(j) = zeig%coh%frtrel(j) * frtrel_s
root_fr(j) = root_fr(j) + zeig%coh%frtrel(j) * zeig%coh%ntreeA
enddo
endif
zeig%coh%rooteff = 0. ! zero after use
zeig => zeig%next
enddo
case (3)
root_fr = 0.
rkind=5
zeig => pt%first
do while (associated(zeig))
call root_depth (rkind, zeig%coh%species, zeig%coh%x_age, zeig%coh%height, zeig%coh%x_frt, zeig%coh%x_crt, nr, troot2, zeig%coh%x_rdpt, zeig%coh%nroot) !nderung MG: bergabe von Grob und Feinwurzelmasse an root_depth
zeig%coh%nroot = nr
specn = zeig%coh%species
alpha=0.7
if (specn .eq. 2 .or. specn .eq. 3 .or. specn .eq. 6 .or. specn .eq. 7) then
b = 7.95
else
b = 10.91
endif
frtrel_1 = 1.
zeig%coh%frtrel = 0.
do j=1,nr
! root distribution (Arora et al., 2003)
frtrel_j = exp((-b/troot2**alpha)*(depth(j)/100))
zeig%coh%frtrel(j) = frtrel_1 - frtrel_j
frtrel_1 = frtrel_j
enddo
frtrel_s = SUM(zeig%coh%frtrel)
frtrel_s = 1./frtrel_s
do j=1,nr
! scaling of root distribution
zeig%coh%frtrel(j) = zeig%coh%frtrel(j) * frtrel_s
root_fr(j) = root_fr(j) + zeig%coh%frtrel(j) * zeig%coh%ntreeA
enddo
zeig%coh%rooteff = 0. ! zero after use
zeig => zeig%next
enddo
case(4) ! TRAP-model Rasse et al. (2001)
root_fr = 0.
rkind = 6
fr_loss1= 0
k = 0
zeig => pt%first
do while (associated(zeig))
k=k+1
zeig%coh%x_rdpt=gr_depth(k)
specn = zeig%coh%species
if (specn .eq. 12) then
continue
endif
call root_depth (rkind, specn, zeig%coh%x_age, zeig%coh%height, zeig%coh%x_frt, zeig%coh%x_crt, nr, troot2, zeig%coh%x_rdpt, zeig%coh%nroot)
zeig%coh%nroot = nr
frtrel_1 = 1.
zeig%coh%frtrel = 0.
do j=1,nr
if (j .eq. 1) then
zeig%coh%frtrel(j) = (zeig%coh%x_rdpt**3-(zeig%coh%x_rdpt-depth(j))**3)/zeig%coh%x_rdpt**3
elseif (j .eq. nr) then
zeig%coh%frtrel(j)= frtrel_1
else
zeig%coh%frtrel(j) = ((zeig%coh%x_rdpt-depth(j-1))**3-((zeig%coh%x_rdpt-depth(j))**3))/zeig%coh%x_rdpt**3
endif
frtrel_1 = frtrel_1-zeig%coh%frtrel(j)
enddo
frtrel_s = SUM(zeig%coh%frtrel)
frtrel_s = 1./frtrel_s
zeig%coh%frtrel = zeig%coh%frtrel * frtrel_s
fr_loss1 = zeig%coh%frtrel
fr_loss = zeig%coh%frtrel*svar(specn)%Smean(1:nlay)
fr_loss = part_coef*(fr_loss1-fr_loss)
redis = zeig%coh%frtrel*svar(specn)%Smean(1:nlay)
redis = part_coef*(fr_loss1-redis)
do j=1,nr
! scaling of root distribution
if (sum(svar(specn)%Smean(1:nr)) .lt. 0.0001) then
zeig%coh%frtrel(j) = 0.
else
zeig%coh%frtrel(j) = zeig%coh%frtrel(j)*svar(specn)%Smean(j)+(sum(redis)*svar(specn)%Smean(j)/sum(svar(specn)%Smean(1:nr)))
endif
enddo
frtrel_s = SUM(zeig%coh%frtrel)
if (frtrel_s .lt. 1.E-6) then
do j=1,nr
zeig%coh%frtrel(j) = 0
enddo
else
frtrel_s = 1./frtrel_s
do j=1,nr
! scaling of root distribution
zeig%coh%frtrel(j) = zeig%coh%frtrel(j) * frtrel_s
root_fr(j) = root_fr(j) + zeig%coh%frtrel(j) * zeig%coh%ntreeA
enddo
endif
zeig%coh%rooteff = 0.
zeig => zeig%next
enddo
case(5)
root_fr = 0.
rkind=5
zeig => pt%first
do while (associated(zeig))
call root_depth (rkind, zeig%coh%species, zeig%coh%x_age, zeig%coh%height, zeig%coh%x_frt, zeig%coh%x_crt, nr, troot2, zeig%coh%x_rdpt, zeig%coh%nroot) !nderung MG: bergabe von Grob und Feinwurzelmasse an root_depth
zeig%coh%nroot = nr
specn = zeig%coh%species
if (specn .eq. 2 .or. specn .eq. 3) then
beta = 0.98
else
beta = 0.967
endif
frtrel_1 = 1.
zeig%coh%frtrel = 0.
do j=1,nr
! root distribution (Jackson et al., 1996): beta ** depth
frtrel_j = beta ** depth(j)
zeig%coh%frtrel(j) = frtrel_1 - frtrel_j
frtrel_1 = frtrel_j
enddo
frtrel_s = SUM(zeig%coh%frtrel)
frtrel_s = 1./frtrel_s
do j=1,nr
! scaling of root distribution
zeig%coh%frtrel(j) = zeig%coh%frtrel(j) * frtrel_s
root_fr(j) = root_fr(j) + zeig%coh%frtrel(j) * zeig%coh%ntreeA
enddo
zeig%coh%rooteff = 0. ! zero after use
zeig => zeig%next
enddo
case(6)
root_fr = 0.
rkind=7
zeig => pt%first
k=1
do while (associated(zeig))
zeig%coh%x_rdpt=gr_depth(k)
call root_depth (rkind, zeig%coh%species, zeig%coh%x_age, zeig%coh%height, zeig%coh%x_frt, zeig%coh%x_crt, nr, troot2, zeig%coh%x_rdpt,zeig%coh%nroot) !nderung MG: bergabe von Grob und Feinwurzelmasse an root_depth
if (time .le. 1) then
root_lay(k)=nr
else
root_lay(k)=root_lay(k)+nr
endif
if (root_lay(k) .gt. nroot_max) root_lay(k) = nroot_max
zeig%coh%nroot=root_lay(k)
nr=root_lay(k)
specn = zeig%coh%species
if (specn .eq. 2 .or. specn .eq. 3) then
beta = 0.98
else
beta = 0.967
endif
frtrel_1 = 1.
zeig%coh%frtrel = 0.
do j=1,nr
! root distribution (Jackson et al., 1996): beta ** depth
frtrel_j = beta ** depth(j)
zeig%coh%frtrel(j) = frtrel_1 - frtrel_j
frtrel_1 = frtrel_j
enddo
frtrel_s = SUM(zeig%coh%frtrel)
frtrel_s = 1./frtrel_s
do j=1,nr
! scaling of root distribution
zeig%coh%frtrel(j) = zeig%coh%frtrel(j) * frtrel_s
root_fr(j) = root_fr(j) + zeig%coh%frtrel(j) * zeig%coh%ntreeA
enddo
zeig%coh%rooteff = 0. ! zero after use
k=k+1
zeig => zeig%next
enddo
case (7) ! Funktion nach Jackson (1996) mit fester Tiefe
root_fr = 0.
nr = nroot_max
zeig => pt%first
do while (associated(zeig))
zeig%coh%nroot = nroot_max
specn = zeig%coh%species
if (specn .eq. 2 .or. specn .eq. 3) then
beta = 0.98
else
beta = 0.967
endif
frtrel_1 = 1.
zeig%coh%frtrel = 0.
do j=1,nr
! root distribution (Jackson et al., 1996): beta ** depth
frtrel_j = beta ** depth(j)
zeig%coh%frtrel(j) = frtrel_1 - frtrel_j
frtrel_1 = frtrel_j
enddo
frtrel_s = SUM(zeig%coh%frtrel)
frtrel_s = 1./frtrel_s
do j=1,nr
! scaling of root distribution
zeig%coh%frtrel(j) = zeig%coh%frtrel(j) * frtrel_s
root_fr(j) = root_fr(j) + zeig%coh%frtrel(j) * zeig%coh%ntreeA
enddo
zeig%coh%rooteff = 0. ! zero after use
zeig => zeig%next
enddo
end select
root_fr = root_fr / (anz_tree + anz_sveg) ! normieren
zeig => pt%first
do while (associated(zeig))
help = zeig%coh%x_frt * zeig%coh%ntreea
do jlay = 1, nroot_max
if (root_fr(jlay) .gt. zero) then
zeig%coh%frtrelc(jlay) = zeig%coh%frtrel(jlay) * help / (root_fr(jlay) * totfrt_p) ! mass of root part of total cohort in a layer
else
zeig%coh%frtrelc(jlay) = 0.
endif
enddo
zeig => zeig%next
enddo
if (flag_wred .eq. 9) then
!Calculation of root length density
zeig => pt%first
do while (associated(zeig))
if (specn .le. nspec_tree) then
radius = (zeig%coh%diam/6.)*100. ! formula bhd [cm]/6 yield radius in [m] so *100 (aus Wagner 2005)
valspace = pi * radius**2 * thick
else
valspace = kpatchsize * 100*100 * thick
endif !circular cylinder
frtrelcoh = zeig%coh%frtrel * zeig%coh%x_frt * zeig%coh%ntreea
if (zeig%coh%ntreea .gt. 0 .AND. minval(valspace(1:nr)) .gt. 0.) then
zeig%coh%rld = (frtrelcoh*1000*spar(specn)%spec_rl*100)/(valspace* zeig%coh%ntreea) !in cm root length /cm3 volume
else
zeig%coh%rld = -99
endif
zeig => zeig%next
enddo
endif
if (allocated(wat_root)) wat_root=0.
