Cross Recurrence Plot Toolbox for Matlab

Transdisciplinary Concepts and Methods
Potsdam Institute for Climate Impact Research (PIK)

Reference Manual
Version 5.17, Release 28.17

D
D
D

POTSDAM INSTITUTE FOR
CLIMATE IMPACT RESEARCH

l..
3
E

General Information

How to get:

How to install:

How to deinstall:

How to work:

How to contact:

Thanks:

Remarks:

Future releases:

About this document:

The toolbox is freely available in the WorldWideWeb:

After downloading the installation script install.m, simply change into
the folder with this file and call the command install from the Matlab
command line. The toolbox will be automatically created and added to
the startup.m file.

Just call the command crpclean from the Matlab command line. This
will remove all files of the CRP toolbox from the filesystem and its entry
from the Matlab startup file.

This toolbox was designed for Matlab, thus one needs to install Matlab
before using this toolbox.

Norbert Marwan Visitors
Telegraphenberg

building A51, room 11

Potsdam Institute for Climate

Impact Research (PIK)

14473 Potsdam

Germany

Norbert Marwan SnailMail
Potsdam Institute for Climate

Impact Research (PIK)

P. O. Box 601203

14412 Potsdam

Germany
+49 331 288 2466
+49 331 288 2640

Phone
Fax

eMail

This toolbox has been developed in the project Nonlinear Phase and
Correlation Analysis of Palaeomagnetic and Palaeoclimatic Records un-
der the framework of the Priority Programme Geomagnetic variations:
Spatio-temporal variations, processes and impacts on the system Earth
of the German Science Foundation (Deutsche Forschungsgemeinschaft).

The toolbox is still under development. We can not give any warranty for
anything related with our programmes. Please send error messages or
comments to our contact address.

We plan to extend the toolbox to methods of phase analysis and graphi-
cal models. Send any wishes to our contact address.

This manual was prepared with IATEX 2¢ and using the modified refman-
package.
Build: August 20, 2013

Reference Manual

http://tocsy.pik-potsdam.de
mailto:marwan@pik-potsdam.de

General Information

Warning:

Theoretical Background:

Any uncritical application of the methods included in this toolbox can
yield to pitfalls. The users of these programmes are urged to inform
theirself by the basics of nonlinear dynamics and the problems which
can occur therein.

The toolbox programmes are based on modern methods of nonlinear
data analysis. The main focus lies on (cross) recurrence plots and their
quantification. (Cross) Recurrence plots are briefly defined as

RZZ].’S" =0 (e ||%i—x) or CRT].’E" =0 (g — ||X — 7]

),

where ¢ is a predefined threshold and X; i; are phase space trajec-
tories in an m-dimension phase space (Eckmann and Ruelle, 1987;
Marwan and Kurths, 2002). These trajectories can be reconstructed
from single time series u; by using a time delay t (Takens, 1981) ¥; =
(Ui, Uisr, .. .,ui+(,,l,1)T)T. The base of a recurrence plot is the distance
matrix
D" = 1% — %]

Another kind of recurrence plot is based on an order pattern represen-
tation of the data and is called order patterns recurrence plot (Groth,
2004). There are m! order patterns r;, for example for m = 2 we have

0 foru; < Uiyt
T =
' 1 foru; > ujyq.

An order pattern recurrence plot is then defined as
R?;'s" =9 (nf, n]y) ,

and should not be confused with the order matrix

me; o Jo for u; < u;
o =0l ~{] st

The definition of the order matrix and order patterns recurrence plot can,
of course, extended to the bivariate case analogous to the cross recur-
rence plot.

Several quantification approaches can be applied; the most common are
recurrence rate (Marwan et al., 2007)

1§ e
RR - m Zl Rl‘,]" 7
1,]=

determinism N
Y. 1P
DET = 721—’?? _ g()
LijRif

(where P¢(1) = {l;; i = 1...N;,}is the frequency distribution of the lengths
I of diagonal structures and N; is the absolute number of diagonal lines);

7

Cross Recurrence Plot Toolbox 3

General Information

Lmax and divergence

Lygx = max ({l;; i=1...N;}) respective DIV = ! ,
Lmux
entropy
ENTR= = Y p()Inp(l) with p(1) = oD __
I=lin Zfil Pe(l) '

laminarity (Marwan et al., 2002)

N
" vP¥(v
Lam = Doy 0PC0)
Zv:l vP* (U)

(where P#(v) = {v;; i = 1...N,} denotes the frequency distribution of
the lengths I of vertical structures)

trapping time
EZI]\]:Umin s ('U)

TT = ,
ZZZ}V:UW,‘,, PE (U)

recurrence times of first type (Gao and Cai, 2000)

T' = |{ij: %, % € Ri}

7

recurrence times of second type
T]'z = !{i,j : fi,fj S 'Ri,‘ 5(};1 € 'RZH
(where R; are the recurrence points which belong to the state ;).
Further quantifiers are based on complex network theory, as clustering
coefficient (Marwan et al., 2009)
N JERMERM,
_ o D R RERG

¢ RR;

i=1
with RR; = Zjli 1 R;.”]fs the local recurrence rate, or

transitivity
N m, e, e M, €
~ Lije=1 Ry SRR

C
N m,epm,€
Zi,j,k:l Ri,j Rk,i

Above definitions are for the entire recurrence plot (or for squared win-
dows in it, reveiling some time dependencies). But most of these mea-
sures can be quantified for each diagonal line (parallel to the main di-
agonal) as well, which is even interesting for cross recurrence plots, for
example

Reference Manual

General Information

1 e 1 N—k
- - e _ - 3
RRg = ~— kj;i:k ORI = — 12:1 1PE(1)

is the recurrence rate of the kth diagonal line in the cross recurrence plot
(Pe(l) = {l;; i =1...N;} defines the frequency distribution of diagonal
line lengths for the kth diagonal line where k = j —i in Cle’fj's).

Moreover, dynamical invariants can be estimated by using recurrence
plots. At the moment, they are not yet included in this toolbox. For more
details see Marwan et al. (2007).

The following literature is highly recommended to get introduced into
nonlinear dynamics, recurrence plots and related methods and to avoid
wrong usage or misinterpretation.

1.

10.

ECKMANN, J.-P., Ruelle, D.: Ergodic theory of chaos and strange
attractors, Review of Modern Physics, 57(3), 1985, 617—656.

GAo0, J., Cai, H.: On the structures and quantification of recurrence
plots, Physics Letters A, 270, 2000, 75-87.
DOI:10.1016/S0375-9601(00)00304-2

GROTH, A.: Visualization of coupling in time series by order recur-
rence plots, Physical Review E, 72(4), 046220 (2005).
DOI:10.1103/PhysRevE.72.046220

MARWAN, N., Kurths, J.: Nonlinear analysis of bivariate data with
cross recurrence plots, Physics Letters A, 302, 2002, 299-307.
DOI:10.1016/S0375-9601(02)01170-2

MARWAN, N., Wessel, N., Meyerfeldt, U., Schirdewan, A., Kurths,
J.: Recurrence Plot Based Measures of Complexity and its Ap-
plication to Heart Rate Variability Data, Physical Review E, 66(2),
2002, 026702. DOI:10.1103/PhysRevE.66.026702

MARWAN, N., Romano, M. C., Thiel, M., Kurths, J.: Recurrence
Plots for the Analysis of Complex Systems, Physics Reports, 438(5—
6), 2007, 237-329. DOI:10.1016/].physrep.2006.11.001

MARWAN, N., Donges, J. F., Zou, Y., Donner, R. V., Kurths, J.:
Complex network approach for recurrence analysis of time series,
Phys. Lett. A, 373(46), 2009. DOI:10.1016/].physleta.2009.09.042

THIEL, M., Romano, M. C., Kurths, J.: Influence of observational
noise on the recurrence quantification analysis, Physica D, 17(3),
2002, 138—-152. DOI:10.1016/S0167-2789(02)00586-9

TRULLA, L. L., Giuliani, A., Zbilut, J. P., Webber Jr., C. L.: Re-
currence quantification analysis of the logistic equation with tran-
sients, Physics Letters A, 223, 1996, 255-260.
DOI:10.1016/S0375-9601(96)00741-4

ZBILUT, J. P, Marwan, N.: The Wiener-Khinchin theorem and re-
currence quantification, Phys. Lett. A, 372, 2008.
DOI:10.1016/j.physleta.2008.09.027

Cross Recurrence Plot Toolbox

http://dx.doi.org/10.1016/S0375-9601(00)00304-2
http://dx.doi.org/10.1103/PhysRevE.72.046220
http://dx.doi.org/10.1016/S0375-9601(02)01170-2
http://dx.doi.org/10.1103/PhysRevE.66.026702
http://dx.doi.org/10.1016/j.physrep.2006.11.001
http://dx.doi.org/10.1016/j.physleta.2009.09.042
http://dx.doi.org/10.1016/S0167-2789(02)00586-9
http://dx.doi.org/10.1016/S0375-9601(96)00741-4
http://dx.doi.org/10.1016/j.physleta.2008.09.027

General Information

Copyright: © 2008-2011, Norbert Marwan, Potsdam Institute for Climate Impact
Research, Germany
© 1998-2008, Norbert Marwan, University of Potsdam, Germany

This toolbox is free software; you can redistribute it and/or modify it un-
der the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or any later
version.

This toolbox is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Gen-
eral Public License for more details.

GNU General Public License

Version 2, June 1991
Copyright (C) 1989, 1991 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it
is not allowed.

