diff --git a/analysis/preprocessing/full_code.Rmd b/analysis/preprocessing/full_code.Rmd index 188a9a6d1cb88a0bb1112679713c08afed9dd68e..866aa9a4901484377f7c3b767a77c05e51ed857f 100644 --- a/analysis/preprocessing/full_code.Rmd +++ b/analysis/preprocessing/full_code.Rmd @@ -7502,8 +7502,11 @@ country_codes = ISOcodes::ISO_3166_1 %>% mutate(iso2 = if_else(iso2=="GR", "EL", iso2)) %>% mutate(iso2 = if_else(iso2=="GB", "UK", iso2)) +# read in total private households data from EUROSTAT and Norway, merge, and write .csv +## set 4 digits per value options(digits=4) +## EUROSTAT total private households total_private_households_Eurostat = read.csv(here("/analysis/preprocessing/income-stratified-footprints/lfst_hhnhtych_1_Data.csv")) %>% filter(!(GEO %in% c("European Union - 27 countries (from 2020)", "Euro area - 19 countries (from 2015)", @@ -7549,6 +7552,7 @@ total_private_households_Eurostat = read.csv(here("/analysis/preprocessing/incom total_private_households = as.numeric(total_private_households), total_private_households = total_private_households*1000) +## Norway total private households total_private_households_Norway = read.csv(here("/analysis/preprocessing/income-stratified-footprints/Privathusholdninger.csv")) %>% gather(year, total_private_households, Private.households.2005:Private.households.2019) %>% mutate(geo = dplyr::recode(region, @@ -7571,20 +7575,23 @@ total_private_households_Norway = read.csv(here("/analysis/preprocessing/income- "Private.households.2019" = 2019)) %>% select(year,geo,total_private_households) +## merge EUROSTAT and Norway total private households data total_private_households = rbind(total_private_households_Eurostat, total_private_households_Norway) %>% mutate(geo = as.character(geo), year = as.numeric(year), total_private_households = as.numeric(total_private_households)) +## write .csv file with all total private households data write_csv(total_private_households, here("/analysis/preprocessing/income-stratified-footprints/total_private_households.csv")) # the original 'total_private_households_original.csv' is in 'income-stratified-footprints-in-europe/data' - if something goes wrong # with the main paper results (pulling from the mrio results file written later) then the problem is here, when I added # the as.character mutation in the total_private_households_Eurostat +## return to 2 digits per value options(digits=2) -# 2) load Eurostat household data - should show how I get to 'total_private_households.csv' - see code chunk in SI - move to here. +# 2) load merged total private households data hh_data = read_csv(here("analysis", "preprocessing", "income-stratified-footprints", "total_private_households.csv")) %>% mutate(imputed = if_else(is.na(total_private_households), TRUE, FALSE)) %>% @@ -7595,7 +7602,7 @@ hh_data = read_csv(here("analysis", "preprocessing", "income-stratified-footprin left_join(country_codes, by="iso2") %>% select(-total_private_households) -#3) Eurostat mean expenditures per household income quintile per household and per adult equivalent +#3) load EUROSTAT mean expenditures per household income quintile per household and per adult equivalent (written and saved in the previous, income-stratified-footprints code chunk) df_expenditure_long = read_csv(here("analysis", "preprocessing", "income-stratified-footprints", @@ -7611,15 +7618,6 @@ df_expenditure_long = read_csv(here("analysis", select(-mean_expenditure) %>% ungroup() - -# df_expenditure_2005 = df_expenditure_long %>% -# filter(year == 2010) %>% -# mutate(year = 2005, -# imputed = TRUE) -# -# df_expenditure_long = df_expenditure_long %>% -# bind_rows(df_expenditure_2005) - ## Calculate adult equivalents per household df_adult_e_p_hh = df_expenditure_long %>% rename(iso2 = geo) %>% @@ -7633,7 +7631,7 @@ df_adult_e_p_hh = df_expenditure_long %>% quint = parse_number(quintile)) -# add quintile population data +## add quintile population data mrio_results_with_adult_eq_all = dat_results_raw %>% filter(year %in% c(2005, 2010, 2015)) %>% left_join(hh_data, by=c("iso2", "year")) %>% @@ -7647,8 +7645,7 @@ mrio_results_with_adult_eq_all = dat_results_raw %>% select(-c(hh_quintile, adult_e_p_hh)) -#### ONLY COUNTRIES THAT HAVE DATA FOR 2005, 2010, and 2015 -## TODO: maybe make a bit less dirty =) +## for the european expenditure deciles we use only countries with data in 2005, 2010 and 2015. This excludes Luxembourg and Italy. complete_countries = mrio_results_with_adult_eq_all %>% group_by(year, iso2) %>% summarise(co2_kg = sum(co2_kg)) %>% @@ -7660,47 +7657,9 @@ complete_countries = mrio_results_with_adult_eq_all %>% select(iso2) %>% pull() - -hh_data %>% - filter(iso2 %in% complete_countries, year<=2015, year>=2005) %>% -ggplot(aes(x=year, y=hh*0.000001)) + - geom_line() + - geom_point(data=hh_data %>% - filter(iso2 %in% complete_countries, - year<=2015, - year>=2005, - imputed), color="red") + - theme_ipsum() + - scale_x_continuous(labels = scales::label_number(accuracy = 1, big.mark = "")) + - labs(x="", y="Total number of households (mio)") + - facet_wrap(~iso3, scales="free_y", ncol = 4) + - theme(legend.position = "bottom", - axis.text.x = element_text(angle = 90)) - -#ggsave(here("figures", "household_size.png"), plot = p, width = 8, height = 14) - -pal <- wes_palette("Cavalcanti1", 5, type = "discrete") -pal = pal[c(1,2,5)] - -df_adult_e_p_hh %>% - filter(iso2 %in% complete_countries, year<=2015, year>=2005) %>% - mutate(quint = parse_number(quintile)) %>% - ggplot(aes(x=quint, y=adult_e_p_hh, color=factor(year))) + - geom_line(alpha=0.5) + - theme_ipsum() + - scale_color_manual(name = "Year", values = pal) + - labs(x="", y="Adult equivivalents per household") + - facet_wrap(~iso3, ncol = 4) + - theme(legend.position = "bottom", - axis.text.x = element_text(angle = 90)) - -#ggsave(here("figures", "adult_eq_per_household.png"), plot = p, width = 8, height = 14) - df_adult_e_p_hh %>% filter(iso2 %in% complete_countries, year<=2015, year>=2005) %>% - mutate(quint = parse_number(quintile)) #%>% - #write_csv(here("data", "adult_eq_per_household.csv")) - + mutate(quint = parse_number(quintile)) # calculate EU expenditure tiles based on loaded mrio result file and adult equivalents. # returns country quintiles mapped to EU ntile rank and EU ntile boundaries @@ -7885,15 +7844,7 @@ df_mapped_result_data = df_mapped_result_2005_data %>% write_csv(df_mapped_result_data, here(paste0("analysis/data/derived/mrio_results_eu_ntile_mapped_n_", target_eu_ntiles, ".csv"))) -#df_mapped_result_ntiles = -# df_mapped_result_2005_ntiles %>% mutate(year=2005) %>% -# bind_rows(df_mapped_result_2010_ntiles %>% mutate(year=2010)) %>% -# bind_rows(df_mapped_result_2015_ntiles %>% mutate(year=2015)) - -#write_csv(df_mapped_result_ntiles, -# here(paste0("data/eu_ntiles_n_", target_eu_ntiles, ".csv"))) - -###### pxp version +###### using EXIOBASE product-by-product version # 1) load MRIO result file dat_results_raw = read_rds(here("analysis", "preprocessing", "income-stratified-footprints", @@ -7909,6 +7860,95 @@ country_codes = ISOcodes::ISO_3166_1 %>% mutate(iso2 = if_else(iso2=="GR", "EL", iso2)) %>% mutate(iso2 = if_else(iso2=="GB", "UK", iso2)) +# read in total private households data from EUROSTAT and Norway, merge, and write .csv +## set 4 digits per value +options(digits=4) + +## EUROSTAT total private households +total_private_households_Eurostat = read.csv(here("/analysis/preprocessing/income-stratified-footprints/lfst_hhnhtych_1_Data.csv")) %>% + filter(!