END subroutine root_distr
!**************************************************************
SUBROUTINE root_eff
! Calculation of root efficiency in dependence of water and N uptake
use data_soil
use data_soil_cn
use data_stand
implicit none
integer i,j
integer nr ! layer number of root depth
real hroot ! root depth
real fdc ! discounting function describing transport resistance
real gw, gN ! accounting functions of water resp. N uptake
real glimit ! limitation constant for use of rooting layer
glimit = 0. ! min. assumption
i = 1
zeig => pt%first
do while (associated(zeig))
nr = zeig%coh%nroot
do j = 1,nr
fdc = 50./depth(j)
if (zeig%coh%supply .gt. 1e-06) then
gw = xwatupt(i,j)/zeig%coh%supply
gw = gw / thick(j)
else
gw = 0.
endif
gw = xwatupt(i,j)
zeig%coh%rooteff(j) = zeig%coh%rooteff(j) + gw
enddo
zeig%coh%watuptc = zeig%coh%watuptc + zeig%coh%supply
i = i + 1
zeig => zeig%next
enddo
END subroutine root_eff
!**************************************************************
SUBROUTINE root_depth(rkind, specn, agec, heightc, froot, croot, nr, troot2, crdepth, nrooth)
use data_simul
use data_soil
use data_soil_cn
use data_stand
implicit none
! input:
integer rkind ! kind of calculation of root depth
integer specn ! species number
integer agec ! tree age
integer nrooth ! for case(7)
real heightc, froot, croot ! tree height of cohort, fine and coarse root mass[kg]/ tree
real troot, troot1,troot2, troot_stand ! total root mass 1./tree 2./ha according to cohorts 3. /m according to cohorts Kohorten 4./ha of 4C
real :: wat_demand ! query whether one cohort was unable to cover water demand with the from root penetrated soil layer
real rootingdepth, crdepth ! rooting depth nach Arora function in [m]
real alpha, b ! parameter for Arorafunction
! output:
integer nr ! last root layer
integer i,j
real hc, wtiefe
real, dimension(4,3):: rdepth ! effective rooting depth depending on tree age and soil texture
! data from Raissi et al. (2001)
data rdepth /85, 130, 175, 95, 140, 185, 135, 180, 225, 90, 110, 135/
select case (rkind)
case (1)
! nroot depending on tree height and soil profile depth
nr = 1
do j=1,nlay
if (heightc .ge. depth(j)) nr = j
enddo
if (nr .gt. nroot_max) nr = nroot_max
crdepth = depth(nr)
case (2)
! fixed nroot for all adult cohorts
if (agec .lt. 10) then
nr = 1
wtiefe=depth(nroot_max)/(1+exp(1.5-0.55*real(agec))) ! logicla function to determin root depth [cm] until age 10
do j=1,nlay
if (wtiefe .ge. depth(j)) nr = j
enddo
if (nr .gt. nroot_max) nr = nroot_max
else
nr = nroot_max
endif
crdepth = depth(nr)
case (3)
! nroot depending on root efficiency
nr = nlay
crdepth = depth(nr)
case (4)
! nroot depending on soil texture and age
if (agec .lt. 15) then
i = 1
else if (agec .gt. 45) then
i = 3
else
i = 2
endif
nr = 1
if (heightc .gt. rdepth(s_typen,i)) then
hc = rdepth(s_typen,i)
else
hc = heightc
endif
do j=1,nlay
if (hc .ge. depth(j)) nr = j
enddo
if (nr .gt. nroot_max) nr = nroot_max
case (5)
alpha=0.7
if (specn .eq. 2 .or. specn .eq. 3 .or. specn .eq. 6 .or. specn .eq. 7) then
b = 7.95
else
b = 10.91
endif
troot=froot+croot
troot1=troot*anz_tree_ha ! total root biomass per ha if population of a cohort is soley comprised of trees
troot_stand=totfrt+totcrt ! total root biomass per ha calculated by 4C
troot2=troot1/10000 ! conversion to m
rootingdepth=(3*troot2**alpha)/b !Arora function
nr = 1
do j=1,nlay
if (rootingdepth*100 .ge. depth(j)) nr = j
enddo
if (nr .gt. nroot_max) nr = nroot_max
crdepth = depth(nr)
case (6) !Calculation in soil.f in cr_depth
if (crdepth .eq.0) then
! nroot depending on soil texture and age
if (agec .lt. 15) then
i = 1
else if (agec .gt. 45) then
i = 3
else
i = 2
endif
nr = 1
if (heightc .gt. rdepth(s_typen,i)) then
crdepth = rdepth(s_typen,i)
else
crdepth = heightc
endif
endif
do j=1,nlay
if (depth(j) .le. crdepth) nr=j
enddo
if (nr .gt. nroot_max) nr = nroot_max
case (7) !further growth only if next layer bears water
wat_demand=maxval(wat_root)
if (time .le. 1) then
crdepth=30.0
do j=1,nlay
if (depth(j) .le. 30.) nr=j
enddo
else
if (wat_demand .gt. 0) then
nr=1
else
nr=0
endif
endif
if (nr .gt. nroot_max) nr = nroot_max
crdepth = depth(nr)
end select
if (crdepth < 0.) then
continue
endif
END subroutine root_depth
!**************************************************************
SUBROUTINE root_ini
! Allocation and initialisation of root distribution
use data_simul
use data_soil
use data_species
use data_stand
implicit none
integer i, j, nj, rkind, hspec, ios
integer unit_root
integer nr ! aux. var. for nroot (rooting depth)
real frtrel_j, frtrel_1 ! rel fine root fraction of previous layer
real frtrel_s ! Sum of fine root fractions
real hfrt, help, troot2
real, allocatable, dimension(:,:):: hd,hr
integer, allocatable, dimension(:):: nlspec
character text
character (150) file_root
logical :: pruefer=.false.
root_fr = 0.
if (wlam(3) .gt. 0.4) then
s_typen = 1 ! sand
else if (wlam(3) .le. 0.15) then
s_typen = 4 ! clay
else if (wlam(3) .gt. 0.25) then
s_typen = 3 ! silt
else
s_typen = 2 ! loam
endif
if (nroot_max .lt. 0) then
nroot_max = 1
rkind = 4
else
rkind = 2
endif
rdepth_kind = rkind
select case (flag_wurz)
case (0,1,5)
if (anz_tree .gt. 0 .or. (anz_tree.eq.0 .and. flag_sveg .eq.1)) call root_distr
case (3,4,6)
!intercept the case that the ground vegetatuin is already initialised but no trees have been initialised so cohorts are not finalised
if (anz_tree.eq.0 .and. flag_sveg .eq.1) then
if (.not. allocated(wat_root)) then
allocate(wat_root(anz_coh))
wat_root=0.
allocate(root_lay(anz_coh))
root_lay=0
allocate(gr_depth(anz_coh))
gr_depth=0.
Pruefer=.true.
endif
else
if (Pruefer .OR. (.not. allocated(wat_root))) then
if (Pruefer) deallocate(wat_root)
allocate(wat_root(anz_coh))
wat_root=0.
if (Pruefer) deallocate(root_lay)
allocate(root_lay(anz_coh))
root_lay=0
if (Pruefer) deallocate(gr_depth)
allocate(gr_depth(anz_coh))
gr_depth=0.
Pruefer=.false.
endif
endif
if (anz_tree .gt. 0 .or. (anz_tree.eq.0 .and. flag_sveg .eq.1)) call root_distr
case (2)
! read root distribution once in the beginning alone
write (*,*)
write (*,'(A)', advance='no') 'Define root distribution, name of input file: '
read (*,'(A)') file_root
unit_root = getunit()
open (unit_root, file=trim(file_root), status='unknown')
allocate (hd(0:40, 1:nspecies))
allocate (hr(0:40, 1:nspecies))
allocate (nlspec(nspecies))
do
read (unit_root,'(A)') text
if (text .ne. '!') then
backspace(unit_root);exit
endif
enddo
ios = 0
hd = 0.
hr = 0.
nlspec = 0
do while (ios .ge. 0)
j = 1
read (unit_root, *, iostat=ios) hspec
if (ios .lt. 0) exit
read (unit_root, *, iostat=ios) hd(1,hspec), hr(1,hspec)
do while (hd(j,hspec) .ge. 0.)
nlspec(hspec) = j
j = j+1
read (unit_root, *, iostat=ios) hd(j,hspec), hr(j,hspec)
enddo
if (hd(j,hspec) .lt. depth(nlay)) hd(j,hspec) = depth(nlay)
enddo
close (unit_root)
zeig => pt%first
do while (associated(zeig))
ns = zeig%coh%species
zeig%coh%frtrel = 0.