PREAMBLE

The licenses for most software are designed to take away your freedom to share and change it. By
contrast, the GNU General Public License is intended to guarantee your freedom to share and change
free software — to make sure the software is free for all its users. This General Public License applies
to most of the Free Software Foundation’s software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by the GNU Library General Public
License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses
are designed to make sure that you have the freedom to distribute copies of free software (and charge
for this service if you wish), that you receive source code or can get it if you want it, that you can change
the software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to
ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can get the source
code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which
gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands that
there is no warranty for this free software. If the software is modified by someone else and passed on,
we want its recipients to know that what they have is not the original, so that any problems introduced
by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger
that redistributors of a free program will individually obtain patent licenses, in effect making the program
proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone’s free
use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the copyright
holder saying it may be distributed under the terms of this General Public License. The “Program”,
below, refers to any such program or work, and a “work based on the Program” means either the
Program or any derivative work under copyright law: that is to say, a work containing the Program or a
portion of it, either verbatim or with modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term “modification”.) Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not covered by this License; they are
outside its scope. The act of running the Program is not restricted, and the output from the Program is
covered only if its contents constitute a work based on the Program (independent of having been made
by running the Program). Whether that is true depends on what the Program does.

6 Reference Manual

General Information

1.

You may copy and distribute verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate copy-
right notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the
absence of any warranty; and give any other recipients of the Program a copy of this License along
with the Program. You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

You may modify your copy or copies of the Program or any portion of it, thus forming a work based on
the Program, and copy and distribute such modifications or work under the terms of Section 1 above,
provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating that you changed the files
and the date of any change.

b) You must cause any work that you distribute or publish, that in whole or in part contains or is
derived from the Program or any part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

e

If the modified program normally reads commands interactively when run, you must cause it,
when started running for such interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a notice that there is no warranty
(or else, saying that you provide a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this License. (Exception: if the
Program itself is interactive but does not normally print such an announcement, your work based
on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are
not derived from the Program, and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those sections when you distribute them
as separate works. But when you distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of this License, whose permissions
for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote
it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by
you; rather, the intent is to exercise the right to control the distribution of derivative or collective works
based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a
work based on the Program) on a volume of a storage or distribution medium does not bring the other
work under the scope of this License.

You may copy and distribute the Program (or a work based on it, under Section 2) in object code
or executable form under the terms of Sections 1 and 2 above provided that you also do one of the
following:

a) Accompany it with the complete corresponding machine-readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third party, for a
charge no more than your cost of physically performing source distribution, a complete machine-
readable copy of the corresponding source code, to be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange; or,

¢) Accompany it with the information you received as to the offer to distribute corresponding source
code. (This alternative is allowed only for noncommercial distribution and only if you received
the program in object code or executable form with such an offer, in accord with Subsection b
above.)

The source code for a work means the preferred form of the work for making modifications to it. For an
executable work, complete source code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to control compilation and installation of the
executable. However, as a special exception, the source code distributed need not include anything that
is normally distributed (in either source or binary form) with the major components (compiler, kernel, and
so on) of the operating system on which the executable runs, unless that component itself accompanies
the executable.

If distribution of executable or object code is made by offering access to copy from a designated place,
then offering equivalent access to copy the source code from the same place counts as distribution of
the source code, even though third parties are not compelled to copy the source along with the object
code.

You may not copy, modify, sublicense, or distribute the Program except as expressly provided under
this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and
will automatically terminate your rights under this License. However, parties who have received copies,
or rights, from you under this License will not have their licenses terminated so long as such parties
remain in full compliance.

Cross Recurrence Plot Toolbox 7

General Information

5. You are not required to accept this License, since you have not signed it. However, nothing else grants

10.

11.

12.

you permission to modify or distribute the Program or its derivative works. These actions are prohibited
by law if you do not accept this License. Therefore, by modifying or distributing the Program (or any
work based on the Program), you indicate your acceptance of this License to do so, and all its terms
and conditions for copying, distributing or modifying the Program or works based on it.

Each time you redistribute the Program (or any work based on the Program), the recipient automatically
receives a license from the original licensor to copy, distribute or modify the Program subject to these
terms and conditions. You may not impose any further restrictions on the recipients’ exercise of the
rights granted herein. You are not responsible for enforcing compliance by third parties to this License.

If, as a consequence of a court judgment or allegation of patent infringement or for any other reason
(not limited to patent issues), conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of
this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License
and any other pertinent obligations, then as a consequence you may not distribute the Program at all.
For example, if a patent license would not permit royalty-free redistribution of the Program by all those
who receive copies directly or indirectly through you, then the only way you could satisfy both it and this
License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the
balance of the section is intended to apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or
to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the
free software distribution system, which is implemented by public license practices. Many people have
made generous contributions to the wide range of software distributed through that system in reliance
on consistent application of that system; it is up to the author/donor to decide if he or she is willing to
distribute software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of
this License.

If the distribution and/or use of the Program is restricted in certain countries either by patents or by copy-
righted interfaces, the original copyright holder who places the Program under this License may add
an explicit geographical distribution limitation excluding those countries, so that distribution is permitted
only in or among countries not thus excluded. In such case, this License incorporates the limitation as
if written in the body of this License.

The Free Software Foundation may publish revised and/or new versions of the General Public License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in
detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of
this License which applies to it and “any later version”, you have the option of following the terms and
conditions either of that version or of any later version published by the Free Software Foundation. If the
Program does not specify a version number of this License, you may choose any version ever published
by the Free Software Foundation.

If you wish to incorporate parts of the Program into other free programs whose distribution conditions
are different, write to the author to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this.
Our decision will be guided by the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.

NO WARRANTY

BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE
PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE
STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PRO-
GRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE
OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR
DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR
A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Reference Manual

ace

Purpose

Finds optimal transformation and maximal correlation.

Syntax mcor=ace(x,y, [w,ii,o0i])

Description

Parameters

Examples

See Also

References

[theta, phi]=ace(x,y,[,w,ii,0i])

[theta, phi, mcor]l=ace(x,y,[,w,ii,0i])

[theta, phi, mcor, i, o, imax, omax]=ace(x,y,[,w,ii,o0i])
ace(...)]

Estimates the optimal transformations of the system theta(x)=phi(x)
and computes the resulting maximal correlation mcor, where x is a one-
column vector and y can be a multi-column vector.

[theta, phi, mcor, i, o, imax, omax]=ace(x,y [,w,ii,oi]) esti-
mates the optimal transformations theta, phi and the maximal correla-
tion mcor and outputs the number of inner iterations i, break-up num-
ber of inner inner iterations, number of outer iterations o and break-up
number of outer inner iterations. If the algorithm doesn’t converge, the
number of iterations will be negative signed.

Without output arguments, ace plots the optimal transformations theta
and phi.

w is the half-length of the boxcar window, ii is the maximal number of
inner iterations, oi is the minimal number of outer iterations.

x=(-1:.002:1)+.3*rand(1,1001);
y=(-1:.002:1).72+.3*rand(1,1001);
corrcoef (x,y)

ace(y,x)

mctf

Breiman, L., Friedman, J. H.: Estimating Optimal Transformations for
Multiple regression and Correlation, J. Am. Stat. Assoc., 80(391), 1985.

Voss, H., Kurths, J.: Reconstruction of nonlinear time delay models from
data by the use of optimal transformations, Phys. Lett. A, 234, 1997.

Cross Recurrence Plot Toolbox

adjust

Purpose
Syntax
Description

Examples

Adjusts two two-column vectors.
[x, yl=adjust(a,b,flag)

Adjusts the two-column vectors a and b to the same time scale (in first
column), whereby using the flag, the following methods for adjustment
can be choosen:

0 — (default) adjustment by cutting.
1 —adjustment by cubic interpolating.
-1 — adjustment by cubic interpolating and forced length (given by A).
2 —gap filling by histogram estimation (experimental status).
3 —gapfilling by AR(p) estimation (experimental status).

Except for f1ag=0, x and y will have the same length.

x=(1:110) 7

yl=x(11:end); y1(:,2)=sin(x(11:end)/10);
y2=x(1:100)/2; y2(:,2)=sin(x(1:100)/5);
[z1 z2]=adjust(yl,y2);

10

Reference Manual

arfit

Purpose

Syntax

Description

Example

AR parameter estimation via Yule-Walker method.

arfit(x,p)
a=arfit(x,p)
[a yl=arfit(x,p)

arfit(x,p) opens a GUI for AR coefficients estimation for the vector
x using the Yule-Walker method. The coefficients and order selection
criterias for all orders until the maximal order p will be solved. The coef-
ficients are solved by the Levinson- Durbin algorithmus. The criteria are
normalized in order to show them in the same plot.

a=arfit(x,p) returns the vector a of length (p+1) of the AR coefficients
and the noise level for the corresponding AR model of the model order
p- The GUI is suppressed.

[a yl=arfit(x,p) returns the vector y of a realization of the resulting
AR model. The GUI is suppressed.

x=rand(3,1);
a=[.8 .3 -.25 .9]’;
for i=4:1000,
x(i)=sum(a(1:3) .*x(i-1:-1:i-3))+a(end) *randn;
end

arfit(x,10)
I Figure No. 1 AR Fit I
File Edit View |nsert Tools Window Help Inca
— Data and Madel Plot — Criteria
Data | vanance
: W PACF Cit
: : W AIC Criterian
; | BIC Criterion
: = 2 o White naise
10 — AR Cosfficient

H i H H
200 400 600 800 1000
Mas. Order. 10 show arder 3
Model Data. - — To Workspace
at 3032

;0. Make Model
M b: 0.7160 Print
CL 1D
AGHLD &I
Universily of Potsdam
2002 Help

_ L i | |
a 200 400 600 800 1000

Cross Recurrence Plot Toolbox 11

corrgram

Purpose

Syntax

Description

Example

Calculate windowed cross correlation between two signals.

¢ = corrgram(a,b,maxlag,window,noverlap)
[c,1,t] = corrgram(...)

¢ = corrgram(a,b)

corrgram(a,b)

c = corrgram(a,b,maxlag,window,noverlap) calculates the windowed
cross correlation between the signals in vector a and vector b. corrgram
splits the signals into overlapping segments and forms the columns of ¢
with their cross correlation values up to maximum lag specified by scalar
maxlag. Each column of ¢ contains the cross correlation function be-
tween the short-term, time-localized signals a and b. Time increases
linearly across the columns of c, from left to right. Lag increases lin-
early down the rows, starting at -maxlag. If lengths of a and b differ, the
shorter signal is filled with zeros. If n is the length of the signals, c is a
matrix with 2+«maxlag+1 rows and

k = fix((n-noverlap)/(window-noverlap))
columns.

