################## #### SETTINGS #### ################## cfg <- list() cfg$regionmapping <- "config/regionmappingH12.csv" # which LPJmL data set should be used # see cmuellers landuse folder for available options # use '+' for add-on settings specified in mrcommons::toolLPJmLVersion cfg$lpjml <- c(natveg = "LPJmL4_for_MAgPIE_44ac93de+oldGSWP3", crop = "ggcmi_phase3_nchecks_9ca735cb+oldGSWP3", cgrazing = "LPJmL_cgrazing", mowing = "LPJmL_mowing") # climate scenario specification (in the form of :) # available gcms: UKESM1-0-LL, MRI-ESM2-0, MPI-ESM1-2-HR, IPSL-CM6A-LR, GFDL-ESM4 # available rcps: ssp126, ssp245, ssp370, ssp585, # ssp119 (only MRI, IPSL, UKESMI), # ssp460 (only MRI, IPSL) cfg$climatetype <- "GFDL-ESM4:ssp370" #ISIMIP scenarios, with format: "yields:EPIC-IIASA:ukesm1-0-ll:ssp585:default:3b" # available GGCMs: EPIC-IIASA, pDSSAT, CYGMA1p74, full list here: /p/projects/macmit/data/GGCMI/AgMIP.output # available gcms: UKESM1-0-LL, MRI-ESM2-0, MPI-ESM1-2-HR, IPSL-CM6A-LR, GFDL-ESM4 # available rcps: ssp126, ssp370 (only for some), ssp585 # available co2 fert: default, 2015co2 cfg$isimip <- NULL # data revision cfg$revision <- 4.59 # developer suffix for regional revision cfg$dev <- "" # aggregation clustering type, which is a combination of a single letter, indicating the cluster methodology, and a number, # indicating the number of resulting clusters. Available methodologies are hierarchical clustering (h), normalized k-means clustering # (n) and combined hierarchical/normalized k-means clustering (c). In the latter hierarchical clustering is used to determine the # cluster distribution among regions whereas normalized k-means is used for the clustering within a region. cfg$ctype <- "c200" # Should specific regions be resolved with more or less detail # Values > 1 mean higher share, < 1 lower share # e.g. cfg$clusterweight <- c(LAM=2) means that a higher level of detail for # region LAM # for m clustering this weights are directly linked to the number of clusters within a region # if set to NULL all weights will be assumed to be 1. # examples: # c(LAM=1.5,SSA=1.5,OAS=1.5) # c(LAM=2,SSA=2,OAS=2) #cfg$clusterweight <- c(SSA=30, MEA=15, OAS=20, CHA=26, IND=22, REF=11, NEU=6, EUR=15, LAM=25, USA=17, CAZ=12, JPN=1) cfg$clusterweight <- NULL # number of cores cfg$n_cores <- 10