! rel. root distribution of cohorts to species allocated
if (nlspec(ns) .gt. 0) then
frtrel_j = 0.
hfrt = 0.
j= 1
do while (hd(j,ns) .lt. depth(1))
hfrt = hfrt + hr(j,ns)
j = j+1
enddo
frtrel_j = hr(j,ns) / (hd(j,ns)-hd(j-1,ns))
hfrt = hfrt + frtrel_j * (depth(1)-hd(j-1,ns))
zeig%coh%frtrel(1) = hfrt
nj = j
do i=2,nlay
hfrt = 0.
do j = nj,nlspec(ns)+1
if (hd(j,ns) .lt. depth(i)) then
frtrel_j = hr(j,ns) / (hd(j,ns)-hd(j-1,ns))
hfrt = hfrt + frtrel_j * (hd(j,ns)-depth(i-1))
else
if (depth(i-1) .gt. hd(j-1,ns)) then
help = depth(i)-depth(i-1)
else
help = depth(i)-hd(j-1,ns)
endif
frtrel_j = hr(j,ns) / (hd(j,ns)-hd(j-1,ns))
hfrt = hfrt + frtrel_j * help
nj = j
exit
endif
enddo
zeig%coh%frtrel(i) = hfrt
enddo
else
continue
endif
frtrel_s = SUM(zeig%coh%frtrel)
zeig%coh%rooteff = 0.
zeig => zeig%next
enddo
rdepth_kind = 2
end select
END subroutine root_ini
!**************************************************************
SUBROUTINE dealloc_root
use data_simul
use data_stand
if (flag_wurz .eq. 1) then
zeig => pt%first
do while (associated(zeig))
deallocate (zeig%coh%frtrel)
deallocate (zeig%coh%rooteff)
zeig => zeig%next
enddo
endif
END subroutine dealloc_root
!**************************************************************
SUBROUTINE rootc_new (zeig1)
! root initialisation of a new cohort
use data_stand
use data_soil
implicit none
type(coh_obj), pointer :: zeig1 ! pointer variable for cohorts
real troot2
integer j, nr
allocate (zeig1%coh%frtrel(nlay))
allocate (zeig1%coh%rooteff(nlay))
zeig1%coh%frtrel = 0. ! initialisation
call root_depth (1, zeig1%coh%species, zeig1%coh%x_age, zeig1%coh%height, zeig1%coh%x_frt, zeig1%coh%x_crt, nr, troot2, zeig%coh%x_rdpt, zeig%coh%nroot)
zeig1%coh%nroot = nr
do j=1,nr
zeig1%coh%rooteff = 1. ! assumption for the first use
enddo
do j=nr+1, nlay
zeig1%coh%rooteff = 0. ! layers with no roots
enddo
END subroutine rootc_new
!**************************************************************
SUBROUTINE cr_depth
! Calculation of the rooting depth after Rasse et al. 2001
use data_soil
use data_stand
use data_simul
use data_climate
use data_species
implicit none
real :: vcr ! growth rate rootdepth [cm]
integer :: j,k
vcr=0.
select case (flag_wurz)
case(4,6)
zeig => pt%first
k=1
do while (associated(zeig))
do j=1,nlay
if (zeig%coh%x_rdpt .lt. depth(j)) then
if (zeig%coh%x_age .le. 100) then
if (j .eq. 1) then
vcr=spar(zeig%coh%species)%v_growth*((100-real(zeig%coh%x_age))/100)*svar(zeig%coh%species)%Rstress(j)
zeig%coh%x_rdpt=zeig%coh%x_rdpt+(vcr/recs(time))
gr_depth(k)=zeig%coh%x_rdpt
exit
else
vcr=spar(zeig%coh%species)%v_growth*((100-real(zeig%coh%x_age))/100)*svar(zeig%coh%species)%Rstress(j)
zeig%coh%x_rdpt=zeig%coh%x_rdpt+(vcr/recs(time))
gr_depth(k)=zeig%coh%x_rdpt
exit
endif
endif
endif
enddo
if (zeig%coh%x_rdpt .gt. depth(nroot_max)) zeig%coh%x_rdpt = depth(nroot_max)
k=k+1
zeig => zeig%next
enddo
end select
END subroutine cr_depth
!*******************************************************************************
File added
// Generated by ResEdit 1.5.9
// Copyright (C) 2006-2011
// http://www.resedit.net
#include <windows.h>
#include <commctrl.h>
#include <richedit.h>
#include "4C_dialogs.h"
//
// Bitmap resources
//
LANGUAGE LANG_GERMAN, SUBLANG_GERMAN
IDB_BITMAP1 BITMAP "4c_logo_klein.bmp"
//
// Dialog resources
//
LANGUAGE LANG_GERMAN, SUBLANG_GERMAN
IDD_4C_coh_daily DIALOG 100, 0, 540, 213
STYLE DS_MODALFRAME | DS_SETFONT | WS_CAPTION | WS_POPUP | WS_SYSMENU
CAPTION "4C"
FONT 8, "MS Sans Serif"
{
DEFPUSHBUTTON "OK", ID_DAILYCOH_BUTTON_OK, 380, 190, 50, 14
PUSHBUTTON "Cancel", ID_CANCEL_OUTF, 439, 190, 50, 14
GROUPBOX "", IDC_STATIC_year, 10, 10, 510, 170
AUTOCHECKBOX "", IDC_CHECK_y1, 26, 30, 271, 8
AUTOCHECKBOX "", IDC_CHECK_y2, 26, 45, 271, 8
AUTOCHECKBOX "", IDC_CHECK_y3, 26, 60, 271, 8
AUTOCHECKBOX "", IDC_CHECK_y4, 26, 75, 271, 8
AUTOCHECKBOX "", IDC_CHECK_y5, 25, 90, 271, 8
AUTOCHECKBOX "", IDC_CHECK_y6, 26, 105, 271, 8
AUTOCHECKBOX "", IDC_CHECK_y7, 26, 120, 271, 8
AUTOCHECKBOX "", IDC_CHECK_y8, 26, 135, 271, 8
AUTOCHECKBOX "", IDC_CHECK_y9, 26, 150, 271, 8
AUTOCHECKBOX "", IDC_CHECK_y10, 26, 165, 217, 8
AUTOCHECKBOX "", IDC_CHECK_y11, 295, 30, 217, 8
AUTOCHECKBOX "", IDC_CHECK_y12, 295, 45, 217, 8
AUTOCHECKBOX "", IDC_CHECK_y13, 295, 60, 217, 8
AUTOCHECKBOX "", IDC_CHECK_y14, 295, 75, 217, 8
AUTOCHECKBOX "", IDC_CHECK_y15, 295, 90, 217, 8
AUTOCHECKBOX "", IDC_CHECK_y16, 295, 105, 217, 8
LTEXT " Choose daily cohort output files ", IDC_STATIC_yfile, 25, 10, 107, 8, SS_LEFT
AUTOCHECKBOX "", IDC_CHECK_y17, 295, 120, 217, 8
AUTOCHECKBOX "", IDC_CHECK_y18, 295, 135, 217, 8
PUSHBUTTON "Select all", ID_DAILYCOH_BUTTON_SELECT, 321, 190, 50, 14
PUSHBUTTON "Deselect all", ID_DAILYCOH_BUTTON_DESELECT, 262, 190, 50, 14
AUTOCHECKBOX "", IDC_CHECK_y19, 295, 150, 217, 8
}
LANGUAGE LANG_GERMAN, SUBLANG_GERMAN
IDD_4C_coh_yearly DIALOG 0, 0, 718, 318
STYLE DS_MODALFRAME | DS_SETFONT | WS_CAPTION | WS_POPUP | WS_SYSMENU
CAPTION "4C"
FONT 8, "MS Sans Serif"
{
DEFPUSHBUTTON "OK", ID_YEARLYCOH_BUTTON_OK, 559, 290, 50, 14
PUSHBUTTON "Cancel", ID_CANCEL_OUTF, 625, 290, 50, 14
GROUPBOX "", IDC_STATIC_year, 15, 10, 683, 275
AUTOCHECKBOX "", IDC_CHECK_y1, 21, 30, 222, 8
AUTOCHECKBOX "", IDC_CHECK_y2, 20, 45, 222, 8
AUTOCHECKBOX "", IDC_CHECK_y3, 21, 60, 222, 8
AUTOCHECKBOX "", IDC_CHECK_y4, 21, 75, 222, 8
AUTOCHECKBOX "", IDC_CHECK_y5, 21, 90, 222, 8
AUTOCHECKBOX "", IDC_CHECK_y6, 21, 105, 222, 8
AUTOCHECKBOX "", IDC_CHECK_y7, 21, 120, 222, 8
AUTOCHECKBOX "", IDC_CHECK_y8, 21, 135, 222, 8
AUTOCHECKBOX "", IDC_CHECK_y9, 21, 150, 222, 8
AUTOCHECKBOX "", IDC_CHECK_y10, 21, 165, 222, 8
AUTOCHECKBOX "", IDC_CHECK_y11, 21, 180, 222, 8
AUTOCHECKBOX "", IDC_CHECK_y12, 21, 195, 222, 8