[c,1,t] = corrgram(...) returns a column of lag L and one of time T
at which the correlation coefficients are computed. L has length equal to
the number of rows of ¢, T has length k.

c = corrgram(a,b) calculates windowed cross correlation using de-
feault settings; the defeaults are maxlag = floor(0.1n), window =
floor(0.1*n) and noverlap = 0. You can tell corrgram to use the de-
feault for any parameter by leaving it off or using [1 for that parameter,
e.g. corrgram(a,b, [],1000).

corrgram(a,b) with no output arguments plots the windowed cross cor-
relation using the current figure.

x = cos(0:.01:10%pi)’;
y = sin(0:.01:10%pi)’ + .5 * randn(length(x),1);
corrgram(x,y)

corrcoeff, corr, xcorr, migram

12

Reference Manual

crp

Purpose Creates a cross recurrence plot/ recurrence plot.

Syntax

Description

crp
crp
crp

(x)
(x,y)

(x,m,t,e)

r=crp(x,[],m,t,e)
r=crp(x,m,t,e, ’paraml’,’param2’,...)
r=crp(x,y,m, ’paraml’)

Creates a cross recurrence plot/ recurrence plot, order patterns recur-
rence plot as well as a distance matrix/ order matrix. Results can be
stored into the workspace.

Allows to change the parameters interactively by using a GUI.

The source-data x and test-data y can be one- or a two-coloumn vectors
(then, in the first column have to be the time); if the test-data y is not
specified, a simple (auto) recurrence plot is created.

File

Crozs Recurrence Plet (1)

Edit ¥iew Insert Tools Window Help

[b=Ra xA s 280

a00

700

600

500

400

300

200

100

Underlying Time Series
100 200 400 400 200 600 oo 800

m I T RS S L m
100 200 300 400 500 8OO 70O 8O0 900

Cross Recurrence Plat
Dimension: 3, Delay: 12, Threshold: 10% (fixed neighhours amount)

Compute CRP

Embedding

Dimension: 3

Delay: 1z
Wector Switching:

AGNLD
University of Potsdam
1938-2001

Melgiboumosy

__iUnthresholded | £ —
Fixed Amount —
Threshold: 01

100 200 300 400 500 8OO 70O 8O0 900

| Streched Plot
Store Matrix Help
Apply
Close

Parameters Dimension m, delay t and the size of neighbourhood e are the first three
numbers after the data series; further parameters can be used to switch
between various methods of finding the neighbours of the phasespace
trajectory, to suppress the normalization of the data and to suppress the
GUI (useful in order to use this programme by other programmes).

Cross Recurrence Plot Toolbox

13

crp

Limitations

Examples

Methods of finding the neighbours/ of plot.

’maxnorm’ — Maximum norm.

’euclidean’ — Euclidean norm.

’minnorm’ — Minimum norm.

’nrmnorm’ — Euclidean norm between normalized vectors
(all vectors have the length one).

‘rr’ — Maximum norm, fixed recurrence rate.

>fan’ — Fixed amount of nearest neighbours.

’inter’ — Interdependent neighbours.

’omatrix’ — Order matrix.

’opattern’ — Order patterns recurrence plot.

’distance’ — Distance coded matrix (global CRP, Euclidean norm).

Normalization of the data series.
'normalize’ — Normalization of the data.
"nonormalize’ — No normalization of the data.

Suppressing the GUL.
>gui’ — Creates the GUI and the output plot.
’nogui’ — Suppresses the GUI and the output plot.
’silent’ — Suppresses all output.

Parameters not needed to be specified.

For higher speed in output the whole matrix of the recurrence plot is in
the work space — this limits the application of long data series. However,
with a little Matlab script, long data series can be handled too (cf. Exam-
ples).

a=sin((1:1000)*2*pi/67) ;

crp(a, ’nonorm’, ’euclidean’)

X=crp(a,2,50, .1, ’nogui’);
spy (double (X))

b=sin(.01*([1:1000]*2*pi/67).72);
crp(a,b,3,12,’distance’)

14

Reference Manual

crp

Underlying Time Series
100 200 300 400 500 600 700 800 900

i i i i i i i i i
100 200 300 400 500 600 700 800 900

Unthresholded Cross Recurrence Plot
Dimension: 3, Delay: 12

P

100 200 300 400 500 600 700 800 900

0 042 085 128 171 214 257 3 343 385
Dist. to Next Recurrence Point

For computing RPs/ CRPs of long data series, use a similar script as
in the following. The data length is finally limited by the used platform
performence. The examples also illustrate the capabality of using the
programme in a script. The first example uses sparse matrices:

m=3; t=20; e=.5; w=300;
x1=sin((1:5000)/40)’; x2=sin((1:7000)/80);

clear Y, Y=spalloc(length(x2)-(m-1)*t,length(x1)-(m-1)*t,1);
k=0; hl=waitbar(0,’Compute sub CRPs - Please be patient.’);
Nx=length(x1)-(m-1)*t; Ny=length(x2)-(m-1)*t;
ax=ceil (Nx/w); ay=ceil (Ny/w);
Nx2=floor(Nx/ax); Ny2=floor(Ny/ay);
for i=1:Nx2:Nx-Nx2;
for j=1:Ny2:Ny-Ny2, k=k+1; waitbar (k/(Nx*Ny/(Nx2*Ny2)))
X2=crp(x1(i:i+Nx2+(m-1)*t) ,x2(j:j+Ny2+(m-1)*t) ,m,t,e, ...
’nonorm’,’max’,’silent’);
X=sparse(double(X2));
Y(j:j+Ny2-1,1:i+Nx2-1)=X(1:Ny2,1:Nx2);
end
end
close(hl)

spy (Y)

Cross Recurrence Plot Toolbox 15

crp

The second example writes single RPs/ CRPs to the hard disk:

m=3; t=20; e=.5; w=300;
x1=sin((1:5000) /40)’; x2=sin((1:7000)/80)°;
Nx=length(x1); Ny=length(x2);

% compute single CRPs and write them to the hard disk
bl=zeros((m-1)*t+ceil (length(x1) /w)*w,1);
bl1(1l:1length(x1))=x1;
b2=zeros ((m-1) *t+ceil (length(x2) /w)*w,1);
b2(1:1length(x2))=x2;
h=waitbar(0,’Compute sub CRPs - Please be patient.’)
for i=1:w:length(bl)-w-1, waitbar(i/((length(bl)-w-1)))
for j=1:w:length(b2)-w-1,j
X=crp(bl(i:it+tw+(m-1)*t-1),b2(j:j+w+(m-1)*t-1) ,m,t,e,...
’max’,’silent’, ’nonorm’) ;
i2=num2str((i+w-1) /w) ; j2=num2str ((j+w-1)/w) ;
filename=[’CRP_’,i2,’_’,j2,’.tif’];
imwrite(X,filename,’tif’)
end
end, close(h)

% read single CRPs and unify them
xmax=(i+w-1) /w; ymax=(j+w-1)/w;
clear Y, h=waitbar(0,’Read sub CRPs - Please be patient.’);
for i=1:xmax,waitbar (i/xmax)
for j=1:ymax,
i2=num2str(i); j2=num2str(j);
filename=[’CRP_’,i2,’_’,j2,’ .tif’];
X=imread(filename,’tif’);
Y (i*w-(w-1) :i*w, jrw—-(w-1) : j*w)=(X) ’;
end
end, close(h)

Y(Nx+1:end,:)=[]; Y(:,Ny+l:end)=[];
spy (double(Y))

See Also crp2, crp_big, crqa

16 Reference Manual

crp2

Purpose

Syntax

Description

Parameters

Creates a cross recurrence plot/ recurrence plot and computes the line
of synchronization.

crp2(x)

crp2(x,y)

crp2(x,m,t,e)

r=crp2(x, [],m,t,e)

r=crp2(x,m,t,e, ’paraml’,’param2’,...)
r=crp2(x,y,m, ’paraml’)

Creates a cross recurrence plot/ recurrence plot, order patterns recur-
rence plot as well as a distance matrix from the embedding vectors x
and y. Results can be stored into the workspace. Further it is possible
to estimate the line of synchronization (LOS) in order to get the nonpara-
metric time-relationship between the two considered systems.

Threshold uE
LOS Searcl
Set Point Clear P
Clear All
i z dy il
| Siretch Store Matrix

Allows to change the parameters interactively by using a GUI.

The embedding dimension m is given by the size of the n x m matrix x
and y; if the matrix y is not specified, a simple (auto) recurrence plot is
created.

Additionally dimension m, delay t and the size of neighbourhood e are
the first three numbers after the data series; further parameters can be
used to switch between various methods of finding the neighbours of the
phasespace trajectory, to suppress the normalization of the data and
to suppress the GUI (useful in order to use this programme by other
programmes).

Methods of finding the neighbours.

’maxnorm’ — Maximum norm.
’euclidean’ — Euclidean norm.
’minnorm’ — Minimum norm.
’nrmnorm’ — Euclidean norm between normalized vectors
(all vectors have the length one).
‘rr’ — Maximum norm, fixed recurrence rate.
>fan’ — Fixed amount of nearest neighbours.
’omatrix’ — Order matrix (disabled).
’opattern’ — Order patterns recurrence plot.
’distance’ — Distance coded matrix (global CRP, Euclidean norm).

Cross Recurrence Plot Toolbox 17

crp2

Limitations

Examples

See Also

References

Normalization of the data series.

’normalize’ — Normalization of the data.

’nonormalize’ — No normalization of the data.
Suppressing the GUL.

‘gui’ — Creates the GUI and the output plot.

