diff --git a/analysis/figures/figureS1-test.pdf b/analysis/figures/figureS1-test.pdf
index 51e2c2664ae6429aa53586cf7a8e014f93bd35a4..2a3e55bc4951e0edf585005b8ffdb97eb927b3cf 100644
Binary files a/analysis/figures/figureS1-test.pdf and b/analysis/figures/figureS1-test.pdf differ
diff --git a/analysis/figures/figureS2-test.pdf b/analysis/figures/figureS2-test.pdf
index 925f0cb22042eacec0344f827e491db9d452d77d..615800fa8f0018bf79d55a8751c921ce1d39afe8 100644
Binary files a/analysis/figures/figureS2-test.pdf and b/analysis/figures/figureS2-test.pdf differ
diff --git a/analysis/figures/figureS3-test.pdf b/analysis/figures/figureS3-test.pdf
index cc62cb8518cd78c95233707aa5fdfea65e3106fa..c25287cfd3ce48b6d78bc65b349ca4d35d8d2599 100644
Binary files a/analysis/figures/figureS3-test.pdf and b/analysis/figures/figureS3-test.pdf differ
diff --git a/analysis/figures/figureS4-test.pdf b/analysis/figures/figureS4-test.pdf
index 35716cdeb91a94eca277679148d6227c340df2e7..08a7d5e3eaef320fbfd3be6f96cdadf52d14ea5d 100644
Binary files a/analysis/figures/figureS4-test.pdf and b/analysis/figures/figureS4-test.pdf differ
diff --git a/analysis/paper/si.Rmd b/analysis/paper/si.Rmd
index 49db3619184eadf2104d2b7b6e4e3ecf7ad42cd4..36e670de963d82827cf388210bc5b63aee8daed3 100644
--- a/analysis/paper/si.Rmd
+++ b/analysis/paper/si.Rmd
@@ -33,12 +33,8 @@ csl: "../templates/vancouver.csl" # Insert path for the bib-style
 content: | 
   x pages, x figures
 always_allow_html: true
-header-includes:
-    - \usepackage{caption}
 ---
 
-\captionsetup[table]{labelformat=empty}
-
 Content: `r rmarkdown::metadata$content`
 
 ```{r setup, echo = FALSE, include = FALSE, message = FALSE}
@@ -163,7 +159,7 @@ For our results in the main paper, we first decompose the EXIOBASE national hous
 
 Step 1) Multiply 'mean consumption expenditure by income quintile' in purchasing power standard per household (pps hh) by the 'structure of consumption expenditure by income quintile and COICOP consumption purpose' (in 'parts per mille' or pm) to calculate the consumption expenditure structure in 'pps hh'. Then calculate the shares of eachincome quintile within each sector. Table S1 shows the two sector example, where 'pps hh' is multiplied by the shares of each sector ('parts per mille' divided by 1000) to calculate the expenditure on each sector per income quintile in 'pps hh' ('s1 (pps hh)' and 's2 (pps hh)'). 's1 (q share)' and 's2 (q share)' are each income quintile's share of the total amount of expenditure (in 'pps hh') on that sector, according to the HBS.
 
-```{r tableS1, results = "asis", tab.cap = NULL}
+```{r tableS1, tab.cap = "HBS structure with calculations of quintile shares per sector."}
 
 #"HBS structure with calculations of quintile shares per sector."
 
@@ -190,7 +186,6 @@ flextable(hbs) %>%
                     sector_1_shares = "s1 (q share)",
                     pps_hh_sector2 = "s2 (pps hh)",
                     sector_2_shares = "s2 (q share)") %>%
-  set_caption("Table S1: HBS structure with calculations of quintile shares per sector.") %>%
   fit_to_width(max_width = 7.5)
                             
 ```
diff --git a/analysis/paper/si.docx b/analysis/paper/si.docx
index a2b6b8b733cf1010a47495e65e3b5449a8552eff..339d22e23a30c48024f363389dc1614ae8fc5bec 100644
Binary files a/analysis/paper/si.docx and b/analysis/paper/si.docx differ