AUTOCHECKBOX "", IDC_CHECK_y13, 21, 210, 222, 8
AUTOCHECKBOX "", IDC_CHECK_y14, 21, 225, 222, 8
AUTOCHECKBOX "", IDC_CHECK_y15, 21, 240, 222, 8
AUTOCHECKBOX "", IDC_CHECK_y16, 21, 255, 222, 8
AUTOCHECKBOX "", IDC_CHECK_y17, 21, 270, 222, 8
AUTOCHECKBOX "", IDC_CHECK_y18, 244, 30, 222, 8
AUTOCHECKBOX "", IDC_CHECK_y19, 244, 45, 222, 8
AUTOCHECKBOX "", IDC_CHECK_y20, 244, 60, 222, 8
AUTOCHECKBOX "", IDC_CHECK_y21, 244, 75, 222, 8
AUTOCHECKBOX "", IDC_CHECK_y22, 244, 90, 222, 8
AUTOCHECKBOX "", IDC_CHECK_y23, 244, 105, 222, 8
AUTOCHECKBOX "", IDC_CHECK_y24, 244, 120, 222, 8
AUTOCHECKBOX "", IDC_CHECK_y25, 244, 135, 222, 8
AUTOCHECKBOX "", IDC_CHECK_y26, 244, 150, 222, 8
AUTOCHECKBOX "", IDC_CHECK_y27, 244, 165, 222, 8
AUTOCHECKBOX "", IDC_CHECK_y28, 244, 180, 222, 8
LTEXT " Choose yearly cohort output files ", IDC_STATIC_yfile, 30, 10, 111, 8, SS_LEFT
AUTOCHECKBOX "", IDC_CHECK_y29, 244, 195, 222, 8
AUTOCHECKBOX "", IDC_CHECK_y30, 244, 210, 222, 8
AUTOCHECKBOX "", IDC_CHECK_y31, 244, 225, 222, 8
AUTOCHECKBOX "", IDC_CHECK_y32, 244, 240, 222, 8
AUTOCHECKBOX "", IDC_CHECK_y33, 244, 255, 222, 8
AUTOCHECKBOX "", IDC_CHECK_y34, 244, 270, 222, 8
AUTOCHECKBOX "", IDC_CHECK_y35, 465, 30, 222, 8
AUTOCHECKBOX "", IDC_CHECK_y36, 465, 45, 222, 8
AUTOCHECKBOX "", IDC_CHECK_y37, 465, 60, 222, 8
AUTOCHECKBOX "", IDC_CHECK_y38, 465, 75, 222, 8
AUTOCHECKBOX "", IDC_CHECK_y39, 465, 90, 222, 8
AUTOCHECKBOX "", IDC_CHECK_y40, 465, 105, 222, 8
AUTOCHECKBOX "", IDC_CHECK_y41, 465, 120, 222, 8
AUTOCHECKBOX "", IDC_CHECK_y42, 465, 135, 222, 8
AUTOCHECKBOX "", IDC_CHECK_y43, 465, 150, 222, 8
PUSHBUTTON "Select all", ID_YEARLYCOH_BUTTON_SELECT, 493, 290, 50, 14
PUSHBUTTON "Deselect all", ID_YEARLYCOH_BUTTON_DESELECT, 427, 290, 50, 14
AUTOCHECKBOX "", IDC_CHECK_y44, 465, 165, 222, 8
AUTOCHECKBOX "", IDC_CHECK_y45, 465, 178, 222, 8
AUTOCHECKBOX "", IDC_CHECK_y46, 465, 193, 222, 8
AUTOCHECKBOX "", IDC_CHECK_y47, 465, 210, 222, 8
AUTOCHECKBOX "", IDC_CHECK_y48, 465, 225, 222, 8
AUTOCHECKBOX "", IDC_CHECK_y49, 465, 240, 222, 13
AUTOCHECKBOX "", IDC_CHECK_y50, 465, 255, 222, 13
AUTOCHECKBOX "", IDC_CHECK_y51, 465, 270, 222, 13
}
LANGUAGE LANG_GERMAN, SUBLANG_GERMAN
IDD_4C_ctr DIALOG 100, 0, 280, 349
STYLE DS_MODALFRAME | DS_SETFONT | WS_CAPTION | WS_POPUP | WS_SYSMENU
CAPTION "4C"
FONT 8, "MS Sans Serif"
{
DEFPUSHBUTTON "OK", ID_CTR_BUTTON_OK, 147, 319, 50, 14
PUSHBUTTON "Cancel", IDCANCEL, 207, 319, 50, 14
LTEXT "Edit simulation control file", IDC_STATIC_simul, 15, 14, 91, 11, SS_LEFT
GROUPBOX "Run option control", IDC_STATIC_runo, 15, 30, 241, 173
LTEXT "Run option", IDC_STATIC_runv, 23, 47, 36, 8, SS_LEFT
LTEXT "Number of runs", IDC_STATIC_runnr, 23, 68, 49, 8, SS_LEFT
COMBOBOX IDC_COMBO_runv, 69, 47, 175, 98, WS_TABSTOP | WS_VSCROLL | CBS_DROPDOWN | CBS_AUTOHSCROLL | CBS_SORT
EDITTEXT IDC_EDIT_runnr, 162, 67, 40, 12, ES_AUTOHSCROLL
LTEXT "Number of simulation years", IDC_STATIC_yearn, 23, 89, 85, 8, SS_LEFT
LTEXT "Start year", IDC_STATIC_start, 23, 111, 31, 8, SS_LEFT
EDITTEXT IDC_EDIT_yearn, 162, 89, 40, 14, ES_AUTOHSCROLL
EDITTEXT IDC_EDIT_start, 162, 111, 40, 14, ES_AUTOHSCROLL
LTEXT "Patch size [m]", IDC_STATIC_patch, 23, 134, 47, 8, SS_LEFT
EDITTEXT IDC_EDIT_patch, 162, 134, 40, 14, ES_AUTOHSCROLL
LTEXT "Thickness of foliage layers [cm]", IDC_STATIC_thickf, 23, 158, 100, 8, SS_LEFT
LTEXT "Time step photosynthesis calculations [d]", IDC_STATIC_timeph, 23, 184, 130, 8, SS_LEFT
EDITTEXT IDC_EDIT_thickf, 162, 157, 40, 14, ES_AUTOHSCROLL
EDITTEXT IDC_EDIT_timeph, 162, 180, 40, 14, ES_AUTOHSCROLL
GROUPBOX "Run flags control", IDC_STATIC_runo3, 15, 214, 240, 93
COMBOBOX IDC_COMBO_runv3, 65, 235, 101, 98, WS_TABSTOP | WS_VSCROLL | CBS_DROPDOWN | CBS_AUTOHSCROLL | CBS_SORT
LTEXT "Run number", IDC_STATIC_runv3, 23, 238, 40, 8, SS_LEFT
DEFPUSHBUTTON "Set Flags", ID_CTR_BUTTON_FLAGS, 177, 281, 65, 14
DEFPUSHBUTTON "Set Files", ID_CTR_BUTTON_FILES, 177, 258, 65, 14
DEFPUSHBUTTON "Apply", ID_CTR_BUTTON_RUNNR, 213, 66, 30, 14
DEFPUSHBUTTON "Change Output Id", ID_CTR_BUTTON_IDS, 178, 235, 64, 14
}
LANGUAGE LANG_GERMAN, SUBLANG_GERMAN
IDD_4C_daily DIALOG 0, 0, 568, 221
STYLE DS_MODALFRAME | DS_SETFONT | WS_CAPTION | WS_POPUP | WS_SYSMENU
CAPTION "4C"
FONT 8, "MS Sans Serif"
{
DEFPUSHBUTTON "OK", ID_DAILY_BUTTON_OK, 408, 195, 50, 14
PUSHBUTTON "Cancel", ID_CANCEL_OUTF, 471, 195, 50, 14
GROUPBOX "", IDC_STATIC_day, 11, 14, 534, 171
AUTOCHECKBOX "", IDC_CHECK_y1, 37, 30, 240, 8
AUTOCHECKBOX "", IDC_CHECK_y2, 37, 45, 240, 8
AUTOCHECKBOX "", IDC_CHECK_y3, 37, 60, 240, 8
AUTOCHECKBOX "", IDC_CHECK_y4, 37, 75, 240, 8
AUTOCHECKBOX "", IDC_CHECK_y5, 37, 90, 240, 8
AUTOCHECKBOX "", IDC_CHECK_y6, 37, 105, 240, 8
AUTOCHECKBOX "", IDC_CHECK_y7, 37, 120, 240, 8
AUTOCHECKBOX "", IDC_CHECK_y8, 37, 135, 240, 8
AUTOCHECKBOX "", IDC_CHECK_y9, 37, 150, 240, 8
AUTOCHECKBOX "", IDC_CHECK_y10, 37, 165, 240, 8
AUTOCHECKBOX "", IDC_CHECK_y11, 284, 30, 240, 8
AUTOCHECKBOX "", IDC_CHECK_y12, 284, 45, 240, 8
AUTOCHECKBOX "", IDC_CHECK_y13, 284, 60, 240, 8
AUTOCHECKBOX "", IDC_CHECK_y14, 284, 75, 240, 8
AUTOCHECKBOX "", IDC_CHECK_y15, 284, 90, 240, 8
LTEXT " Choose daily output files ", IDC_STATIC_yfile, 22, 15, 85, 8, SS_LEFT
AUTOCHECKBOX "", IDC_CHECK_y16, 284, 105, 240, 8
PUSHBUTTON "Select all", ID_DAILY_BUTTON_SELECT, 345, 195, 50, 14
PUSHBUTTON "Deselect all", ID_DAILY_BUTTON_DESELECT, 282, 195, 50, 14
AUTOCHECKBOX "", IDC_CHECK_y17, 284, 120, 240, 8
AUTOCHECKBOX "", IDC_CHECK_y18, 284, 135, 240, 8
AUTOCHECKBOX "", IDC_CHECK_y19, 284, 150, 240, 8
}
LANGUAGE LANG_GERMAN, SUBLANG_GERMAN
IDD_4C_default_dir DIALOG 10, 100, 320, 99
STYLE DS_MODALFRAME | DS_SETFONT | WS_CAPTION | WS_POPUP | WS_SYSMENU
FONT 8, "MS Sans Serif"
{
DEFPUSHBUTTON "OK", ID_DEFAULT_DIR_BUTTON_OK, 138, 79, 50, 14