’nogui’ — Suppresses the GUI and the output plot.

’silent’ — Suppresses all output.

Parameters not needed to be specified.

For higher speed in output the whole matrix of the recurrence plot is in
the work space — this limits the application of long data series. However,
a solution for using long data you can find under the description for crp.

a=sin((1:1000)*2xpi/200) ; % pendulum’s location vector
b=cos ((1:1000) *2*pi/200) ; % pendulum’s velocity vector
crp2(a(1:500) ,b(1:500) , ’nonorm’,’euclidean’)

b=sin(.01*([1:1000]*2*pi/67).72);
crp2(b(1:500),a(1:700),3,10,.06,’fan’)

Underlying Time Series
50 100 150 200 250 300 350 400 450
T T T T T T T T T

50 100 150 200 250 300 350 400 450
Cross Recurrence Plot

Dimension: 3, Threshold: 6% (fixed neighbours amount)
. . . .

/ VA

500 1. L

400+ r

3004, H

/
200 H
1004, H
/
' ‘ _/ /

100 200 300 400

crp, crp_big and trackplot

Marwan, N., Thiel, M., Nowaczyk, N.: Cross Recurrence Plot Based
Synchronization of Time Series, Nonlin. Proc. Geophys., 9, 2002.

18

Reference Manual

crp_big

Purpose

Syntax

Description

Parameters

Limitations

Creates a cross recurrence plot/ recurrence plot.

crp_big(x)

crp_big(x,y)

crp_big(x,m,t,e)

r=crp(x,[],m,t,e)

r=crp(x,m,t,e, ’paraml’,’param2’,...)
r=crp(x,y,m, ’paraml’)

Creates a cross recurrence plot/ recurrence plot, order patterns recur-
rence plot as well as a distance matrix/ order matrix. In contrast to CRP,
long data series can be used. Results can be stored into the workspace.

Allows to change the parameters interactively by using a GUI.

The source-data x and test-data y can be one- or a two-coloumn vectors
(then, in the first column have to be the time); if the test-data y is not
specified, a simple (auto) recurrence plot is created.

Dimension m, delay t and the size of neighbourhood e are the first three
numbers after the data series; further parameters can be used to switch
between various methods of finding the neighbours of the phasespace
trajectory, to suppress the normalization of the data and to suppress the
GUI (useful in order to use this programme by other programmes).

Methods of finding the neighbours/ of plot.

’maxnorm’ — Maximum norm.

’euclidean’ — Euclidean norm.

’minnorm’ — Minimum norm.

’nrmnorm’ — Euclidean norm between normalized vectors
(all vectors have the length one).

‘rr’ — Maximum norm, fixed recurrence rate.

’fan’ — Fixed amount of nearest neighbours.

’inter’ — Interdependent neighbours.

’omatrix’ — Order matrix.

’opattern’ — Order patterns recurrence plot.

’distance’ — Distance coded matrix (global CRP, Euclidean norm).

Normalization of the data series.
‘normalize’ — Normalization of the data.
’nonormalize’ — No normalization of the data.

Suppressing the GUL.
‘gui’ — Creates the GUI and the output plot.
’nogui’ — Suppresses the GUI and the output plot.
’silent’ — Suppresses all output.

Parameters not needed to be specified.

In contrast to crp and crp2, this command allows to work with longer
data series. The algorithm computes the CRP piecewise. However, the
possibility to store the CRP in the workspace limits the length of data
series again. However, a solution for using long data you can find under
the description for crp.

Cross Recurrence Plot Toolbox 19

crp_big

Examples

See Also

a=sqrt(10072-(-71:71).72); b=1:100;
b(101:100+1length(a))=-(a)+170;
b(end+1:end+100)=100:-1:1;
crp_big(b,1,1,.1,’euclidean’)

Underlying Time Series
50 100 150 200 250 300
T T T T T T

4 4
2r 12
S R B
-2t 4-2
-4 -4

50 100 150 200 250 300

Cross Recurrence Plot
Dimension: 1, Delay: 1, Threshold: 0.1o (fixed distance euclidean norm)
.

300 -

250 -

200 -

1501

1001

50 -

50 100 150 200 250 300

crp, crp2 and crqga

20

Reference Manual

crga

Purpose

Syntax

Description

Parameters

Computes and plots the CRQA measures.

crqa(x)

crqa(x,y)

y=crqa(x,y,m,t,e,w,ws)
y=crqa(x,y,m,t,e,w,ws,lmin,vmin)
y=crqa(x,y,m,t,e,w,ws,lmin,vmin,tw)
y=crqa(x,y,m,t,e, [],’paraml’, ’param2’,...)

Recurrence quantification analysis of cross-recurrence with the first vec-
tor x and the second y.

The input vectors can be multi-column vectors, where each column will
be used as a component of the phase-space vector. However, if the first
column is monotonically increasing, it will be used as an time scale for
plotting.

CRQA(...) without any output arguments opens a GUI for interactively
control the CRQA. If an output is specified with using the option ’gui’,
then the output will contain the figure handle.

Dimension m, delay t, the size of neighbourhood e, the window size w
and the shift value ws are the first five numbers after the data series;
if w=[] then the whole plot will be calculated. The minimal length of
diagonal and vertical structures can be specified with 1min and vmin
respectively (default is 2).

As the last numeric parameter, the size of the Theiler window tw can
be specified (default is 1). This window excludes the recurrence points
parallel to the main diagonal from the analysis. The application of the
Theiler window is useful only for recurrence plots. In cross recurrence
plots, the size of the Theiler window will be set automatically to zero.

Further parameters can be used to switch between various methods
of finding the neighbours of the phasespace trajectory, to suppress the
normalization of the data and to suppress the GUI (useful in order to use
this programme by other programmes).

Methods of finding the neighbours.

’maxnorm’ — Maximum norm.

’euclidean’ - Euclidean norm.

’minnorm’ — Minimum norm.

’nrmnorm’ — Euclidean norm between normalized vectors
(all vectors have the length one).

‘rr’ — Maximum norm, fixed recurrence rate.

’fan’ — Fixed amount of nearest neighbours.

’inter’ — Interdependent neighbours.

’omatrix’ — Order matrix.

’opattern’ — Order patterns recurrence plot.

Normalization of the data series.
'normalize’ — Normalization of the data.
’nonormalize’ — No normalization of the data.

Cross Recurrence Plot Toolbox 21

crga

Limitations

Warning

Suppressing the GUL.
‘gui’ — Creates the GUI.
’nogui’ — Suppresses the GUI.
’silent’ — Suppresses all output.

Output
y(:,1) — Recurrence rate.
y(:,2) — Determinism.
y(:,3) — Averaged diagonal length.
y(:,4) — Length of longest diagonal line.
y(:,5) — Entropy of diagonal length.
y(:,6) — Laminarity.
y(:,7) — Trapping time.
y(:,8) — Length of longest vertical line.
y(:,9) — Recurrence time of 1st type.
y(:,10) — Recurrence time of 2nd type.
y(:,11) — Recurrence period density entropy.
y(:,12) — Clustering coefficient.
y(:,13) — Transitivity.

Parameters not needed to be specified.

The window of length w is applied on the data and not on the RP, i. e. the
RP will have smaller size than the window, thus w — (m — 1) 7. If we con-
sider the data window at time i...i + w, the corresponding RQA mea-
sures are assigned to time i. Therefore, if you see a beginning of a
transition in the plot of the RQA measures at time i, this transition will
probably happen at time i + w — (m — 1)7.

For higher speed in output the whole matrix of the recurrence plot is in
the work space — this limits the application of long data series. However,
a solution for using long data you can find under the description for crp.

The RQA measures may differ from those of the RQA programmes by
Charles Webber Jr. For compatibility use a Theiler window of size one
and ensure that the data are normalized before by the same distance
which is used in the RQA programmes; e. g. normalize with the maximal
phase space diameter, which can be estimated with the programme pss:

RQA=crqa(100*x/pss(x,dim,lag, ’euclidean’), ...
dim,lag,e,[],[],1_min,v_min,1,...
’euclidean’,’nonormalize’,’silent’)

22

Reference Manual

crga

Examples a=randn(300,1);
crqa(a,1,1,.2,40,2,’euc’)

]|
5 10 AGNLD
@ I university or
@ 0 2 ame] Poisdan
i S 5
Sl 5 3
E
o ; Eimbeding
0 20 400 Goo Gon 100 0 0 400 600 Gon 1000 Dimension: | 1.
02 1 Delay: il
= -
i g e Nerghhourood
a o Euclidean Nom
0 200 400 G600 Gon 1000 0 200 400 600 @00 1000
Threshold z
a 15
25 = ! CAGA parameters
2 o
o 200 400 GO0 GO0 1000 0 200 400 GO0 800 1000 . Vertieal 2
1 a5 Theiler wind]
= = 3 Window size: | 40
I
e 25 /VW Window stp 5
o 2
0 200 400 600 &om 1000 0 200 40 600 00 1000
10 15 pint | Store
10
ks = Apply
5
. ! Close
0 200 400 600 &on 1000 0 200 400 600 800 1000

N=300; w=40; ws=2;

a=3.4:.6/(N-1) :4;

b=.5; for i=2:N, b(i)=a(i)*b(i-1)*(1-b(i-1));end
y=crqa(b,3,2,.1,w,ws);

subplot(2,1,1), plot(a,b,’.’, ’markersize’,.1)
title(’logistic map’), axis([3.4 4 0 11)
subplot(2,1,2), plot(a(l:ws:N-w),y(l:ws:N-w,1))
ylabel (’recurrence rate’), axis([3.4 4 0 1])

See Also crqgad, crp, dl, tt, pss

References Marwan, N., Romano, M. C., Thiel, M., Kurths, J.: Recurrence Plots for
the Analysis of Complex Systems, Phys. Rep., 438, 2007.

