diff --git a/analysis/data/derived/scenarios_fine_new.rds b/analysis/data/derived/scenarios_fine_new.rds new file mode 100644 index 0000000000000000000000000000000000000000..987022e334e0695df6791d97f28c8f193e07255f Binary files /dev/null and b/analysis/data/derived/scenarios_fine_new.rds differ diff --git a/analysis/figures/figure5-test.pdf b/analysis/figures/figure5-test.pdf deleted file mode 100644 index 10945417117f8a1317a9dba1d546fb347b3e054f..0000000000000000000000000000000000000000 Binary files a/analysis/figures/figure5-test.pdf and /dev/null differ diff --git a/analysis/paper/paper.Rmd b/analysis/paper/paper.Rmd index 8c0ed4cfda8520442c270f6f6df1d6fd3cf7ccfd..e6ac26db8dd7672bf67dcbff2746f6eca3808caf 100644 --- a/analysis/paper/paper.Rmd +++ b/analysis/paper/paper.Rmd @@ -964,24 +964,10 @@ for (min_energy in seq(from=mer[1], to=mer[2], by=0.25)) { bind_rows(df_energy_deciles %>% scaled_quantiles(eu_q_rank, pae_energy_use_gj, min_energy, mean_energy)) } - } } -# thought it was much faster without the bind_rows, turns out that is not the bottleneck -#n_quantiles = nrow(df_energy_deciles) -#mea_range = seq(from=mea[1], to=mea[2], by=1) -#mer_range = seq(from=mer[1], to=mer[2], by=1) -#df_all2 = data.frame(eu_q_rank = rep(seq(1:n_quantiles), -# times=length(mer_range)*length(mea_range)), -# v_mean = rep(mea_range, each=n_quantiles, times=length(mer_range)), -# v_first = rep(mer_range, each=length(mea_range)*n_quantiles), -# scaled = 0) %>% -# filter(v_first <= v_mean) - - - -#saveRDS(df_all, here("data/scenarios_fine.rds")) +saveRDS(df_all, here("analysis/data/derived/scenarios_fine_new.rds")) ``` ```{r , fig.width=7, fig.height=5.5, eval = FALSE} @@ -1017,14 +1003,14 @@ a = df_all %>% scale_fill_gradient("Mean energy\navailable (GJ/ae)", low=wes_palette("Chevalier1")[3], high = wes_palette("Rushmore1")[4]) + - #scale_color_manual(values=wes_palette("Darjeeling1")) + + scale_color_manual(values=wes_palette("Darjeeling1")) + theme_minimal() + labs(x="Minimum energy requirement (GJ/ae)", y="Maximum energy inequality (10:10 ratio)", color = "Scenario")+ theme(text=element_text(family="Liberation Sans Narrow"), axis.text.x = element_text(size = 13), axis.text.y = element_text(size = 13))# + #theme_ipsum() - +a ggsave(here("analysis", "figures", "figure5-test.pdf")) ```