LTEXT "Default input and output directories", IDC_STATIC_4C, 15, 4, 216, 9, SS_LEFT
LTEXT "Input directory", IDC_STATIC_dirin, 16, 31, 51, 8, SS_LEFT
EDITTEXT IDC_EDIT_DIR_IN, 81, 27, 210, 12, ES_AUTOHSCROLL | ES_MULTILINE
LTEXT "Output directory", IDC_STATIC_dirout, 16, 56, 51, 8, SS_LEFT
EDITTEXT IDC_EDIT_DIR_OUT, 81, 52, 210, 12, ES_AUTOHSCROLL | ES_MULTILINE
}
LANGUAGE LANG_GERMAN, SUBLANG_GERMAN
IDD_4C_files DIALOG 100, 0, 310, 330
STYLE DS_MODALFRAME | DS_SETFONT | WS_CAPTION | WS_POPUP | WS_SYSMENU
CAPTION "4C"
FONT 8, "MS Sans Serif"
{
DEFPUSHBUTTON "OK", ID_FILES_BUTTON_OK, 189, 307, 50, 14
PUSHBUTTON "Cancel", ID_CANCEL_FILES, 251, 307, 50, 14
GROUPBOX "Model input files", IDC_STATIC_files, 7, 10, 295, 209
LTEXT "Species parameter file", IDC_STATIC_specpar, 16, 51, 70, 8, SS_LEFT
EDITTEXT IDC_EDIT_specpar, 109, 53, 146, 12, ES_AUTOHSCROLL | ES_MULTILINE
PUSHBUTTON "Browse", IDC_BUTTON_specpar, 259, 54, 35, 12, WS_GROUP
LTEXT "Soil parameter file", IDC_STATIC_sop, 16, 69, 56, 8, SS_LEFT
LTEXT "Soil initialisation file", IDC_STATIC_soi, 16, 87, 60, 8, SS_LEFT
EDITTEXT IDC_EDIT_sop, 109, 70, 146, 12, ES_AUTOHSCROLL
EDITTEXT IDC_EDIT_soi, 109, 87, 146, 12, ES_AUTOHSCROLL
LTEXT "Stand initialisation file", IDC_STATIC_ini, 13, 238, 68, 8, SS_LEFT
EDITTEXT IDC_EDIT_ini, 107, 235, 145, 14, ES_AUTOHSCROLL
GROUPBOX "", IDC_STATIC_ini1, 7, 222, 295, 73
LTEXT "Stand identifier", IDC_STATIC_standid, 15, 256, 48, 8, SS_LEFT
PUSHBUTTON "Browse", IDC_BUTTON_ini, 259, 235, 35, 12, WS_GROUP
LTEXT "Management file", IDC_STATIC_man, 16, 107, 53, 8, SS_LEFT
EDITTEXT IDC_EDIT_man, 109, 104, 146, 12, ES_AUTOHSCROLL
LTEXT "Deposition data file", IDC_STATIC_dep, 16, 123, 61, 8, SS_LEFT
EDITTEXT IDC_EDIT_dep, 109, 121, 146, 12, ES_AUTOHSCROLL
LTEXT " N-reduction ( RedN) file", IDC_STATIC_red, 16, 141, 77, 8, SS_LEFT
LTEXT "Litter intilisation file", IDC_STATIC_lit, 16, 158, 59, 8, SS_LEFT
EDITTEXT IDC_EDIT_red, 109, 139, 146, 12, ES_AUTOHSCROLL
EDITTEXT IDC_EDIT_lit, 109, 155, 146, 12, ES_AUTOHSCROLL
PUSHBUTTON "Browse", IDC_BUTTON_sop, 259, 71, 35, 12, WS_GROUP
PUSHBUTTON "Browse", IDC_BUTTON_soi, 259, 88, 35, 12, WS_GROUP
PUSHBUTTON "Browse", IDC_BUTTON_man, 259, 105, 35, 12, WS_GROUP
PUSHBUTTON "Browse", IDC_BUTTON_dep, 259, 123, 35, 12, WS_GROUP
PUSHBUTTON "Browse", IDC_BUTTON_red, 259, 139, 35, 12, WS_GROUP
PUSHBUTTON "Browse", IDC_BUTTON_lit, 259, 156, 35, 12, WS_GROUP
LTEXT "Climate data file", IDC_STATIC_cli, 17, 32, 70, 8, SS_LEFT
EDITTEXT IDC_EDIT_cli, 110, 34, 146, 12, ES_AUTOHSCROLL | ES_MULTILINE
PUSHBUTTON "Browse", IDC_BUTTON_cli, 260, 35, 35, 12, WS_GROUP
COMBOBOX IDC_COMBO_standid, 106, 254, 85, 77, WS_TABSTOP | WS_VSCROLL | CBS_DROPDOWN | CBS_AUTOHSCROLL | CBS_SORT
LTEXT "WPM spinup intilisation file", IDC_STATIC_spinup, 15, 177, 84, 8, SS_LEFT
EDITTEXT IDC_EDIT_wpm, 109, 174, 146, 12, ES_AUTOHSCROLL
PUSHBUTTON "Browse", IDC_BUTTON_wpm, 259, 175, 35, 12, WS_GROUP
EDITTEXT IDC_EDIT_standid, 106, 273, 76, 14, ES_AUTOHSCROLL
LTEXT "Measurement file", IDC_STATIC_mes, 16, 194, 54, 8, SS_LEFT
EDITTEXT IDC_EDIT_mes, 110, 191, 146, 12, ES_AUTOHSCROLL
PUSHBUTTON "Browse", IDC_BUTTON_mes, 260, 191, 35, 12, WS_GROUP
}
LANGUAGE LANG_GERMAN, SUBLANG_GERMAN
IDD_4C_flags DIALOGEX 100, 0, 580, 297
STYLE DS_MODALFRAME | DS_SETFONT | WS_CAPTION | WS_POPUP | WS_SYSMENU
EXSTYLE WS_EX_TOOLWINDOW
CAPTION "4C"
FONT 8, "MS Sans Serif", 0, 0, 1
{
DEFPUSHBUTTON "OK", ID_FLAGS_BUTTON_OK, 443, 263, 50, 14
PUSHBUTTON "Cancel", ID_CANCEL_FLAGS, 509, 262, 50, 14
LTEXT "Mortality flag (flag_mort) ", IDC_STATIC_mort, 18, 33, 77, 8, SS_LEFT
LTEXT "Regeneration flag (flag_reg) ", IDC_STATIC_reg, 18, 50, 90, 8, SS_LEFT
LTEXT "Use FORSKA factors (flag_forska)", IDC_STATIC_forska, 18, 67, 113, 13, WS_TABSTOP | NOT WS_GROUP | SS_LEFT
LTEXT "Stand initialization flag (flag_stand)", IDC_STATIC_stand, 18, 84, 109, 8, WS_TABSTOP | NOT WS_GROUP | SS_LEFT
LTEXT "Soil vegetation flag (flag_sveg)", IDC_STATIC_sveg, 18, 101, 98, 8, SS_LEFT
LTEXT "Management flag (flag_mg)", IDC_STATIC_mg, 18, 118, 86, 8, SS_LEFT
LTEXT "Disturbance flag (flag_dis)", IDC_STATIC_dis, 18, 135, 82, 8, SS_LEFT
LTEXT "Ligth algorithm number (flag_light)", IDC_STATIC_light, 18, 152, 106, 8, SS_LEFT
LTEXT "Foliage-height relationship (flag_folhei)", IDC_STATIC_folhei, 18, 169, 120, 8, SS_LEFT
COMBOBOX IDC_COMBO_mort, 143, 33, 133, 42, WS_TABSTOP | WS_VSCROLL | CBS_DROPDOWN | CBS_AUTOHSCROLL | CBS_SORT
COMBOBOX IDC_COMBO_reg, 143, 50, 133, 116, WS_TABSTOP | WS_VSCROLL | CBS_DROPDOWN | CBS_AUTOHSCROLL
COMBOBOX IDC_COMBO_forska, 143, 67, 133, 25, WS_TABSTOP | WS_VSCROLL | CBS_DROPDOWN | CBS_AUTOHSCROLL | CBS_SORT
LTEXT "Volume function (flag_volfunc)", IDC_STATIC_volfunc, 18, 186, 96, 8, SS_LEFT
LTEXT "Respiration flag (flag_resp)", IDC_STATIC_resp, 18, 203, 84, 8, SS_LEFT
LTEXT "Limitation flag (flag_limi)", IDC_STATIC_limi, 18, 220, 74, 8, SS_LEFT
COMBOBOX IDC_COMBO_stand, 143, 84, 133, 54, WS_TABSTOP | WS_VSCROLL | CBS_DROPDOWN | CBS_AUTOHSCROLL | CBS_SORT
COMBOBOX IDC_COMBO_sveg, 143, 101, 133, 48, WS_TABSTOP | WS_VSCROLL | CBS_DROPDOWN | CBS_AUTOHSCROLL | CBS_SORT
COMBOBOX IDC_COMBO_mg, 143, 118, 133, 78, WS_TABSTOP | WS_VSCROLL | CBS_DROPDOWN | CBS_AUTOHSCROLL | CBS_SORT
COMBOBOX IDC_COMBO_dis, 143, 135, 133, 32, WS_TABSTOP | WS_VSCROLL | CBS_DROPDOWN | CBS_AUTOHSCROLL | CBS_SORT
COMBOBOX IDC_COMBO_light, 143, 152, 133, 55, WS_TABSTOP | WS_VSCROLL | CBS_DROPDOWN | CBS_AUTOHSCROLL | CBS_SORT
COMBOBOX IDC_COMBO_folhei, 143, 169, 133, 53, WS_TABSTOP | WS_VSCROLL | CBS_DROPDOWN | CBS_AUTOHSCROLL | CBS_SORT
COMBOBOX IDC_COMBO_volfunc, 143, 186, 133, 63, WS_TABSTOP | WS_VSCROLL | CBS_DROPDOWN | CBS_AUTOHSCROLL | CBS_SORT