Little, M., McSharry, P., Roberts, S., Costello, D., Moroz, I.: Exploiting
Nonlinear Recurrence and Fractal Scaling Properties for Voice Disorder
Detection, Biomed. Eng. Online, 6, 2007.

Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U.: Com-
plex networks: Structures and dynamics, Phys. Rep., 424, 2006.

Marwan, N., Donges, J. F., Zou, Y., Donner, R. V., Kurths, J.: Complex
network approach for recurrence analysis of time series, Phys. Lett. A,
373(46), 2009.

Cross Recurrence Plot Toolbox 23

crqad

Purpose

Syntax

Description

Parameters

Computes and plots the diagonalwise CRQA measures.

crqad(x)

crqad(x,y)

y=crqad(x,y,m,t,e,w,1lmin)
y=crqad(x,y,m,t,e, [], ’paraml’,’param2’,...)

Recurrence quantification analysis of diagonals in the cross recurrence
plot of the vectors x and y as well as x and -y for the diagonals within
the range [-w,w] around the main diagonal. The output is a structure
(see below).

Dimension m, delay t, the size of neighbourhood e and the window size
w are the first five numbers after the data series; if w=[1 then the whole
plot will be calculated. Variable 1min sets the minimal length of what
should be considered to be a diagonal line. Further parameters can
be used to switch between various methods of finding the neighbours
of the phasespace trajectory, to suppress the normalization of the data
and to suppress the GUI (useful in order to use this programme by other
programmes). The minimal length of diagonal and vertical structures
can be setted only in the GUL.

Methods of finding the neighbours.

’maxnorm’ — Maximum norm.

’euclidean’ — Euclidean norm.

’minnorm’ — Minimum norm.

’nrmnorm’ — Euclidean norm between normalized vectors
(all vectors have the length one).

‘rr’ — Maximum norm, fixed recurrence rate.

>fan’ — Fixed amount of nearest neighbours.

’inter’ — Interdependent neighbours.

’omatrix’ — Order matrix.

’opattern’ — Order patterns recurrence plot.

Normalization of the data series.
'normalize’ — Normalization of the data.
"nonormalize’ — No normalization of the data.

Suppressing the GUIL.
‘gui’ — Creates the GUL.
’nogui’ — Suppresses the GUI.
’silent’ — Suppresses all output.
Output
y.RRp — Recurrence rate (x,y).
y.RRp — Recurrence rate (x,-y).
y.DETp — Determinism (x,y).
y.DETm — Determinism (x,-y).
y.Lp — Averaged diagonal length (x,y).
y.Lm — Averaged diagonal length (x,-y).

Parameters not needed to be specified.

24

Reference Manual

crqad

Limitations

Examples

See Also

References

For higher speed in output the whole matrix of the recurrence plot is in
the work space — this limits the application of long data series. However,
a solution for using long data you can find under the description for crp.

a=sin(0:.1:80)+randn(1,801);
b=sin(0:.1:80)+randn(1,801);
crqad(a,b,3,15,.1,100,’fan’)

crqad_big, crqa, crp, dl, tt

Marwan, N., Kurths, J.: Nonlinear analysis of bivariate data with cross
recurrence plots, Phys. Lett. A, 302, 2002.

Cross Recurrence Plot Toolbox

25

crqgad big

Purpose

Syntax

Description

Parameters

Computes and plots the diagonalwise CRQA measures of long data se-
ries.

crqad_big(x)

crqad_big(x,y)

y=crqad_big(x,y,m,t,e,w,lmin)
y=crqad_big(x,y,m,t,e, [],’paraml’, ’param2’,...)

Recurrence quantification analysis of diagonals in the cross recurrence
plot of the vectors x and y as well as x and -y for the diagonals within
the range [-w,w] around the main diagonal. The output is a structure
(see below).

Dimension m, delay t, the size of neighbourhood e and the window size
w are the first five numbers after the data series; if w=[] then the whole
plot will be calculated. Variable 1min sets the minimal length of what
should be considered to be a diagonal line. Further parameters can
be used to switch between various methods of finding the neighbours
of the phasespace trajectory, to suppress the normalization of the data
and to suppress the GUI (useful in order to use this programme by other
programmes). The minimal length of diagonal and vertical structures
can be setted only in the GUL.

Methods of finding the neighbours.

’maxnorm’ — Maximum norm.
’euclidean’ — Euclidean norm.
’minnorm’ — Minimum norm.

Normalization of the data series.
'normalize’ — Normalization of the data.
"nonormalize’ — No normalization of the data.

Suppressing the GUL.
Ygui’ — Creates the GUI.
’nogui’ — Suppresses the GUI.
’silent’ — Suppresses all output.
Output
y-RRp — Recurrence rate (x,y).
y.RRp — Recurrence rate (x,-y).
y.DETp — Determinism (x,y).
y.DETm — Determinism (x,-y).
y.Lp — Averaged diagonal length (x,y).
y.Lm — Averaged diagonal length (x,-y).

Parameters not needed to be specified.

26

Reference Manual

crqgad big

Limitations

Examples

See Also

References

In contrast to crqad, only maximum, Euclidean and minimum norm are
available.

a=sin(0:.1:800)+randn(1,8001);
b=sin(0:.1:800)+randn(1,8001);
crqad_big(a,b,3,15,.1,50, euc’)

crqa, crqad, crp, dl, tt

Marwan, N., Kurths, J.: Nonlinear analysis of bivariate data with cross
recurrence plots, Phys. Lett. A, 302, 2002.

Cross Recurrence Plot Toolbox 27

dl

Purpose

Syntax

Description

See Also

Mean of the diagonal line lengths and their distribution.

a=dl(x)
[a b]=d1l(x)

a=d1(x) computes the mean of the length of the diagonal line structures
in a recurrence plot.

[a b]=d1(x) computes the mean a and the lengths of the of the found
diagonal lines, stored in b. In order to get the histogramme of the line
lengths, simply call hist (b, [1 max(b)]).

crqa, crqaplot, tt

28

Reference Manual

entropy

Purpose
Syntax
Description

Examples

Entropy of a distribution.

e=entropy (h)

Computes the entropy of the distribution h.

x=randn(100,1);
h=hist(x);
entropy(h’)

Cross Recurrence Plot Toolbox

29

fnn

Purpose

Syntax

Description

Parameters

Examples

See Also

References

Find the optimal embedding dimension by means of false nearest neigh-
bours.

y=fnn (x)
y=fnn(x,m)
y=fon(x,m,t)
y=fon(x,m,t,r,s)
fon(...)

fon(. ..,param)

Computes the amount y of false nearest neighbours (FNN) as a function
of the embedding dimension. The optimal embedding is then chosen as
the one where the amount of FNNs almost vanishes.

fan(...) without any output arguments opens a GUI for interactively
changing the parameters.

By using the GUI, the FNN can be stored into the workspace.

fnn without any arguments calls a demo (the same as the example be-
low).

The parameters maximal dimension m (defeault 10), delay t (defeault
1), neighbourhood criterion r (defeault 2), size of the neighbourhood
s (defeault Inf) and maximal number of random samples n (defeault
length(x) if the data length is smaller than 500, else 200) are optional.

Additional parameters according to the GUI.

>gui’ — Creates the GUI.
’nogui’ — Suppresses the GUI.
’silent’ — Suppresses all output.

Parameters not needed to be specified.

x=sin(0:.2:8%pi) ’+.1*randn(126,1) ;
fnn(x,10,[1,5)

phasespace, pss, mi

Kennel, M. B., Brown, R., Abarbanel, H. D. |.: Determining embedding
dimension for phase-space reconstruction using a geometrical construc-
tion, Phys. Rev. A, 45, 1992.

30

Reference Manual

hist2

Purpose Creates a two dimensional histogram.

Syntax p=hist2(x)
p=hist2(x,y)
p=hist2(x,k,1)
[p,jl=hist2(...)
hist2(...)
hist2(.., gui’)

Description p=hist2(x) bins the two-dimensional density of x(i) and x(i+1) into a
10x10 equally spaced matrix and returns it in p.

p=hist2(x,y) bins the two-dimensional density of x; and y; into a 10x10
equally spaced matrix and returns it in p.

p=hist2(x,k,1), where k and 1 are scalars, uses k bins and a lag 1.

[p,jl=hist2(...) returns the matrix p and the two-column vector j
containing the two-dimensional density matrix and the bin location for

x (and y).

hist2(...) without any output arguments produces a histogram plot.
hist2(...,’gui’) creates a GUI for interactively changing of the pa-
rameters.

Examples x=randn(10000,1);
hist2(x)

See Also histn, mi

Cross Recurrence Plot Toolbox 31

histn

Purpose

Syntax

Description

Examples

See Also

Creates a multi-dimensional histogram.

p=histn(x)
p=histn(x1,...,xN)
p=histn([x,...,xN])

p=histn(x,1)
[p,jl=histn(...)
histn(...)

p=histn(x) bins the two-dimensional density of x(i) and x(i+1) into a
10x10 equally spaced matrix and returns it in p (this is similar to hist?2).

p=histn(x1,x2,...,xN) or p=hist2([x1,x2,...,xN]) bins the N-dimensional
density of x; into a 10x10 equally spaced matrix and returns itin p. Since

both variants of input the arguments can be combined, the usage of var-

ious multi-column vectors is possible; the dimension is the sum of the
number of all vectors’ columns.

p=histn(x,1), where 1 is a scalars, uses a lag 1.
p=histn(x,k,1), where k and 1 are scalars, uses k bins and a lag 1.

[p,jl=histn(...) returns the N-dimensional matrix p and the two-column
vector j containing the N-dimensional density matrix and the bin location
forx1,...,xN.

histn(...) without any output arguments produces a histogram plot.

x=randn (10000, 3) ;
histn(x)

hist2, mi

32

Reference Manual

I'p

Purpose

Syntax

Description

Parameters

Creates a joint recurrence plot.

jrp(x)

jrp(x,y)

jrp(x,m,t,e)

r=jrp(x,[],m,t,e)

r=jrp(x,m,t,e, ’paraml’,’param2’,...)
r=jrp(x,y,m, ’paraml’)

Creates a simple joint recurrence plot of maximal two data series, based
on different norms or recurrence plots. Embedding parameters will be
the same for both systems. Results can be stored into the workspace.

