function out=crqad(varargin) % CRQAD Computes and plots the diagonalwise CRQA measures. % Y=CRQAD(X [,Y] [,param1,param2,...]) % Recurrence quantification analysis of diagonals in the % cross recurrence plot of the vectors X and Y as well as % X and -Y. The output is a structure (see below). % % The input vectors can be multi-column vectors, where % each column will be used as a component of the % phase-space vector. However, if the first column is % monotonically increasing, it will be used as an % time scale for plotting. % % Y=CRQAD(X,M,T,E,W,LMIN) computes the recurrence % quantification analysis of the recurrence plot % of X by using the dimension M, delay T, the % size of neighbourhood E, for the diagonals within % the range [-W,W] around the main diagonal. Variable LMIN % sets the minimal length of what should be considered % to be a diagonal line. % % Parameters: dimension M, delay T, the size of % neighbourhood E and the range size W are the first % five numbers after the data series; if W is empty, % the whole plot will be calculated. Further parameters % can be used to switch between various methods of finding % the neighbours of the phasespace trajectory, to suppress % the normalization of the data and to suppress the GUI % (useful in order to use this programme by other programmes). % % Methods of finding the neighbours. % maxnorm - Maximum norm. % euclidean - Euclidean norm. % minnorm - Minimum norm. % nrmnorm - Euclidean norm between normalized vectors % (all vectors have the length one). % maxnorm - Maximum norm, fixed recurrence rate. % fan - Fixed amount of nearest neighbours. % inter - Interdependent neighbours. % omatrix - Order matrix. % opattern - Order patterns recurrence plot. % % Normalization of the data series. % normalize - Normalization of the data. % nonormalize - No normalization of the data. % % Parameters not needed to be specified. % % Output: % Y.RRp = RRp % Y.RRm = RRm % Y.DETp = DETp % Y.DETm = DETm % Y.Lp = Lp % Y.Lm = Lm % % Examples: a = sin(0:.1:80) + randn(1,801); % b = sin(0:.1:80) + randn(1,801); % crqad(a,b,3,15,.1,100,'fan') % % See also CRQA, CRQAD_BIG, CRP, CRP2, CRP_BIG, DL, TT, RPDE. % % References: % Marwan, N., Kurths, J.: % Nonlinear analysis of bivariate data with cross recurrence plots, % Phys. Lett. A, 302, 2002. % Copyright (c) 2008-2009 % Norbert Marwan, Potsdam Institute for Climate Impact Research, Germany % http://www.pik-potsdam.de % % Copyright (c) 2002-2008 % Norbert Marwan, Potsdam University, Germany % http://www.agnld.uni-potsdam.de % % $Date$ % $Revision$ % % $Log$ % Revision 2.10 2010/06/30 12:03:02 marwan % Help text modified % % Revision 2.9 2009/03/24 08:35:19 marwan % corrected XCF calculation % % Revision 2.8 2007/07/18 17:18:44 marwan % integer values in the arguments supported % % Revision 2.7 2007/05/15 17:33:13 marwan % new neighbourhood criterion: fixed RR % % Revision 2.6 2006/10/24 14:16:16 marwan % minor change: sigma in title line of RP shown only for normalised data % % Revision 2.5 2006/07/04 14:03:57 marwan % axis-error % % Revision 2.4 2005/03/16 11:19:02 marwan % help text modified % % Revision 2.3 2004/11/12 