LTEXT "Decomposition model (flag_decomp) ", IDC_STATIC_decomp, 308, 33, 117, 8, SS_LEFT
LTEXT "Root activity function flag (flag_sign)", IDC_STATIC_sign, 308, 50, 115, 8, SS_LEFT
LTEXT "Soil water uptake flag (flag_wred)", IDC_STATIC_wred, 308, 67, 106, 8, SS_LEFT
LTEXT "Root distribution flag (flag_wurz)", IDC_STATIC_wurz, 308, 84, 101, 8, SS_LEFT
LTEXT "Heat conductance flag (flag_cond)", IDC_STATIC_cond, 308, 101, 111, 8, SS_LEFT
COMBOBOX IDC_COMBO_resp, 143, 203, 133, 64, WS_TABSTOP | WS_VSCROLL | CBS_DROPDOWN | CBS_AUTOHSCROLL | CBS_SORT
COMBOBOX IDC_COMBO_limi, 143, 220, 133, 65, WS_TABSTOP | WS_VSCROLL | CBS_DROPDOWN | CBS_AUTOHSCROLL | CBS_SORT
COMBOBOX IDC_COMBO_decomp, 431, 33, 133, 54, WS_TABSTOP | WS_VSCROLL | CBS_DROPDOWN | CBS_AUTOHSCROLL | CBS_SORT
COMBOBOX IDC_COMBO_sign, 431, 50, 133, 67, WS_TABSTOP | WS_VSCROLL | CBS_DROPDOWN | CBS_AUTOHSCROLL | CBS_SORT
COMBOBOX IDC_COMBO_wred, 431, 67, 133, 61, WS_TABSTOP | WS_VSCROLL | CBS_DROPDOWN | CBS_AUTOHSCROLL | CBS_SORT
COMBOBOX IDC_COMBO_wurz, 431, 84, 133, 64, WS_TABSTOP | WS_VSCROLL | CBS_DROPDOWN | CBS_AUTOHSCROLL | CBS_SORT
COMBOBOX IDC_COMBO_cond, 431, 101, 133, 78, WS_TABSTOP | WS_VSCROLL | CBS_DROPDOWN | CBS_AUTOHSCROLL | CBS_SORT
COMBOBOX IDC_COMBO_int, 431, 118, 133, 75, WS_TABSTOP | WS_VSCROLL | CBS_DROPDOWN | CBS_AUTOHSCROLL | CBS_SORT
COMBOBOX IDC_COMBO_eva, 431, 135, 133, 78, WS_TABSTOP | WS_VSCROLL | CBS_DROPDOWN | CBS_AUTOHSCROLL | CBS_SORT
LTEXT "Interception flag (flag_int)", IDC_STATIC_int, 308, 118, 80, 8, SS_LEFT
LTEXT "Evapotranspiration flag (flag_eva)", IDC_STATIC_eva, 308, 135, 106, 8, SS_LEFT
LTEXT "Assortment flag (flag_sort)", IDC_STATIC_sort, 308, 169, 82, 8, SS_LEFT
COMBOBOX IDC_COMBO_CO2, 431, 152, 133, 51, WS_TABSTOP | WS_VSCROLL | CBS_DROPDOWN | CBS_AUTOHSCROLL | CBS_SORT
COMBOBOX IDC_COMBO_sort, 431, 169, 133, 48, WS_TABSTOP | WS_VSCROLL | CBS_DROPDOWN | CBS_AUTOHSCROLL | CBS_SORT
GROUPBOX "Model specification", IDC_STATIC_model, 0, 15, 564, 239
LTEXT "wpm flag (flag_wpm)", IDC_STATIC_wpm, 307, 186, 65, 8, SS_LEFT
COMBOBOX IDC_COMBO_wpm, 431, 186, 133, 64, WS_TABSTOP | WS_VSCROLL | CBS_DROPDOWN | CBS_AUTOHSCROLL | CBS_SORT
LTEXT "Statistical analysis flag (flag_stat)", IDC_STATIC_stat, 307, 203, 104, 8, SS_LEFT
COMBOBOX IDC_COMBO_stat, 431, 203, 133, 48, WS_TABSTOP | WS_VSCROLL | CBS_DROPDOWN | CBS_AUTOHSCROLL | CBS_SORT
LTEXT "CO2 flag (flag_CO2)", IDC_STATIC_CO2, 308, 152, 64, 8, SS_LEFT
}
LANGUAGE LANG_GERMAN, SUBLANG_GERMAN
IDD_4C_ids DIALOG 100, 0, 130, 78
STYLE DS_MODALFRAME | DS_SETFONT | WS_CAPTION | WS_POPUP | WS_SYSMENU
CAPTION "4C"
FONT 8, "MS Sans Serif"
{
DEFPUSHBUTTON "OK", ID_IDS_BUTTON_OK, 10, 55, 50, 14
GROUPBOX "Output File Identifiers", IDC_STATIC_model, 6, 14, 111, 35
EDITTEXT IDC_EDIT_ID, 14, 29, 95, 14, ES_AUTOHSCROLL
PUSHBUTTON "Cancel", ID_CANCEL_IDS, 67, 55, 50, 14
}
LANGUAGE LANG_GERMAN, SUBLANG_GERMAN
IDD_4C_main DIALOGEX 300, 50, 245, 268
STYLE DS_3DLOOK | DS_MODALFRAME | DS_SETFONT | WS_CAPTION | WS_VISIBLE | WS_POPUP | WS_SYSMENU
EXSTYLE WS_EX_CLIENTEDGE | WS_EX_STATICEDGE
CAPTION "4C"
FONT 8, "MS Sans Serif", 0, 0, 1
{
GROUPBOX "", IDC_STATIC_year, 5, 6, 233, 258, 0, WS_EX_STATICEDGE
CTEXT "Forest Growth Model 4C PIK 2016", IDC_STATIC_4C, 25, 53, 82, 23, SS_CENTER
DEFPUSHBUTTON "Start 4C", ID_START_4C, 103, 233, 56, 14
PUSHBUTTON "Exit 4C", IDSTOP, 174, 233, 50, 14
GROUPBOX "Simulation Control", IDC_STATIC_Control, 20, 126, 207, 68
AUTORADIOBUTTON "Start simulation", IDC_RADIO_start, 35, 148, 121, 10
AUTORADIOBUTTON "Edit control file", IDC_RADIO_edit, 35, 166, 62, 10
CONTROL "", IDC_REBAR1, REBARCLASSNAME, WS_TABSTOP | 0x00000401, 4294967294, 4294967295, 249, 4, WS_EX_DLGMODALFRAME | WS_EX_ACCEPTFILES | WS_EX_STATICEDGE
CONTROL IDB_BITMAP1, IDC_STATIC_pic, WC_STATIC, SS_BITMAP, 123, 14, 100, 104
}
LANGUAGE LANG_GERMAN, SUBLANG_GERMAN
IDD_4C_out DIALOG 100, 0, 293, 212
STYLE DS_MODALFRAME | DS_SETFONT | WS_CAPTION | WS_POPUP | WS_SYSMENU
CAPTION "4C"
FONT 8, "MS Sans Serif"
{
DEFPUSHBUTTON "Start simulation", ID_START, 89, 182, 56, 14
PUSHBUTTON "Exit 4C", IDCANCEL, 226, 182, 50, 14
LTEXT "Choice of output files", IDC_STATIC, 15, 18, 67, 8, SS_LEFT
PUSHBUTTON "Yearly output", IDC_BUTTON_yearly, 207, 37, 50, 14
PUSHBUTTON "Daily output", IDC_BUTTON_daily, 207, 60, 50, 14
PUSHBUTTON "Cohorts yearly", IDC_BUTTON_coh_yearly, 207, 84, 50, 14
PUSHBUTTON "Cohorts daily", IDC_BUTTON_coh_daily, 207, 108, 50, 14
GROUPBOX "", IDC_STATIC_choice_out, 8, 7, 268, 164
LTEXT "Summation output", IDC_STATIC_SUM, 19, 145, 58, 8, SS_LEFT
COMBOBOX IDC_COMBO_sum, 88, 142, 165, 74, WS_TABSTOP | WS_VSCROLL | CBS_DROPDOWN | CBS_SORT
DEFPUSHBUTTON "Back", ID_OUT_BUTTON_BACK, 161, 182, 50, 14
DEFPUSHBUTTON "Save changes", ID_SAVE, 17, 182, 56, 14
COMBOBOX IDC_COMBO_yearly, 14, 37, 181, 77, WS_TABSTOP | WS_VSCROLL | CBS_DROPDOWN | CBS_AUTOHSCROLL | CBS_SORT
COMBOBOX IDC_COMBO_daily, 13, 60, 181, 77, WS_TABSTOP | WS_VSCROLL | CBS_DROPDOWN | CBS_AUTOHSCROLL | CBS_SORT
COMBOBOX IDC_COMBO_coh_yearly, 13, 85, 181, 77, WS_TABSTOP | WS_VSCROLL | CBS_DROPDOWN | CBS_AUTOHSCROLL | CBS_SORT
COMBOBOX IDC_COMBO_coh_daily, 13, 109, 181, 77, WS_TABSTOP | WS_VSCROLL | CBS_DROPDOWN | CBS_AUTOHSCROLL | CBS_SORT
}
LANGUAGE LANG_GERMAN, SUBLANG_GERMAN
IDD_4C_yearly DIALOG 100, 0, 606, 352
STYLE DS_MODALFRAME | DS_SETFONT | WS_CAPTION | WS_POPUP | WS_SYSMENU
CAPTION "4C"
FONT 8, "MS Sans Serif"
{
DEFPUSHBUTTON "OK", ID_YEARLY_BUTTON_OK, 455, 327, 50, 14
PUSHBUTTON "Cancel", ID_CANCEL_OUTF, 519, 327, 50, 14
GROUPBOX "", IDC_STATIC_year, 7, 15, 573, 302
AUTOCHECKBOX "", IDC_CHECK_y1, 21, 30, 270, 8
AUTOCHECKBOX "", IDC_CHECK_y2, 21, 45, 270, 8
AUTOCHECKBOX "", IDC_CHECK_y3, 21, 60, 270, 8
AUTOCHECKBOX "", IDC_CHECK_y4, 21, 75, 270, 8