Allows to change the parameters interactively by using a GUI.

The source-data x and test-data y can be one- or a two-coloumn vectors
(then, in the first column have to be the time); if the test-data y is not
specified, a simple (auto) recurrence plot is created.

Dimension m, delay t and the size of neighbourhood e are the first three
numbers after the data series; further parameters can be used to switch
between various methods of finding the neighbours of the phasespace
trajectory, to suppress the normalization of the data and to suppress the
GUI (useful in order to use this programme by other programmes).

Methods of finding the neighbours/ of plot.

’maxnorm’ — Maximum norm.

’euclidean’ — Euclidean norm.

’minnorm’ — Minimum norm.

’nrmnorm’ — Euclidean norm between normalized vectors
(all vectors have the length one).

‘rr’ — Maximum norm, fixed recurrence rate.

’fan’ — Fixed amount of nearest neighbours.

’inter’ — Interdependent neighbours.

’omatrix’ — Order matrix.

’opattern’ — Order patterns recurrence plot.

’distance’ — Distance coded matrix (global JRP, Euclidean norm).

Normalization of the data series.
‘normalize’ — Normalization of the data.
’nonormalize’ — No normalization of the data.

Suppressing the GUL.
‘gui’ — Creates the GUI and the output plot.
’nogui’ — Suppresses the GUI and the output plot.
’silent’ — Suppresses all output.

Parameters not needed to be specified.

Cross Recurrence Plot Toolbox 33

I'p

Limitations

Examples

See Also

References

For higher speed in output the whole matrix of the recurrence plot is in
the work space — this limits the application of long data series. However,
with a little Matlab script, long data series can be handled too (cf. Exam-
ples for crp).

a=sin((1:1000)*2*pi/67) ;
b=sin(.01*([1:1000]*2*pi/67).72);
jrp(a,b,3,12,’fan’)

crp, jrqa

Romano, M., Thiel, M., Kurths, J., von Bloh, W.: Multivariate Recurrence
Plots, Phys. Lett. A, 330, 2004.

34

Reference Manual

jrga

Purpose

Syntax

Description

Parameters

Computes and plots the JRQA measures.

jrga(x)

jraa(x,y)

y=jrqa(x,y,m,t,e,w,ws)
y=jrqa(x,y,m,t,e,w,ws,lmin,vmin)
y=jrqa(x,y,m,t,e,w,ws,lmin,vmin,tw)
y=jrqa(x,y,m,t,e,[], ’paraml’, ’param2’,...)

Recurrence quantification analysis of joint-recurrence plots with the first
vector x and the second y.

The input vectors can be multi-column vectors, where each column will
be used as a component of the phase-space vector. However, if the first
column is monotonically increasing, it will be used as an time scale for
plotting.

JRQAC(. ..) without any output arguments opens a GUI for interactively
control the JRQA. If an output is specified with using the option ’gui’,
then the output will contain the figure handle.

Dimension m, delay t, the size of neighbourhood e, the window size w
and the shift value ws are the first five numbers after the data series;
if w=[] then the whole plot will be calculated. The minimal length of
diagonal and vertical structures can be specified with 1min and vmin
respectively (default is 2).

As the last numeric parameter, the size of the Theiler window tw can
be specified (default is 1). This window excludes the recurrence points
parallel to the main diagonal from the analysis. The application of the
Theiler window is useful only for recurrence plots. In joint recurrence
plots, the size of the Theiler window will be set automatically to zero.

Further parameters can be used to switch between various methods
of finding the neighbours of the phasespace trajectory, to suppress the
normalization of the data and to suppress the GUI (useful in order to use
this programme by other programmes).

Methods of finding the neighbours.

’maxnorm’ — Maximum norm.

’euclidean’ - Euclidean norm.

’minnorm’ — Minimum norm.

’nrmnorm’ — Euclidean norm between normalized vectors
(all vectors have the length one).

‘rr’ — Maximum norm, fixed recurrence rate.

’fan’ — Fixed amount of nearest neighbours.

’inter’ — Interdependent neighbours.

’omatrix’ — Order matrix.

’opattern’ — Order patterns recurrence plot.

Normalization of the data series.
'normalize’ — Normalization of the data.
’nonormalize’ — No normalization of the data.

Cross Recurrence Plot Toolbox 35

jrga

Limitations

Examples

See Also

References

Suppressing the GUL.
‘gui’ — Creates the GUI.
’nogui’ — Suppresses the GUI.
’silent’ — Suppresses all output.
Output
y(:,1) — Recurrence rate.
y(:,2) — Determinism.
y(:,3) — Averaged diagonal length.
y(:,4) — Length of longest diagonal line.
y(:,5) — Entropy of diagonal length.
y(:,6) — Laminarity.
y(:,7) — Trapping time.
y(:,8) — Length of longest vertical line.
y(:,9) — Recurrence time of 1st type.
y(:,10) — Recurrence time of 2nd type.

Parameters not needed to be specified.

For higher speed in output the whole matrix of the recurrence plot is in
the work space — this limits the application of long data series. However,
a solution for using long data you can find under the description for crp.

N=500; w=40; ws=10;
b=.4; a=.6; mu=.8:-0.7/N:.1;

% two mutually coupled logistic maps
for i=2:N,
a(i)=3.6*a(i-1)*(1-a(i-1));
b(i)=4*b(i-1)*(1-b(i-1))-mu(i)*a(i);
end

% coupling is obtained by higher RR and DET values
jrqa(a,b,1,1,.2,w,ws);

crqa, jrp, crp

Trulla, L. L., Giuliani, A., Zbilut, J. P., Webber Jr., C. L.: Recurrence quan-
tification analysis of the logistic equation with transients, Phys. Lett. A,
223, 1996.

Marwan, N., Wessel, N., Meyerfeldt, U., Schirdewan, A., Kurths, J.: Re-
currence Plot Based Measures of Complexity and its Application to Heart
Rate Variability Data, Phys. Rev. E, 66(2), 2002.

Romano, M., Thiel, M., Kurths, J., von Bloh, W.: Multivariate Recurrence
Plots, Phys. Lett. A, 330, 2004.

36

Reference Manual

mcf

Purpose Plots the maximal correlation function.

Syntax mcf(x,y [,w,t])
mcor=mcf (x,y [,w,t])
[time, mcor]l=mcf(x,y [,w,t])

Description Without any output arguments, mcf plots the maximal correlation func-
tion up to the maximal lag of t and by using a boxcar window size of
2 w + 1. Else, the maximal correlation function is stored in the vector
mcor and its time scale in the vector time. If w=[], the default boxcar
window size is 11.

Examples x=sin(0:.05:10)+.5*randn(1,201);
y=cos(0:.05:10) ;
mcf (x,y, [1,20)

See Also ace

References Breiman, L., Friedman, J. H.: Estimating Optimal Transformations for
Multiple regression and Correltaion, J. Am. Stat. Assoc., Vol. 80, No. 391,
1985.

Voss, H., Kurths, J.: Reconstruction of nonlinear time delay models from
data by the use of optimal transformations, Phys. Lett. A, 234, 1997.

Cross Recurrence Plot Toolbox 37

mgui

Purpose
Syntax

Description

GUI for data analysis programmes.
mgui

mgui starts a GUI and supplies Matlab programmes for their easy appli-
cation to data which are in the Matlab workspace.

The presented programmes are stored in the file mgui.rc where own
programmes can be added. Just include a line with the name of the
programme and the minimal and maximal number of arguments, divided
by a blank space or tabulator as a separator, e.g.

plot 1 4

If the embedded programmes provide an output, then this output will be
stored in the variable ans in the Matlab workspace.

r PLOT Linear plot

il

2 [200%3] 2
b [200%3] b
® [2000x4] ® [200014]
y [100022] y [1000=2]

phasespace ! oK | OK |
ap

AGNLD [1 Force equal data length |
University of Potsdam Help Close Apply
Il Zopz ™™ |

0z | Create new figure

38

Reference Manual

Purpose

Syntax

Description

Parameters

Examples

Remark

See Also

References

Histogram based mutual information.

i=mi (x)

i=mi(x1,...,xN)

i=mi(x,...,xN,1)

i=mi(x,...,xN,k,1)

[i s]=mi(...)

mi(...)

mi(...,’param’)

Computes the mutual information between the vectors x1,...,xN. The

auto mutual information can be computed by using only one vector. The
arguments can be multi-column vectors. The result i will be a NxN
matrix.

[i s]=mi(...) computes the mutual information and the standard error
(only for one and two arguments).

mi(...) without any output arguments opens a GUI for interactively
changing the parameters.

By using the GUI, the mutual information can be stored into the workspace.
If their standard error is available, they will be appended to the mutual
information matrix as the last two columns (the stored matrix will have
the size 2 x 4).

mi without any arguments calls a demo (the same as the example be-
low).

The parameters numbers of bins k and maximal lag 1 are optional. If the
number of bins is not set, an amount of 10 will be used.

Additional parameters according to the GUI.

‘gui’ — Creates the GUI.
’nogui’ — Suppresses the GUI.
’silent’ — Suppresses all output.

Parameters not needed to be specified.

x=sin(0:.2:8%pi) ’+.1*randn(126,1);
mi(x,10,40)

Please note that the mutual information derived with mi slightly differs
from the results derived with migram. The reason is that mi also consid-
ers estimation errors.

hist2, histn, entropy

Roulston, M. S.: Estimating the errors on measured entropy and mutual
information, Physica D, 125, 1999.