08:40:46 marwan % order patterns recurrence plot added % % Revision 2.2 2004/11/10 07:05:55 marwan % initial import % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% programme properties global props init_properties lmin_default=2; w=[]; method='max'; method_n=1; t=1; m=1; e=.1; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% check the input error(nargchk(1,10,nargin)); if nargout>1, error('Too many output arguments'), end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% splash the GPL splash_gpl('crp'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% check and read the input varargin{11}=[]; % transform any int to double intclasses = {'uint8';'uint16';'uint32';'uint64';'int8';'int16';'int32';'int64'}; flagClass = []; for i = 1:length(intclasses) i_int=find(cellfun('isclass',varargin,intclasses{i})); if ~isempty(i_int) for j = 1:length(i_int) varargin{i_int(j)} = double(varargin{i_int(j)}); end flagClass = [flagClass; i_int(:)]; end end if ~isempty(flagClass) disp(['Warning: Input arguments at position [',num2str(flagClass'),'] contain integer values']); disp(['(now converted to double).']) end i_double=find(cellfun('isclass',varargin,'double')); i_char=find(cellfun('isclass',varargin,'char')); nogui=0; if nargin & isnumeric(varargin{1}) % check the text input parameters for method, gui check_meth={'ma','eu','mi','nr','rr','fa','in','om','op','di'}; % maxnorm, euclidean, nrmnorm, fan, distance check_gui={'gui','nog','sil'}; % gui, nogui, silent temp_meth=0; temp_gui=0; if ~isempty(i_char) for i=1:length(i_char), varargin{i_char(i)}(4)='0'; temp_gui=temp_gui+strcmpi(varargin{i_char(i)}(1:3),check_gui'); temp_meth=temp_meth+strcmpi(varargin{i_char(i)}(1:2),check_meth'); end method_n=min(find(temp_meth)); nogui=min(find(temp_gui))-1; for i=1:length(i_char); temp2(i,:)=varargin{i_char(i)}(1:3); end i_char(strmatch(check_gui(find(temp_gui)),temp2))=[]; if isempty(nogui), nogui=0; end if isempty(method_n), method_n=1; end if nogui>2, nogui=1; end if method_n>length(check_meth), method0=length(check_meth); end method=check_meth{method_n}; else nogui=0; if nargout nogui=1; action='compute'; end end if nogui==0 action='init'; else action='compute'; end % get the parameters for creating RP if max(size(varargin{1}))<=3 error('To less values in data X.') end x=double(varargin{1}); if isempty(varargin{2}) | ~isnumeric(varargin{2}), y=x; else y=double(varargin{2}); end if sum(double(diff(x(:,1))<=0)), embed_flag=0; end if (isnumeric(varargin{2}) & max(size(varargin{2}))==1) | ~isnumeric(varargin{2}) y=x; if ~isempty(varargin{i_double(2)}), m=varargin{i_double(2)}(1); else m=1; end if ~isempty(varargin{i_double(3)}), t=varargin{i_double(3)}(1); else t=1; end if ~isempty(varargin{i_double(4)}), e=varargin{i_double(4)}(1); else e=.1; end if ~isempty(varargin{i_double(5)}), w=varargin{i_double(5)}(1); else w=varargin{i_double(5)}; end if ~isempty(varargin{i_double(6)}), lmin=varargin{i_double(6)}(1); else lmin=lmin_default; end else if ~isempty(varargin{i_double(3)}), m=varargin{i_double(3)}(1); else m=1; end if ~isempty(varargin{i_double(4)}), t=varargin{i_double(4)}(1); else t=1; end if ~isempty(varargin{i_double(5)}), e=varargin{i_double(5)}(1); else e=.1; end if ~isempty(varargin{i_double(6)}), w=varargin{i_double(6)}(1); else w=varargin{i_double(6)}; end if ~isempty(varargin{i_double(7)}), lmin=varargin{i_double(7)}(1); else lmin=lmin_default; end end else error('No valid arguments.') end Nx=length(x); Ny=length(y); if size(x,1)<size(x,2), x=x'; end if size(y,1)<size(y,2), y=y'; end if size(x,2)>=2 xscale=x(:,1); if ~isempty(find(diff(xscale)<0)), embed_flag=0;end else xscale=(1:length(x))'; end if size(y,2)>=2 yscale=y(:,1); if ~isempty(find(diff(yscale)<0)), embed_flag=0;end else yscale=(1:length(y))'; end if max(size(x))~=max(size(y)), if ~nogui, errordlg('Data must have the same length.','Check Data'), else error('Data must have the same length.'), end end if e<0, e=1; if ~nogui warndlg('The threshold size E can not be negative and is now set to 1.','Check Data') h=findobj('Tag','crqa_eps'); set(h(1),'String',str2num(e)) else disp('The threshold size E can not be negative and is now set to 1.'), end end if t<1, t=1; if ~nogui warndlg('The delay T can not be smaller than one and is now set to 1.','Check Data') h=findobj('Tag','crqa_maxLag'); set(h(1),'String',str2num(t)) else disp('The delay T can not be smaller than one and is now set to 1.') end end if isempty(w), w=.5*Nx; wstep=1; end % if w<2, % w=2; % if ~nogui, warndlg('The window size W exceeds the valid range.','Check Data') % else, disp('The window size W exceeds the valid range.'), end % end if w>Nx, w=Nx; wstep=1;; if ~nogui, warndlg('The window size W exceeds the valid range.','Check Data') else, disp('The window size W exceeds the valid range.'), end end t=round(t); m=round(m); w=round(w);% wstep=round(wstep); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% compute flag=1; x1=x; x2=y; if length(method)>1 & strcmpi(method(1:2),'di') disp('Warning: RQA from distance plot not possible!') return end warning off if size(x1,1)<size(x1,2), x1=x1'; end if size(x2,1)<size(x2,2), x2=x2'; end x=crp2(x1,x2,m,t,e,method,'sil','nor'); warning off N=size(x); x3=zeros(2*N(2)+N(1),N(2)); x3(N(2)+1:N(2)+N(1),1:N(2))=x; N3=size(x3); i2=repmat(((1:1+N(2))+N(1)+N(2))',1,N(2)); i4=i2+repmat((2*N(2)+N(1)+1)*[0:N(2)-1],size(i2,1),1); i4(:,end)=[]; i4=reshape(i4,size(i4,1)*size(i4,2),1); x3(i4)=[]; x3(end)=[]; x4=(reshape(x3,N(1)+N(2),N(2)))'; x4(end+1,:)=0; i=1; clear DET L RR for j=-w:w, clear z z0 z1 if sum(x4(:,N(2)+1+j))==N(2), l1=N(2);else z=diff(x4(:,N(2)+1+j)); if ~isempty(find(~(z-1))) & any(~(z-1)) z0(:,1)=find(~(z-1)); else z0(1:N(2))=0; end if ~isempty(find(~(z+1))) & any(~(z+1)) z1=find(~(z+1)); else z1(1:N(2))=0; end % some brutforce corrections adjustlength = min(length(z0), length(z1)); z0 = z0(1:adjustlength); z1 = z1(1:adjustlength); if z0(1)>z1(1) z0(2:end+1,1)=z0(1:end);z0(1)=0; if length(z0)>length(z1), z0(end)=[]; end end l=sort(z1-z0); l1=l(find(l>lmin)); end DET(i)=sum(l1)/sum(x4(:,N(2)+1+j)); L(i)=mean(l1); RR(i)=sum(x4(:,N(2)+1+j))/(N(2)-abs(j)); i=i+1; end L(find(isnan(L)))=0; RR(find(isnan(RR)))=0; DET(find(isnan(DET)))=0; if nargout, XCF=xcf(x1,x2,w,1); end if ~nargout subplot(2,2,1) clim=1; xcf(x1(:,1),x2(:,1),w) set(gca,'fonta','i') xlabel('Lag'), axis([-w