AUTOCHECKBOX "", IDC_CHECK_y5, 21, 90, 270, 8
AUTOCHECKBOX "", IDC_CHECK_y6, 21, 105, 270, 8
AUTOCHECKBOX "", IDC_CHECK_y7, 21, 120, 270, 8
AUTOCHECKBOX "", IDC_CHECK_y8, 21, 135, 270, 8
AUTOCHECKBOX "", IDC_CHECK_y9, 21, 150, 270, 8
AUTOCHECKBOX "", IDC_CHECK_y10, 21, 165, 270, 8
AUTOCHECKBOX "", IDC_CHECK_y11, 21, 180, 270, 8
AUTOCHECKBOX "", IDC_CHECK_y12, 21, 195, 270, 8
AUTOCHECKBOX "", IDC_CHECK_y13, 21, 210, 270, 8
AUTOCHECKBOX "", IDC_CHECK_y14, 21, 225, 270, 8
AUTOCHECKBOX "", IDC_CHECK_y15, 21, 240, 270, 8
AUTOCHECKBOX "", IDC_CHECK_y16, 21, 255, 270, 8
AUTOCHECKBOX "", IDC_CHECK_y17, 21, 270, 270, 8
AUTOCHECKBOX "", IDC_CHECK_y18, 21, 285, 270, 8
AUTOCHECKBOX "", IDC_CHECK_y19, 21, 300, 270, 8
AUTOCHECKBOX "", IDC_CHECK_y20, 294, 30, 270, 8
AUTOCHECKBOX "", IDC_CHECK_y21, 294, 45, 270, 8
AUTOCHECKBOX "", IDC_CHECK_y22, 294, 60, 270, 8
AUTOCHECKBOX "", IDC_CHECK_y23, 294, 75, 270, 8
AUTOCHECKBOX "", IDC_CHECK_y24, 294, 90, 270, 8
AUTOCHECKBOX "", IDC_CHECK_y25, 294, 105, 270, 8
AUTOCHECKBOX "", IDC_CHECK_y26, 294, 120, 270, 8
AUTOCHECKBOX "", IDC_CHECK_y27, 294, 135, 270, 8
AUTOCHECKBOX "", IDC_CHECK_y28, 294, 150, 270, 8
LTEXT " Choose yearly output files ", IDC_STATIC_yfile, 21, 14, 89, 8, SS_LEFT
AUTOCHECKBOX "", IDC_CHECK_y29, 294, 165, 270, 8
AUTOCHECKBOX "", IDC_CHECK_y30, 294, 180, 270, 8
PUSHBUTTON "Select all", ID_YEARLY_BUTTON_SELECT, 391, 327, 50, 14
PUSHBUTTON "Deselect all", ID_YEARLY_BUTTON_DESELECT, 327, 327, 50, 14
AUTOCHECKBOX "", IDC_CHECK_y31, 294, 195, 270, 8
AUTOCHECKBOX "", IDC_CHECK_y32, 294, 210, 270, 8
AUTOCHECKBOX "", IDC_CHECK_y33, 294, 225, 270, 8
AUTOCHECKBOX "", IDC_CHECK_y34, 294, 240, 270, 8
AUTOCHECKBOX "", IDC_CHECK_y35, 294, 255, 270, 8
AUTOCHECKBOX "", IDC_CHECK_y36, 294, 270, 270, 8
AUTOCHECKBOX "", IDC_CHECK_y37, 294, 285, 270, 8
}
LANGUAGE LANG_GERMAN, SUBLANG_GERMAN
IDD_DIALOG1 DIALOG 0, 0, 186, 95
STYLE DS_3DLOOK | DS_CENTER | DS_MODALFRAME | DS_SETFONT | WS_CAPTION | WS_VISIBLE | WS_POPUP | WS_SYSMENU
CAPTION "Dialog"
FONT 8, "Microsoft Sans Serif"
{
DEFPUSHBUTTON "OK", IDOK, 129, 7, 50, 14
PUSHBUTTON "Cancel", IDCANCEL, 129, 24, 50, 14
}
//
// Version Information resources
//
LANGUAGE LANG_GERMAN, SUBLANG_GERMAN
VS_VERSION_INFO VERSIONINFO
FILEVERSION 1,0,0,0
PRODUCTVERSION 0,0,0,0
FILEOS VOS_NT_WINDOWS32
FILETYPE VFT_APP
FILESUBTYPE VFT2_UNKNOWN
FILEFLAGSMASK 0x0000003F
FILEFLAGS 0x00000000
{
BLOCK "StringFileInfo"
{
BLOCK "080904B0"
{
VALUE "Comments", "\0"
VALUE "CompanyName", "Potsdam-Institut fr Klimafolgenforschung\0"
VALUE "FileDescription", "FORESEE - Forest Ecosystems in a changing Environment\0"
VALUE "FileVersion", "0.99e\0"
VALUE "InternalName", "4C\0"
VALUE "LegalCopyright", "Copyright 2004\0"
VALUE "LegalTrademarks", "\0"
VALUE "OriginalFilename", "4C.exe\0"
VALUE "PrivateBuild", "\0"
VALUE "ProductName", "4C - PIK\0"
VALUE "ProductVersion", "0.99e\0"
VALUE "SpecialBuild", "\0"
}
}
BLOCK "VarFileInfo"
{
VALUE "Translation", 0x0809, 0x04B0
}
}
!*****************************************************************!
!* *!
!* 4C (FORESEE) Simulation Model *!
!* *!
!* *!
!* SR SEED_multi *!
!* *!
!* including SR/Function *!
!* function rtflsp (regula falsi solving equation) *!
!* function weight *!
!* function weight1 *!
!* *!
!* generation of a variety of seedling cohorts for *!
!* one seed number according to seedmass distribution *!
!* (for given mean value and standard deviation) *!
!* *!
!* Copyright (C) 1996-2018 *!
!* Potsdam Institute for Climate Impact Reserach (PIK) *!
!* Authors and contributors see AUTHOR file *!
!* This file is part of 4C and is licensed under BSD-2-Clause *!
!* See LICENSE file or under: *!
!* http://www.https://opensource.org/licenses/BSD-2-Clause *!
!* Contact: *!
!* https://gitlab.pik-potsdam.de/foresee/4C *!
!* *!
!*****************************************************************!
SUBROUTINE seed_multi(nseed,nsp)
USE data_species
use data_stand
use data_help
use data_par
use data_soil
use data_simul
IMPLICIT NONE
integer :: nseed, nseedha, nsclass , k, j, nr
integer,dimension(:),allocatable :: nsc
real, dimension(:), allocatable :: msc, &
shooth, &
nschelp
integer :: nsp
REAL :: shoot
REAL :: ms, msclass, x1,x2,xacc,shelp, nshelp,ntot,help
REAL :: troot2
real :: standdev
real :: rtflsp, weight
TYPE(cohort) ::tree_ini
external weight
external rtflsp
if(nseed.eq.0) return
standdev = spar(nsp)%seedsd*1000.
hnspec = nsp
ms = spar(nsp)%seedmass *1000. ! g ---> mg
nseedha = nseed
nshelp = nseedha/10000.
! calculation of seed class number
if(flag_reg.eq.3) then
nsclass = int(100.*nshelp**0.6)
else if(flag_reg.eq.30) then
nsclass = int(10.*nshelp**0.6)+1
end if
allocate(nsc(nsclass))
allocate(nschelp(nsclass))
allocate(msc(nsclass))
allocate(shooth(nsclass))
! seed weight and number of seeds per class
msclass = 6.*standdev/nsclass
ntot = 0
help = (1/(sqrt(2*pi)*standdev))
do k=1, nsclass
msc(k) = (ms - 3.*standdev) + msclass*(k-1)
nschelp(k) = help*exp(-((msc(k)-ms)**2)/(2*(standdev)**2))
ntot = ntot + nschelp(k)
end do
do k= 1,nsclass
nsc(k) = nint((nschelp(k)*nseedha/ntot) + 0.5)
end do
! calculation of shoot weight per seed class and initilization
do k = 1,nsclass
mschelp = msc(k)/1000000. ! mg ---> kg
x1 = 0.
x2 = 0.1
xacc=(1.0e-10)*(x1+x2)/2
! solve mass equation; determine root
shelp=rtflsp(weight,x1,x2,xacc)
shooth(k)= shelp
max_coh = max_coh + 1
call coh_initial (tree_ini)
tree_ini%ident = max_coh
tree_ini%species = nsp
tree_ini%ntreea = nsc(k)
tree_ini%nta = nsc(k)
shoot = shooth(k)
tree_ini%x_sap = shoot ! [kg]
shoot = shoot * 1000. ! [g]
tree_ini%x_fol= (spar(nsp)%seeda*(tree_ini%x_sap** spar(nsp)%seedb)) ![kg]
tree_ini%x_frt = tree_ini%x_fol ! [kg]
! Leder
tree_ini%x_hrt = 0.