Cross Recurrence Plot Toolbox 39

migram

Purpose

Syntax

Description

Example

Remark

See Also

Calculate windowed mutual information between two signals.

i = migram(a,b,maxlag,window,noverlap,nbins)
[i,1,t] = migram(...)

i = migram(a,b)

migram(a,b)

i = migram(a,b,maxlag,window,noverlap) calculates the windowed
mutual information between the signals in vector a and vector b. migram
splits the signals into overlapping segments and forms the columns of
i with their mutual information values up to maximum lag specified by
scalar maxlag. Each column of i contains the mutual information func-
tion between the short-term, time-localized signals a and b. Time in-
creases linearly across the columns of i, from left to right. Lag increases
linearly down the rows, starting at maxlag. If lengths of a and b differ, the
shorter signal is filled with zeros. If n is the length of the signals, i is a
matrix with 2+«maxlag+1 rows and

k = fix((n-noverlap)/(window-noverlap))
columns.

i = migram(a,b,maxlag,window,noverlap,nbins) calculates the mu-
tual information based on histograms with the number of bins nbins.

i = migram(...,’norm’) calculates the renormalised mutual informa-
tion, which is i/ log(npins) @and ensures a value range [0...1].

[i,1,t] = migram(...) returns a column of lag 1 and one of time t
at which the mutual information is computed. 1 has length equal to the
number of rows of i, t has length k.

i = migram(a,b) calculates windowed mutual information using defeault
settings; the defeaults are maxlag = floor(0.1*n), window =
floor(0.1%n), noverlap = 0 and nbins = 10. You can tell migram to
use the defeault for any parameter by leaving it off or using [] for that
parameter, e.g. migram(a,b, [],1000).

migram(a,b) with no output arguments plots the mutual information us-
ing the current figure.

x = cos(0:.01:10%pi)’;
y = sin(0:.01:10%pi)’ + .5 * randn(length(x),1);
migram(x,y)

Please note that the mutual information derived with mi slightly differs
from the results derived with migram. The reason is that mi also consid-
ers estimation errors.

mi, corrgram

40

Reference Manual

normalize

Purpose Normalizes data.
Syntax y=normalize(x)

Description Normalizes the matrix x to zero-mean and standard deviation of
one (y = (x — (x))/0x).
Examples x=randn(100,1);

std(x), mean(x)
std(normalize(x)), mean(normalize(x))

Cross Recurrence Plot Toolbox 41

phasespace

Purpose Computes phase space size.

Syntax phasespace(x)
phasespace(x,y)
phasespace(x,y,z)

Description Shows the 3D phase space trajectory of the system which is presented
by the observation x. The phase vectors are a reconstruction by using
the time delay method (Takens, 1981). A GUI provides to change the
embedding dimension to 2D.

phasespace(x,y) Or phasespace(x,y,z) uses the one-column vectors
x, y (and z) as the components of the phase space trajectory. The rep-
resentation is 2D (3D) only and cannot be switched to the other repre-
sentation.

phasespace without any arguments calls a demo (the same as the ex-
ample below).

Example phasespace(cos(0:.1:32).%[321:-1:1])

Figure No. 1: Phase Space Reconstruction

File Edit View Inset Tools Window Help Inca ‘

£ AGNLD
] university of Potsdam
Jme) 200z

=

| 30

See Also fnn, pss

References Takens, F.: Detecting Strange Attractors in Turbulence, Lecture Notes in
Mathematics, 898, Springer, Berlin, 1981

42 Reference Manual

phasesynchro

Purpose Indicator of phase synchronisation by means of recurrences.

Syntax cpr=phasesynchro(x,y)
cpr=phasesynchro(x,y,m,t,e, W)
cpr=phasesynchro (x,y,m,t,e,w,’paraml’, ’param2’)

Description cpr=phasesynchro(x,y [,paraml,param2,...]) calculates the index
of phase synchronisation based on recurrences.

cpr=phasesynchro(x,y,m,t,e,w) uses the dimension m, delay t, the
size of neighbourhood e and the range w of past and future time steps.

If x and y are multi-column vectors then they will be considered as phase
space vectors (taucrp can be used for real phase space vectors without
embedding).

The call of phasesynchro without output arguments plots the tau-recurrence
rate and the CPR value in the current figure.

Parameters Dimension M, delay T, the size of neighbourhood E and the range W are
the first four numbers after the data series; further parameters can be
used to switch between various methods of finding the neighbours of the
phasespace trajectory and to suppress the normalization of the data.

Methods of finding the neighbours.

’maxnorm’ — Maximum norm.

’euclidean’ — Euclidean norm.

’minnorm’ — Minimum norm.

‘rr’ — Maximum norm, fixed recurrence rate.
>fan’ — Fixed amount of nearest neighbours.

Normalization of the data series.
‘normalize’ — Normalization of the data.
’nonormalize’ — No normalization of the data.

Suppressing the plot.
’silent’ — Suppresses the plot of the results.

Parameters not needed to be specified.

Example a = sin((1:1000) * 2 * pi/67);
b = sin((1:1000) * 2 * pi/67) + randn(1,1000);
phasesynchro(a,2,17, ’nonorm’, ’euclidean’) ;

See Also crp, crgad

References Marwan, N., Romano, M. C., Thiel, M., Kurths, J.: Recurrence Plots for
the Analysis of Complex Systems, Physics Reports, 438(5-6), 2007.

Romano, M. C., Thiel, M., Kurths, J., Kiss, I. Z., Hudson, J.: Detection of
synchronization for non-phase-coherent and non-stationary data, Euro-
physics Letters, 71(3), 2005.

Cross Recurrence Plot Toolbox 43

pss

Purpose

Syntax

Description

Parameters

See Also

Computes phase space size.

pss(x)

pss(x,m,t)

[y z]l=pss(...)

[y zl=pss(...,’param’)

pss(...) computes the maximal phase space diameter of embedded
data series x with the embedding parameters dimensionm and lag t. A
norm can be specified with an additional parameter.

[y zl=pss(...) computes the maximal y and the averaged z phase
space diameter of embedded data series x.

Parameter for used norm.

’maxnorm’ — Maximum norm.
’euclidean’ — Euclidean norm (default).
’minnorm’ — Minimum norm.

phasespace, crp, crp2

44

Reference Manual

recons

Purpose
Syntax

Description

See Also

References

Reconstruct a time series from a recurrence plot. y=recons (x)
y=recons (x,name)
y=recons (x,p)

y=recons (x) reconstructs a time series y from the recurrence plot in the
matrix x.

y=recons (x,name) reconstructs the time series using the named cumu-
lative distribution function, which can be 'norm’ or 'Normal’ (defeault),
‘unif’ or "Uniform’.

y=recons (x,p) reconstructs the time series using the cumulative distri-
bution function given by vector P.

crp, crp2, jrp, twinsurr

Thiel, M., Romano, M. C., Kurths, J.: How much information is contained
in a recurrence plot?, Phys. Lett. A, 330, 2004.

Cross Recurrence Plot Toolbox 45

rpde

Purpose

Syntax

Description

Note

Examples

See Also

References

Computes the recurrence time entropy.

y=rpde (x)
y=rpde(x,...)

y=rpde(x) calculates the normalised entropy y of the recurrence time
distribution of time series x, also known as recurrence period density
entropy (RPDE).

In contrast to the calculation of RPDE here, in crqa a Theiler window
is applied to the RP by default, resulting in different RPDE values. For
comparison, you should ensure that the Theiler window in crqa is set to
0.

a=sin(0:.1:80);
b=sin(0:.1:80) + 0.1 * randn(1,801);
rpde(a,3,15,.1)
rpde(b,3,15,.1)

crqa, tt

Little, M., McSharry, P., Roberts, S., Costello, D., Moroz, I.: Exploiting
Nonlinear Recurrence and Fractal Scaling Properties for Voice Disorder
Detection, Biomed. Eng. Online, 6, 2007.

46

Reference Manual

rrspec

Purpose

Syntax

Description

Examples

See Also

References

Tau-recurrence rate spectrum.

rrspec(x,m,t,e,w,fs,...)
p=rrspec(...)
[p fl=rrspec(...)

rrspec(x,m,t,e,w,fs,...) calculates the tau-recurrence rate spectrum
based on a recurrence plot using embedding dimension m, embedding
delay t, recurrence threshold e, maximal lag for tau-recurrence w, and
sampling frequency fs. The input arguments are similar to those of the
command taucrp.

p = rrspec(...) returns the tau-recurrence rate spectrum in vector p.

[p £f] = rrspec(...) returns the tau-recurrence rate spectrum in vec-
tor p and the vector of corresponding frequencies £.

fs = 22;
x = sin(2*pi * [0:1/fs:44]);
rrspec(x,2,1,.1,[1,fs)

taucrp, rtspec

Zbilut, J. P, Marwan, N.: The Wiener-Khinchin theorem and recurrence
quantification, Phys. Lett. A, 372, 2008.

Cross Recurrence Plot Toolbox 47

rtspec

Purpose

Syntax

Description

Examples

See Also

Recurrence time spectrum.

rtspec(x,m,t,e,fs,...)
p=rtspec(...)
[p fl=rtspec(...)

rtspec(x,m,t,e,w,fs,...) calculates the recurrence time spectrum
based on a recurrence plot using embedding dimension m, embedding
delay t, recurrence threshold e, and sampling frequency £s. The input
arguments are similar to those of the command crp.

p = rtspec(...) returns the recurrence time spectrum in vector p.

[p £]1 = rtspec(...) returns the recurrence time spectrum in vector p
and the vector of corresponding frequencies £.

fs = 22;
x = sin(2*pi * [0:1/£fs:44]);
rtspec(x,2,1,.1,fs)

Ccrp, rrspec

48

Reference Manual

taucrp

Purpose Creates a close returns plot.

Syntax r=taucrp(x)
r=taucrp(x,m,t,e,w)
r=taucrp(x,y,m,t,e,w)
r=taucrp(x,y,m,t,e,w, ’param’)

Description r=taucrp(x [,y] [,paraml,param2,...]) creates a cross recurrence
plot/ recurrence plot r for a limited range of past and future states, also
known as close returns plot.

r=taucrp(x,m,t,e,w) uses the dimension m, delay t, the size of neigh-
bourhood e and the range w of past and future time steps.