w -clim clim]) ylabel('Cross Correlation') h=text(0,0,'A','fontw','b');set(h,'un','pi'),set(h,'pos',[9,16,0]) switch flag case 1 subplot(2,2,2), plot([-w:w],RR,'k','linew',.7), set(gca,'fonta','i'),axis([-w w 0 1]) xlabel('Lag'),ylabel('Recurrence Rate'),grid on h=text(0,0,'B','fontw','b');set(h,'un','pi'),set(h,'pos',[9,16,0]) subplot(2,2,3), plot([-w:w],DET,'k','linew',.7), set(gca,'fonta','i'),xlabel('Lag') axis([-w w 0 1]),ylabel('Determinism'),grid on h=text(0,0,'C','fontw','b');set(h,'un','pi'),set(h,'pos',[9,16,0]) subplot(2,2,4), plot([-w:w],L,'k','linew',.7), set(gca,'fonta','i'),xlabel('Lag') axis([-w w 0 max([max(L) 1])]),ylabel('Averaged Line Length'),grid on h=text(0,0,'D','fontw','b');set(h,'un','pi'),set(h,'pos',[9,16,0]) case 2 subplot(2,2,2), plot([-w:w],smooth(RR,5,5),'k','linew',.7), set(gca,'fonta','i'),axis([-w w 0 1]) xlabel('Lag'),ylabel('Recurrence Rate'),grid on h=text(0,0,'B','fontw','b');set(h,'un','pi'),set(h,'pos',[9,16,0]) subplot(2,2,3), plot([-w:w],smooth(DET,5,5),'k','linew',.7), set(gca,'fonta','i'),xlabel('Lag') axis([-w w 0 1]),ylabel('Determinism'),grid on h=text(0,0,'C','fontw','b');set(h,'un','pi'),set(h,'pos',[9,16,0]) subplot(2,2,4), plot([-w:w],smooth(L,5,5),'k','linew',.7), set(gca,'fonta','i'),xlabel('Lag') axis([-w w 0 max(L)]),ylabel('Averaged Line Length'),grid on h=text(0,0,'D','fontw','b');set(h,'un','pi'),set(h,'pos',[9,16,0]) end else out.XCF=XCF'; out.RRp=RR; out.DETp=DET; out.Lp=L; end x=crp2(x1,-x2,m,t,e,method,'sil'); warning off N=size(x); x3=zeros(2*N(2)+N(1),N(2)); x3(N(2)+1:N(2)+N(1),1:N(2))=x; N3=size(x3); i2=repmat(((1:1+N(2))+N(1)+N(2))',1,N(2)); i4=i2+repmat((2*N(2)+N(1)+1)*[0:N(2)-1],size(i2,1),1); i4(:,end)=[]; i4=reshape(i4,size(i4,1)*size(i4,2),1); x3(i4)=[]; x3(end)=[]; x4=(reshape(x3,N(1)+N(2),N(2)))'; x4(end+1,:)=0; i=1; clear DET L RR for j=-w:w, clear z z0 z1 if sum(x4(:,N(2)+1+j))==N(2), l1=N(2);else z=diff(x4(:,N(2)+1+j)); if ~isempty(find(~(z-1))),z0(:,1)=find(~(z-1));else,z0(1:N(2))=0;end, if ~isempty(find(~(z+1))),z1=find(~(z+1));else,z1(1:N(2))=0;end if z0(1)>z1(1) z0(2:end+1,1)=z0(1:end);z0(1)=0; if length(z0)>length(z1), z0(end)=[]; end end l=sort(z1-z0); l1=l(find(l>lmin)); end DET(i)=sum(l1)/sum(x4(:,N(2)+1+j)); L(i)=mean(l1); RR(i)=sum(x4(:,N(2)+1+j))/(N(2)-abs(j)); i=i+1; end L(find(isnan(L)))=0; RR(find(isnan(RR)))=0; DET(find(isnan(DET)))=0; if ~nargout switch flag case 1 subplot(2,2,2), hold on, plot([-w:w],RR,'r','linew',.7), hold off, set(gca,'YLimMode','Auto') subplot(2,2,3), hold on, plot([-w:w],DET,'r','linew',.7), hold off, hold off, set(gca,'YLimMode','Auto') subplot(2,2,4), hold on, plot([-w:w],L,'r','linew',.7), hold off, hold off, set(gca,'YLimMode','Auto') case 2 subplot(2,2,2), hold on, plot([-w:w],smooth(RR,5,5),'r','linew',.7), hold off, hold off, set(gca,'YLimMode','Auto') subplot(2,2,3), hold on, plot([-w:w],smooth(DET,5,5),'r','linew',.7), hold off, hold off, set(gca,'YLimMode','Auto') subplot(2,2,4), hold on, plot([-w:w],smooth(L,5,5),'r','linew',.7), hold off, hold off, set(gca,'YLimMode','Auto') end else out.RRm=RR; out.DETm=DET; out.Lm=L; end warning on