tree_ini%med_sla = spar(nsp)%psla_min + spar(nsp)%psla_a*0.5
tree_ini%t_leaf = tree_ini%med_sla* tree_ini%x_fol ! [m-2]
tree_ini%ca_ini = tree_ini%t_leaf
tree_ini%crown_area = tree_ini%ca_ini
tree_ini%underst = 1
! tranformation of shoot biomass kg --> mg
if(nsp.ne.2)tree_ini%height = spar(nsp)%pheight1*(shoot*1000.)**spar(nsp)%pheight2 ! [cm] berechnet aus shoot biomass (mg)
! Leder
if(nsp.eq.2) tree_ini%height = 10**(spar(nsp)%pheight1+ spar(nsp)%pheight2*LOG10(shoot*1000.)+ &
spar(nsp)%pheight3*(LOG10(shoot*1000.))**2)
IF(nsc(k).ne.0.) then
IF (.not. associated(pt%first)) THEN
ALLOCATE (pt%first)
pt%first%coh = tree_ini
NULLIFY(pt%first%next)
! root distribution
call root_depth (1, pt%first%coh%species, pt%first%coh%x_age, pt%first%coh%height, pt%first%coh%x_frt, pt%first%coh%x_crt, nr, troot2, pt%first%coh%x_rdpt, pt%first%coh%nroot)
pt%first%coh%nroot = nr
do j=1,nr
pt%first%coh%rooteff = 1. ! assumption for the first use
enddo
do j=nr+1, nlay
pt%first%coh%rooteff = 0. ! layers with no roots
enddo
ELSE
ALLOCATE(zeig)
zeig%coh = tree_ini
zeig%next => pt%first
pt%first => zeig
call root_depth (1, zeig%coh%species, zeig%coh%x_age, zeig%coh%height, zeig%coh%x_frt, zeig%coh%x_crt, nr, troot2, zeig%coh%x_rdpt, zeig%coh%nroot)
zeig%coh%nroot = nr
do j=1,nr
zeig%coh%rooteff = 1. ! assumption for the first use
enddo
do j=nr+1, nlay
zeig%coh%rooteff = 0. ! layers with no roots
enddo
END IF
anz_coh=anz_coh+1
END IF
end do
deallocate(nsc)
deallocate(nschelp)
deallocate(msc)
deallocate(shooth)
END SUBROUTINE seed_multi
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! weight: seed mass function
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
function weight (x)
use data_help
use data_species
implicit none
real :: x
real :: p1,p2, weight
p1 = spar(hnspec)%seeda
p2 = spar(hnspec)%seedb
weight = p1*2*(x**p2) + x - 0.7*mschelp
end function weight
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! weight1: coarse root mass function
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
function weight1 (x)
use data_help
use data_species
real :: x
real :: p1,p2
p1 = spar(hnspec)%seeda
p2 = spar(hnspec)%seedb
weight1 = p1*(x**p2) + x - mschelp
end function weight1
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! rtflsp: regula falsi solving euation
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
FUNCTION rtflsp(func,x1,x2,xacc)
INTEGER MAXIT
REAL rtflsp,x1,x2,xacc,func
EXTERNAL func
PARAMETER (MAXIT=30)
INTEGER j
REAL del,dx,f,fh,fl,swap,xh,xl
fl=func(x1)
fh=func(x2)
if(fl.lt.0.)then
xl=x1
xh=x2
else
xl=x2
xh=x1
swap=fl
fl=fh
fh=swap
endif
dx=xh-xl
do j=1,MAXIT
rtflsp=xl+dx*fl/(fl-fh)
f=func(rtflsp)
if(f.lt.0.) then
del=xl-rtflsp
xl=rtflsp
fl=f
else
del=xh-rtflsp
xh=rtflsp
fh=f
endif
dx=xh-xl
if(abs(del).lt.xacc.or.f.eq.0.)return
end do
END function rtflsp
\ No newline at end of file
!*****************************************************************!
!* *!
!* 4C (FORESEE) Simulation Model *!
!* *!
!* *!
!* Subroutines for: *!
!* - Simulation initialisation (SIM_INI) *!
!* *!
!* Copyright (C) 1996-2018 *!
!* Potsdam Institute for Climate Impact Reserach (PIK) *!
!* Authors and contributors see AUTHOR file *!
!* This file is part of 4C and is licensed under BSD-2-Clause *!
!* See LICENSE file or under: *!
!* http://www.https://opensource.org/licenses/BSD-2-Clause *!
!* Contact: *!
!* https://gitlab.pik-potsdam.de/foresee/4C *!
!* *!
!*****************************************************************!
SUBROUTINE sim_ini
use data_biodiv
use data_climate
use data_depo
use data_evapo
use data_inter
use data_manag
use data_simul
use data_site
use data_stand
use data_soil
use data_soil_cn
use data_species
use data_par
use data_frost
implicit none
type(Coh_Obj), pointer :: p ! pointer to cohort list
anz_sim = anz_sim + 1
time = 0
time_cur = time_b - 1 ! before Sim.-Start in year_ini time_cur=time_cur+1
iday = 0
act_thin_year = 1
flag_cum = 0
flag_lit = 0
flag_sens = 0
flag_redn = .FALSE.
lai=0.
gp_can = 0.
sumbio = 0.
totfrt = 0.
sumNPP = 0.
nppsum = 0.
gppsum = 0.
cum_sumNPP= 0.
NEE_mon = 0.
NPP_mon = 0.
autresp = 0.
autresp_m = 0.
anrspec = 0
anz_coh = 0
anz_spec = 0
anz_tree = 0
med_diam = 0.
hdom = 0.
mean_drIndAl = 0.
med_air = 0.
med_rad = 0.
med_air_cm = 0.
med_air_wm = 0.
med_air_ms = 0.
med_air_mj = 0.
med_wind = 0.
temp_mon = 0.
prec_mon = 0.
sum_prec = 0.
sum_prec_ms= 0.;
sum_prec_mj= 0.
gdday = 0.
days_summer = 0
days_hot = 0
days_ice = 0
days_dry = 0
days_hrain = 0
days_rain = 0
days_rain_mj= 0
days_snow = 0
days_wof = 0
gdday_all = 0.
med_air_all = 0.
sum_prec_all = 0.
med_rad_all = 0.
int_cum_can = 0.
int_cum_sveg = 0.
interc_m_can = 0.
interc_m_sveg= 0.
perc_cum = 0.
perc_mon = 0.
wupt_cum = 0.
wupt_r_c = 0.
wupt_e_c = 0.
tra_tr_cum = 0.
tra_sv_cum = 0.
dew_m = 0.
aet_cum = 0.
pet_cum = 0.
pet_m = 0.
AET_m = 0.
wupt_r_m = 0.
perc_m = 0.
wat_tot = 0.
gp_can_mean = 0.
gp_can_max = 0.
snow = 0.
snow_day = 0
totFPARcan = 0.
Rnet_cum = 0.
! fire index
fire(1)%mean_m = 0
fire(2)%mean_m = 0
fire(3)%mean_m = 0
fire_indb_m = 0
ind_arid_an = 0.
ind_lang_an = 0.
ind_cout_an = 0.
ind_wiss_an = 0.
ind_mart_an = 0.
ind_mart_vp = 0.
ind_emb = 0.
ind_weck = 0.
ind_reich = 0.
con_gor = 0.
con_cur = 0.
con_con = 0.
cwb_an = 0.
cwb_an_m = 0.
ind_bud = 0.
ind_shc = 0.
ind_arid_an_m = 0.
ind_lang_an_m = 0.
ind_cout_an_m = 0.
ind_wiss_an_m = 0.
ind_mart_an_m = 0.
ind_mart_vp_m = 0.
ind_emb_m = 0.
ind_weck_m = 0.
ind_reich_m = 0.
con_gor_m = 0.
con_cur_m = 0.
con_con_m = 0.
ind_bud_m = 0.
ind_shc_m = 0.
ntindex = 0.
tempmean_mo = 0
aet_dec = 0.
temp_dec = 0.
prec_dec = 0.
rad_dec = 0.
hum_dec = 0.
! frost index
if(flag_climtyp .ge. 3) then
! calculation for airtemp_min > -90.
tminmay=0
lfind=0
dlfabs=0.
tminmay_sp=0
dlfabs_sp=0.
flag_tveg=0
else
tminmay=-99
lfind=-99
dlfabs=-99.
tminmay_sp=-99
dlfabs_sp=-99.
flag_tveg=-99
endif
!! initialisation of root distribution
RedN_mean = 0.
anz_RedN = 0
N_min = 0.
N_min_m = 0.
resps_c = 0.
resps_c_m = 0.
resps_mon = 0.
N_tot = 0.
N_an_tot = 0.
N_hum_tot = 0.
C_tot = 0.
C_hum_tot = 0.
N_lit = 0.
C_lit = 0.
Nupt_c = 0.
Nupt_m = 0.
C_accu = 0.
Nleach_c = 0.
Nleach_m = 0.
N_lit_m = 0.
C_lit_m = 0.
totfol_lit = 0.
totfol_lit_tree = 0.
totfrt_lit = 0.
totfrt_lit_tree = 0.
tottb_lit = 0.
totcrt_lit = 0.
totstem_lit = 0.
C_opm_fol = 0.
C_opm_frt = 0.
C_opm_crt = 0.
C_opm_tb = 0.
C_opm_stem = 0.
N_opm_stem = 0.
N_opm_fol = 0.
N_opm_frt = 0.
N_opm_crt = 0.
N_opm_tb = 0.
Ndep_cum = 0.
Ndep_cum_all= 0.
if (flag_multi .ne. 8) then
if ((flag_multi .ne. 2) .or. (ip .le. 1)) then
NOdep(ip) = 0.
NHdep(ip) = 0.
endif
endif
flag_bc = 0
totsteminc = 0.
cumsteminc = 0.
cumsumvsdead = 0.
cumsumvsab = 0.
sumvsdead = 0.
sumvsab = 0.
p => pt%first
do while (associated(p))
p%coh%N_pool = 0.
p => p%next
enddo ! p (cohorts)
allocate(dayfract(ns_pro))
! fields for frost index
allocate(dnlf(year))
allocate(tminmay_ann(year))
allocate(date_lf(year))
allocate(date_lftot(year))
allocate(dnlf_sp(year))
allocate (anzdlf(year))
allocate (sumtlf(year))
dnlf_sp=0
dnlf = 0
tminmay_ann = 0.
date_lf = 0
date_lftot = 0
anzdlf = 0.
sumtlf = 0.
end subroutine sim_ini
\ No newline at end of file