If x and y are multi-column vectors then they will be considered as phase
space vectors (taucrp can be used for real phase space vectors without
embedding).

Parameters Dimension M, delay T, the size of neighbourhood E and the range W are
the first four numbers after the data series; further parameters can be
used to switch between various methods of finding the neighbours of the
phasespace trajectory and to suppress the normalization of the data.

Methods of finding the neighbours/ of plot.

’maxnorm’ — Maximum norm.

’euclidean’ — Euclidean norm.

’minnorm’ — Minimum norm.

‘rr’ — Maximum norm, fixed recurrence rate.

’fan’ — Fixed amount of nearest neighbours.

’distance’ — Distance coded matrix (global CRP, Euclidean norm).

Normalization of the data series.
‘normalize’ — Normalization of the data.
’nonormalize’ — No normalization of the data.

Parameters not needed to be specified.

Examples a = sin((1:1000) * 2 * pi/67);
w = 160;
X = taucrp(a,2,17,0.2,w, ’nonorm’,’euclidean’);
imagesc(1l:size(X,2),-w:w,X), colormap([1 1 1; O O 0])

-150

-100

50}

501

100

150

L L L L L L L L L
100 200 300 400 500 600 700 800 900

Cross Recurrence Plot Toolbox 49

taucrp

See Also crp, crp2, crp_big, jrp, crqa

References Marwan, N., Romano, M. C., Thiel, M., Kurths, J.: Recurrence Plots for
the Analysis of Complex Systems, Physics Reports, 438(5-6), 2007.

50 Reference Manual

trackplot

Purpose Estimates the line of synchronization of a cross recurrence plot.

Syntax trackplot(x)
trackplot (x,dx,dy)
trackplot(x,dx,dy, ’param’)
a=trackplot(...)
[a bl=trackplot(...)

Description trackplot(x) estimates the line of synchronization (LOS) in a cross re-
currence plot x. The resulted path is exported to the workspace variable
t_out. This command allows the interactive changing of estimation pa-
rameters.

[a bl=trackplot(...) estimates the LOS and stores it in a. The num-
ber of recurrence points met by the LOS is stored in b(1) and the num-
ber of lacks in the LOS is stored in b(2).

Parameters The search of the LOS can be forced with the parameters dx and dy. An
additional flag param allows to suppress the GUI (useful in order to use
this programme by other programmes).

Suppressing the GUL.
‘gui’ — Creates the GUI and the output plot.
’nogui’ — Suppresses the GUI and the output plot.
’silent’ — Suppresses all output.

Examples y=sin([1:900]1%2*pi/67)";
y2=sin(.01%([1:900] *24pi/67).72)*;
x=crp_big(y,y2,3,12,.1,’fan’, ’nogui’);
trackplot(x,2,2)

See Also crp2, crp and crp_big

References Marwan, N., Thiel, M., Nowaczyk, N.: Cross Recurrence Plot Based
Synchronization of Time Series, Nonlin. Proc. Geophys. 9, 2002.

Cross Recurrence Plot Toolbox 51

trafo

Purpose
Syntax
Description

Example

Transforms data to a desired distribution.

y=trafo(x,a)

y=trafo(x,a) transforms the data in vector x to data y of a desired

distribution, where

a=0 — normal distribution (default),

a=1 — uniform distribution,
a=2 — exponential distribution.

x=rand (5000,1) ;
subplot(2,1,1), hist(x,20)
y=trafo(x,0);
subplot(2,1,2), hist(y,20)

300

% uniformly distributed

% normally distributed

52

Reference Manual

tt

Purpose

Syntax

Description

See Also

Mean trapping time and its distribution.

a=tt(x)
[a b]=tt(x)

a=tt (x) computes the mean of the length of the vertical line structures
in a recurrence plot, so called trapping time tt.

[a bl=tt(x) computes the tt and the lengths of the found vertical line
structures, stored in b. In order to get the histogramme of the line
lengths, simply call hist (b, [1 max(b)]).

crqa, crqaplot, dl

Cross Recurrence Plot Toolbox 53

twinsurr

Purpose

Syntax

Description

Example

See Also

References

Creates twin surrogates for statistical tests.

y=twinsurr (x)
y=twinsurr(x,m,t,e,’paraml’,’param2’)
y=twinsurr(x,m,t,e,...,n)

y=twinsurr(x) creates twin surrogates y based on the vector x using
recurrences. The matrix y contains 100 columns of 100 twin surrogates.
If xisa p x g matrix, the resulting surrogate matrix is p x 100 x g.

y=twinsurr(x,m,t,e,...) creates twin surrogates using embedding di-
mension m, delay t, recurrence threshold e. The input arguments are
similar to those of the command crp.

y=twinsurr(x,m,t,e,...,n) creates n surrogates (default is 100).

x = rand(3,1);
a=1[.8.3-.25 .9]7;
for i = 4:1000,
x(i) = sum(a(1:3) .* x(i-1:-1:i-3)) + a(end) * randn;
end
Xxs = twinsurr(x,1,1,.1,’euc’,10);

Crp, recomns

Thiel, M., Romano, M. C., Kurths, J., Rolfs, M., Kliegl, R.: Twin Surro-
gates to Test for Complex Synchronisation, Europhys. Lett., 75, 2006.

54

Reference Manual

winplot

Purpose

Syntax

Description

Parameters

Example

See Also

Windowed plot.

winplot(x)
winplot(x,w,ws)
winplot(x,w,ws,flag)
y=winplot(x,’parm’)

winplot(x [,w,ws]) plots means or variances of the sub-vectors of
vector x, which have the length w and are shifted by the step ws. x can
be a two-column vector, where the first column would be the time-scale.

winplot without any arguments calls a demo (the same as the example
below).

The optional parameter £1ag can determine the kind of the result, where
flag can be either a string or a scalar:

’mean’ or 1 —Mean (1st moment).
>var’ or 2 — Variance (2nd moment).
’std’ or 3 — Standard deviation.
’median’ or 4 — Median.

’sqm’ or 5 — Squared Mean.

‘geo’ of 6 — Geometric Mean.

’3rd’ or 7 — 3rd moment.

’skw’ or 8 — Skewness.

’kur’ of 9 — Kurtosis.

winplot (randn(2000,1),20,20)

File Edit View Insent Tools Window Help Inca

AGNLD
B8 I university of Potsdam
: : ampd e

Window size
ozl | ; | 20
= -l

Window Step
al

Mean

-051- Conflevel: | 005
tean -
Print

15 L L L L L L L L L Close
0 200 400 GO0 BO0 1000 1200 1400 1600 1800 2000

plot

Cross Recurrence Plot Toolbox 55

Plugin

Description

Usage

Supported Systems

A precompiled plugin for the computation of (cross/joint) recurrence plots
and their quantification can be used for really long data series (several
10000 data points). It may accelerate the computation as well.

Download the corresponding installation script plugininstall.m for your
system and put it any folder, where Matlab can find it. Call plugininstall
from the Matlab commandline. You may check if it works with the com-

mand rp_plugin.

After installation, this plugin is used by the commands crp, crp_big,
crp2, jrp, crqa and jrqa, if Maximum norm, Euclidean norm, Minimum
norm or Distance matrix is used as a neighbourhood criterion. If two
data vectors are used (for cross or joint recurrence plots), the plugin will
only be used if both data vectors have the same length.

Currently the following systems are supported:
» True64 OSF1(5.1) on alpha
« HP-UX 11 on HP U9000

Solaris 5.9 on Sun

Linux on i686

* Linux on AMD Opteron 64

 Linux on Intel ltanium 2
* Dos/Win on x86

56

Reference Manual

Error Handling

Error Support If an error occurs, an extensive error report will be supplied in the file
error.log. Please send us this error report and provide a brief descrip-
tion of what you were doing when this problem occurred. E-mail or FAX
this information to us at:

E-mail:
Fax: ++49 +331 977 1142

Thank you for your assistance.
Error Codes The following error codes mark the location of the error in the programmes.

code location in programme

0 ok
1 initialization
2 create crp figure
3 create control gui
4 vectorswitch/ vectorexclude
5 fit dimension display
6 unthresh
7 stretch
81 change colormap
82 change colormap scale
9 store
91 print

101 close all
102 smart close

11 init computation
111 local CRP, fixed distance maximum norm
112 local CRP, fixed distance euclidean norm
113 local CRP, fixed distance minimum norm
114 local CRP, normalized distance euclidean norm
115 local CRP, fixed neigbours amount
116 local CRP, interdependent neigbours method
117 order matrix
117 global CRP

12 show local CRP

13 show global CRP

14 set handles and axes ratios

15 LOS store

16 LOS move
161 LOS move end

17 LOS clear

18 LOS set

19 LOS search
191 looks for the beginning of the diagonal LOS
192 start estimation of the LOS
193 looks for the existence of the next recurrence point
194 determines the coordinates of the next recurrence point
195 determines the local width of the diagonal LOS
196 compute the mean of the diagonal LOS
197 DTW algorithm, seek process

Cross Recurrence Plot Toolbox 57

mailto:marwan@agnld.uni-potsdam.de

Error Handling

continuation
198 DTW algorithm, fixed points
199 show LOS

20 CRQA computation

30 CRQA plot

90 installation

58

Reference Manual

	General Information
	General Notes
	Theoretical Background
	Copyright

	Reference
	ace
	adjust
	arfit
	corrgram
	crp
	crp2
	crp_big
	crqa
	crqad
	crqad_big
	dl
	entropy
	fnn
	hist2
	histn
	jrp
	jrqa
	mcf
	mgui
	mi
	migram
	normalize
	phasespace
	phasesynchro
	pss
	recons
	rpde
	rrspec
	rtspec
	taucrp
	trackplot
	trafo
	tt
	twinsurr
	winplot

	Plugin
	Error Handling