(GEO %in% c("European Union - 27 countries (from 2020)", + "Euro area - 19 countries (from 2015)", + "European Union - 28 countries (2013-2020)", + "European Union - 15 countries (1995-2004)"))) %>% + mutate(geo = dplyr::recode(GEO, + "Belgium" = "BE", + "Bulgaria" = "BG", + "Czechia" = "CZ", + "Denmark" = "DK", + "Germany (until 1990 former territory of the FRG)" = "DE", + "Estonia" = "EE", + "Ireland" = "IE", + "Greece" = "EL", + "Spain" = "ES", + "France" = "FR", + "Croatia" = "HR", + "Italy" = "IT", + "Cyprus" = "CY", + "Latvia" = "LV", + "Lithuania" = "LT", + "Luxembourg" = "LU", + "Hungary" = "HU", + "Malta" = "MT", + "Netherlands" = "NL", + "Austria" = "AT", + "Poland" = "PL", + "Portugal" = "PT", + "Romania" = "RO", + "Slovenia" = "SI", + "Slovakia" = "SK", + "Finland" = "FI", + "Sweden" = "SE", + "United Kingdom" = "UK", + "Montenegro" = "ME", + "North Macedonia" = "MK", + "Serbia" = "RS", + "Turkey" = "TR")) %>% + select(TIME,geo,Value) %>% + rename(year = TIME, total_private_households = Value) %>% + mutate(total_private_households = as.character(total_private_households), + total_private_households = parse_number(total_private_households), + total_private_households = as.numeric(total_private_households), + total_private_households = total_private_households*1000) + +## Norway total private households +total_private_households_Norway = read.csv(here("/analysis/preprocessing/income-stratified-footprints/Privathusholdninger.csv")) %>% + gather(year, total_private_households, Private.households.2005:Private.households.2019) %>% + mutate(geo = dplyr::recode(region, + "0 The whole country" = "NO"), + year = dplyr::recode(year, + "Private.households.2005" = 2005, + "Private.households.2006" = 2006, + "Private.households.2007" = 2007, + "Private.households.2008" = 2008, + "Private.households.2009" = 2009, + "Private.households.2010" = 2010, + "Private.households.2011" = 2011, + "Private.households.2012" = 2012, + "Private.households.2013" = 2013, + "Private.households.2014" = 2014, + "Private.households.2015" = 2015, + "Private.households.2016" = 2016, + "Private.households.2017" = 2017, + "Private.households.2018" = 2018, + "Private.households.2019" = 2019)) %>% + select(year,geo,total_private_households) + +## merge EUROSTAT and Norway total private households data +total_private_households = rbind(total_private_households_Eurostat, + total_private_households_Norway) %>% + mutate(geo = as.character(geo), + year = as.numeric(year), + total_private_households = as.numeric(total_private_households)) + +## write .csv file with all total private households data +write_csv(total_private_households, here("/analysis/preprocessing/income-stratified-footprints/total_private_households.csv")) +# the original 'total_private_households_original.csv' is in 'income-stratified-footprints-in-europe/data' - if something goes wrong +# with the main paper results (pulling from the mrio results file written later) then the problem is here, when I added +# the as.character mutation in the total_private_households_Eurostat + +## return to 2 digits per value +options(digits=2) + # 2) load Eurostat household data hh_data = read_csv(here("analysis", "preprocessing", "income-stratified-footprints", "total_private_households.csv")) %>% @@ -7934,14 +7974,6 @@ df_expenditure_long = read_csv(here("analysis", "preprocessing", "income-stratif select(-mean_expenditure) %>% ungroup() -# df_expenditure_2005 = df_expenditure_long %>% -# filter(year == 2010) %>% -# mutate(year = 2005, -# imputed = TRUE) -# -# df_expenditure_long = df_expenditure_long %>% -# bind_rows(df_expenditure_2005) - ## Calculate adult equivalents per household df_adult_e_p_hh = df_expenditure_long %>% rename(iso2 = geo) %>% @@ -7954,7 +7986,6 @@ df_adult_e_p_hh = df_expenditure_long %>% mutate(iso3 = if_else(iso2 == "XK", "XKX", iso3), quint = parse_number(quintile)) - # add quintile population data mrio_results_with_adult_eq_all = dat_results_raw %>% filter(year %in% c(2005, 2010, 2015)) %>% @@ -7970,7 +8001,6 @@ mrio_results_with_adult_eq_all = dat_results_raw %>% #### ONLY COUNTRIES THAT HAVE DATA FOR 2005, 2010, and 2015 -## TODO: maybe make a bit less dirty =) complete_countries = mrio_results_with_adult_eq_all %>% group_by(year, iso2) %>% summarise(co2_kg = sum(co2_kg)) %>% @@ -7982,45 +8012,9 @@ complete_countries = mrio_results_with_adult_eq_all %>% select(iso2) %>% pull() -hh_data %>% - filter(iso2 %in% complete_countries, year<=2015, year>=2005) %>% -ggplot(aes(x=year, y=hh*0.000001)) + - geom_line() + - geom_point(data=hh_data %>% - filter(iso2 %in% complete_countries, - year<=2015, - year>=2005, - imputed), color="red") + - theme_ipsum() + - scale_x_continuous(labels = scales::label_number(accuracy = 1, big.mark = "")) + - labs(x="", y="Total number of households (mio)") + - facet_wrap(~iso3, scales="free_y", ncol = 4) + - theme(legend.position = "bottom", - axis.text.x = element_text(angle = 90)) - -#ggsave(here("figures", "household_size.png"), plot = p, width = 8, height = 14) - -pal <- wes_palette("Cavalcanti1", 5, type = "discrete") -pal = pal[c(1,2,5)] - df_adult_e_p_hh %>% filter(iso2 %in% complete_countries, year<=2015, year>=2005) %>% - mutate(quint = parse_number(quintile)) %>% - ggplot(aes(x=quint, y=adult_e_p_hh, color=factor(year))) + - geom_line(alpha=0.5) + - theme_ipsum() + - scale_color_manual(name = "Year", values = pal) + - labs(x="", y="Adult equivivalents per household") + - facet_wrap(~iso3, ncol = 4) + - theme(legend.position = "bottom", - axis.text.x = element_text(angle = 90)) - -#ggsave(here("figures", "adult_eq_per_household.png"), plot = p, width = 8, height = 14) - -df_adult_e_p_hh %>% - filter(iso2 %in% complete_countries, year<=2015, year>=2005) %>% - mutate(quint = parse_number(quintile)) #%>% - #write_csv(here("data", "adult_eq_per_household.csv")) + mutate(quint = parse_number(quintile)) # calculate EU expenditure tiles based on loaded mrio result file and adult equivalents. # returns country quintiles mapped to EU ntile rank and EU ntile boundaries @@ -8192,26 +8186,13 @@ df_mapped_result_2010 = map_mrio_results_to_eu_ntiles(2010, target_eu_ntiles) df_mapped_result_2010_data = df_mapped_result_2010$df_mapped_data df_mapped_result_2010_ntiles = df_mapped_result_2010$df_ntile_boundaries -#df_mapped_result_2015 = map_mrio_results_to_eu_ntiles(2015, target_eu_ntiles) -#df_mapped_result_2015_data = df_mapped_result_2015$df_mapped_data -#df_mapped_result_2015_ntiles = df_mapped_result_2015$df_ntile_boundaries - df_mapped_result_data = df_mapped_result_2005_data %>% - bind_rows(df_mapped_result_2010_data) #%>% - #bind_rows(df_mapped_result_2015_data) + bind_rows(df_mapped_result_2010_data) write_csv(df_mapped_result_data, here(paste0("analysis/data/derived/si/mrio_results_eu_ntile_mapped_n_", target_eu_ntiles, "_pxp.csv"))) -#df_mapped_result_ntiles = -# df_mapped_result_2005_ntiles %>% mutate(year=2005) %>% -# bind_rows(df_mapped_result_2010_ntiles %>% mutate(year=2010)) #%>% - #bind_rows(df_mapped_result_2015_ntiles %>% mutate(year=2015)) - -#write_csv(df_mapped_result_ntiles, -# here(paste0("data/eu_ntiles_n_", target_eu_ntiles, "_pxp.csv"))) - -###### alternative method, ixi version +###### alternative method, EXOIBASE industry-by-industry version # 1) load MRIO result file dat_results_raw = read_rds(here("analysis", "preprocessing", "income-stratified-footprints", @@ -8227,6 +8208,95 @@ country_codes = ISOcodes::ISO_3166_1 %>% mutate(iso2 = if_else(iso2=="GR", "EL", iso2)) %>% mutate(iso2 = if_else(iso2=="GB", "UK", iso2)) +# read in total private households data from EUROSTAT and Norway, merge, and write .csv +## set 4 digits per value +options(digits=4) + +## EUROSTAT total private households +total_private_households_Eurostat = read.csv(here("/analysis/preprocessing/income-stratified-footprints/lfst_hhnhtych_1_Data.csv")) %>% + filter(!