diff --git a/analysis/paper/si.Rmd b/analysis/paper/si.Rmd index 7539ad3a34ad22d97458007e9b1a7748b368ed0d..002fe2873dc9489b7a886423a4a7108ba3941be0 100644 --- a/analysis/paper/si.Rmd +++ b/analysis/paper/si.Rmd @@ -272,7 +272,7 @@ Table S4 shows our mapping between the EUROSTAT HBS consumption categories and t ```{r tableS4} -labels = read.csv(here("/analysis/preprocessing/Exiobase_T_labels_ixi_w_coicop_mapping_no_rent.csv")) %>% +labels = read.csv(here("/analysis/preprocessing/Exiobase_T_labels_ixi_w_coicop_mapping.csv")) %>% select(V2,coicop,five_sectors) %>% unique() diff --git a/analysis/preprocessing/Exiobase_T_labels_ixi_w_coicop_mapping_no_rent.csv b/analysis/preprocessing/Exiobase_T_labels_ixi_w_coicop_mapping.csv similarity index 100% rename from analysis/preprocessing/Exiobase_T_labels_ixi_w_coicop_mapping_no_rent.csv rename to analysis/preprocessing/Exiobase_T_labels_ixi_w_coicop_mapping.csv diff --git a/analysis/preprocessing/full_code.Rmd b/analysis/preprocessing/full_code.Rmd index c4d7e846416b95279ba56d924919a16f017dd981..16dcc3cc7aa5d49805d86f100081b41f5f0ab28b 100644 --- a/analysis/preprocessing/full_code.Rmd +++ b/analysis/preprocessing/full_code.Rmd @@ -3196,9 +3196,9 @@ results_formatted = results_recombined %>% #write_rds(results_formated, here("/results_formated.rds")) -write.csv(results_formatted, paste0(data_dir_income_stratified_footprints, "/results_formatted_method1_ixi_pps_hh_no_rent.csv")) +write.csv(results_formatted, paste0(data_dir_income_stratified_footprints, "/results_formatted_method1_ixi.csv")) -write_rds(results_formatted, paste0(data_dir_income_stratified_footprints, "/results_formatted_method1_ixi_pps_hh_no_rent.rds")) +write_rds(results_formatted, paste0(data_dir_income_stratified_footprints, "/results_formatted_method1_ixi.rds")) #write.csv(results_formatted, paste0(data_dir_income_stratified_footprints, "/results_formatted_method1_ixi_pps_ae.csv")) @@ -7554,7 +7554,7 @@ write.csv(results_formatted_with_direct_FD_fp, paste0(data_dir_income_stratified ``` -# European exp deciles +# European expenditure deciles ```{r european-expenditure-deciles, eval = FALSE} @@ -7574,11 +7574,11 @@ pacman::p_load(tidyverse, target_eu_ntiles = 10 -source(here("code", "helper_functions.R")) - +#source(here("code", "helper_functions.R")) # 1) load MRIO result file -dat_results_raw = read_rds(here("data", "results_formatted_method1_ixi_pps_hh_no_rent.rds")) %>% +dat_results_raw = read_rds(here("analysis", "preprocessing", "income-stratified-footprints", + "results_formatted_method1_ixi.rds")) %>% ungroup() %>% mutate(year= strtoi(year)) %>% rename(iso2 = geo) @@ -7591,7 +7591,8 @@ country_codes = ISOcodes::ISO_3166_1 %>% mutate(iso2 = if_else(iso2=="GB", "UK", iso2)) # 2) load Eurostat household data - should show how I get to 'total_private_households.csv' - see code chunk in SI - move to here. -hh_data = read_csv(here("data", "total_private_households.csv")) %>% +hh_data = read_csv(here("analysis", "preprocessing", "income-stratified-footprints", + "total_private_households.csv")) %>% mutate(imputed = if_else(is.na(total_private_households), TRUE, FALSE)) %>% rename(iso2 = geo) %>% group_by(iso2) %>% @@ -7601,7 +7602,9 @@ hh_data = read_csv(here("data", "total_private_households.csv")) %>% select(-total_private_households) #3) Eurostat mean expenditures per household income quintile per household and per adult equivalent -df_expenditure_long = read_csv(here("data", +df_expenditure_long = read_csv(here("analysis", + "preprocessing", + "income-stratified-footprints", "mean_expenditure_by_quintile_long.csv"), na = ":") %>% #filter(year >=2010, geo != "IT") %>% @@ -7701,8 +7704,8 @@ df_adult_e_p_hh %>% df_adult_e_p_hh %>% filter(iso2 %in% complete_countries, year<=2015, year>=2005) %>% - mutate(quint = parse_number(quintile)) %>% - write_csv(here("data", "adult_eq_per_household.csv")) + mutate(quint = parse_number(quintile)) #%>% + #write_csv(here("data", "adult_eq_per_household.csv")) # calculate EU expenditure tiles based on loaded mrio result file and adult equivalents. @@ -7886,7 +7889,7 @@ df_mapped_result_data = df_mapped_result_2005_data %>% bind_rows(df_mapped_result_2015_data) write_csv(df_mapped_result_data, - here(paste0("data/mrio_results_eu_ntile_mapped_n_", target_eu_ntiles, ".csv"))) + here(paste0("analysis/data/derived/mrio_results_eu_ntile_mapped_n_", target_eu_ntiles, "_check.csv"))) df_mapped_result_ntiles = df_mapped_result_2005_ntiles %>% mutate(year=2005) %>% @@ -7896,26 +7899,9 @@ df_mapped_result_ntiles = write_csv(df_mapped_result_ntiles, here(paste0("data/eu_ntiles_n_", target_eu_ntiles, ".csv"))) -###### - -knitr::opts_chunk$set(echo = FALSE, message=FALSE) - -if (!require("pacman")) install.packages("pacman") -pacman::p_load(tidyverse, - janitor, - here, - wbstats, - ISOcodes, - viridis, - imputeTS, - hrbrthemes, - wesanderson, - glue) - -target_eu_ntiles = 10 - -source(here("code", "helper_functions.R")) +###### pxp version +# 1) load MRIO result file dat_results_raw = read_rds(here("data", "results_formatted_method1_pxp_pps_hh_no_rent.rds")) %>% ungroup() %>% mutate(year= strtoi(year)) %>% @@ -8229,25 +8215,7 @@ df_mapped_result_ntiles = write_csv(df_mapped_result_ntiles, here(paste0("data/eu_ntiles_n_", target_eu_ntiles, "_pxp.csv"))) -###### - -knitr::opts_chunk$set(echo = FALSE, message=FALSE) - -if (!require("pacman")) install.packages("pacman") -pacman::p_load(tidyverse, - janitor, - here, - wbstats, - ISOcodes, - viridis, - imputeTS, - hrbrthemes, - wesanderson, - glue) - -target_eu_ntiles = 10 - -source(here("code", "helper_functions.R")) +###### alternative method, ixi version # 1) load MRIO result file dat_results_raw = read_rds(here("data", "results_formatted_method2_ixi_pps_hh_no_rent.rds")) %>%