(GEO %in% c("European Union - 27 countries (from 2020)", + "Euro area - 19 countries (from 2015)", + "European Union - 28 countries (2013-2020)", + "European Union - 15 countries (1995-2004)"))) %>% + mutate(geo = dplyr::recode(GEO, + "Belgium" = "BE", + "Bulgaria" = "BG", + "Czechia" = "CZ", + "Denmark" = "DK", + "Germany (until 1990 former territory of the FRG)" = "DE", + "Estonia" = "EE", + "Ireland" = "IE", + "Greece" = "EL", + "Spain" = "ES", + "France" = "FR", + "Croatia" = "HR", + "Italy" = "IT", + "Cyprus" = "CY", + "Latvia" = "LV", + "Lithuania" = "LT", + "Luxembourg" = "LU", + "Hungary" = "HU", + "Malta" = "MT", + "Netherlands" = "NL", + "Austria" = "AT", + "Poland" = "PL", + "Portugal" = "PT", + "Romania" = "RO", + "Slovenia" = "SI", + "Slovakia" = "SK", + "Finland" = "FI", + "Sweden" = "SE", + "United Kingdom" = "UK", + "Montenegro" = "ME", + "North Macedonia" = "MK", + "Serbia" = "RS", + "Turkey" = "TR")) %>% + select(TIME,geo,Value) %>% + rename(year = TIME, total_private_households = Value) %>% + mutate(total_private_households = as.character(total_private_households), + total_private_households = parse_number(total_private_households), + total_private_households = as.numeric(total_private_households), + total_private_households = total_private_households*1000) + +## Norway total private households +total_private_households_Norway = read.csv(here("/analysis/preprocessing/income-stratified-footprints/Privathusholdninger.csv")) %>% + gather(year, total_private_households, Private.households.2005:Private.households.2019) %>% + mutate(geo = dplyr::recode(region, + "0 The whole country" = "NO"), + year = dplyr::recode(year, + "Private.households.2005" = 2005, + "Private.households.2006" = 2006, + "Private.households.2007" = 2007, + "Private.households.2008" = 2008, + "Private.households.2009" = 2009, + "Private.households.2010" = 2010, + "Private.households.2011" = 2011, + "Private.households.2012" = 2012, + "Private.households.2013" = 2013, + "Private.households.2014" = 2014, + "Private.households.2015" = 2015, + "Private.households.2016" = 2016, + "Private.households.2017" = 2017, + "Private.households.2018" = 2018, + "Private.households.2019" = 2019)) %>% + select(year,geo,total_private_households) + +## merge EUROSTAT and Norway total private households data +total_private_households = rbind(total_private_households_Eurostat, + total_private_households_Norway) %>% + mutate(geo = as.character(geo), + year = as.numeric(year), + total_private_households = as.numeric(total_private_households)) + +## write .csv file with all total private households data +write_csv(total_private_households, here("/analysis/preprocessing/income-stratified-footprints/total_private_households.csv")) +# the original 'total_private_households_original.csv' is in 'income-stratified-footprints-in-europe/data' - if something goes wrong +# with the main paper results (pulling from the mrio results file written later) then the problem is here, when I added +# the as.character mutation in the total_private_households_Eurostat + +## return to 2 digits per value +options(digits=2) + # 2) load Eurostat household data hh_data = read_csv(here("analysis", "preprocessing", "income-stratified-footprints", "total_private_households.csv")) %>% @@ -8252,14 +8322,6 @@ df_expenditure_long = read_csv(here("analysis", "preprocessing", "income-stratif select(-mean_expenditure) %>% ungroup() -# df_expenditure_2005 = df_expenditure_long %>% -# filter(year == 2010) %>% -# mutate(year = 2005, -# imputed = TRUE) -# -# df_expenditure_long = df_expenditure_long %>% -# bind_rows(df_expenditure_2005) - ## Calculate adult equivalents per household df_adult_e_p_hh = df_expenditure_long %>% rename(iso2 = geo) %>% @@ -8272,7 +8334,6 @@ df_adult_e_p_hh = df_expenditure_long %>% mutate(iso3 = if_else(iso2 == "XK", "XKX", iso3), quint = parse_number(quintile)) - # add quintile population data mrio_results_with_adult_eq_all = dat_results_raw %>% filter(year %in% c(2005, 2010, 2015)) %>% @@ -8286,9 +8347,7 @@ mrio_results_with_adult_eq_all = dat_results_raw %>% mutate(ae_quintile = hh_quintile * adult_e_p_hh) %>% select(-c(hh_quintile, adult_e_p_hh)) - #### ONLY COUNTRIES THAT HAVE DATA FOR 2005, 2010, and 2015 -## TODO: maybe make a bit less dirty =) complete_countries = mrio_results_with_adult_eq_all %>% group_by(year, iso2) %>% summarise(co2_kg = sum(co2_kg)) %>% @@ -8300,45 +8359,9 @@ complete_countries = mrio_results_with_adult_eq_all %>% select(iso2) %>% pull() -hh_data %>% - filter(iso2 %in% complete_countries, year<=2015, year>=2005) %>% -ggplot(aes(x=year, y=hh*0.000001)) + - geom_line() + - geom_point(data=hh_data %>% - filter(iso2 %in% complete_countries, - year<=2015, - year>=2005, - imputed), color="red") + - theme_ipsum() + - scale_x_continuous(labels = scales::label_number(accuracy = 1, big.mark = "")) + - labs(x="", y="Total number of households (mio)") + - facet_wrap(~iso3, scales="free_y", ncol = 4) + - theme(legend.position = "bottom", - axis.text.x = element_text(angle = 90)) - -#ggsave(here("figures", "household_size.png"), plot = p, width = 8, height = 14) - -pal <- wes_palette("Cavalcanti1", 5, type = "discrete") -pal = pal[c(1,2,5)] - -df_adult_e_p_hh %>% - filter(iso2 %in% complete_countries, year<=2015, year>=2005) %>% - mutate(quint = parse_number(quintile)) %>% - ggplot(aes(x=quint, y=adult_e_p_hh, color=factor(year))) + - geom_line(alpha=0.5) + - theme_ipsum() + - scale_color_manual(name = "Year", values = pal) + - labs(x="", y="Adult equivivalents per household") + - facet_wrap(~iso3, ncol = 4) + - theme(legend.position = "bottom", - axis.text.x = element_text(angle = 90)) - -#ggsave(here("figures", "adult_eq_per_household.png"), plot = p, width = 8, height = 14) - df_adult_e_p_hh %>% filter(iso2 %in% complete_countries, year<=2015, year>=2005) %>% - mutate(quint = parse_number(quintile)) #%>% - #write_csv(here("data", "adult_eq_per_household.csv")) + mutate(quint = parse_number(quintile)) # calculate EU expenditure tiles based on loaded mrio result file and adult equivalents. # returns country quintiles mapped to EU ntile rank and EU ntile boundaries @@ -8521,14 +8544,6 @@ df_mapped_result_data = df_mapped_result_2005_data %>% write_csv(df_mapped_result_data, here(paste0("analysis/data/derived/si/mrio_results_eu_ntile_mapped_n_", target_eu_ntiles, "_method2_ixi.csv"))) -#df_mapped_result_ntiles = -# df_mapped_result_2005_ntiles %>% mutate(year=2005) %>% -# bind_rows(df_mapped_result_2010_ntiles %>% mutate(year=2010)) %>% -# bind_rows(df_mapped_result_2015_ntiles %>% mutate(year=2015)) - -#write_csv(df_mapped_result_ntiles, -# here(paste0("data/eu_ntiles_n_", target_eu_ntiles, "_method2_ixi.csv"))) - ``` diff --git a/analysis/preprocessing/income-stratified-footprints/results_formatted_method1_pxp.rds b/analysis/preprocessing/income-stratified-footprints/results_formatted_method1_pxp.rds new file mode 100644 index 0000000000000000000000000000000000000000..c09f58cebf7070bbe0299d3c8296abeaff30444a Binary files /dev/null and b/analysis/preprocessing/income-stratified-footprints/results_formatted_method1_pxp.rds differ diff --git a/analysis/preprocessing/income-stratified-footprints/results_formatted_method2_ixi.rds b/analysis/preprocessing/income-stratified-footprints/results_formatted_method2_ixi.rds new file mode 100644 index 0000000000000000000000000000000000000000..73c8be3e8a956dfe2a16009e4bed82cf1776cb1e Binary files /dev/null and b/analysis/preprocessing/income-stratified-footprints/results_formatted_method2_ixi.rds differ