library(optparse) opt_parser = OptionParser( description = "Coupled version of EDGE-T, to be run within a REMIND output folder.", option_list = list( make_option( "--reporting", action="store_true", help="Store output files in subfolder EDGE-T"))); opt = parse_args(opt_parser); library(data.table) library(gdx) library(gdxdt) library(edgeTrpLib) library(rmndt) library(moinput) ## use cached input data for speed purpose setConfig(forcecache=T) mapspath <- function(fname){ file.path("../../modules/35_transport/edge_esm/input", fname) } datapath <- function(fname){ file.path("input_EDGE", fname) } REMINDpath <- function(fname){ file.path("../../", fname) } REMINDyears <- c(1990, seq(2005, 2060, by = 5), seq(2070, 2110, by = 10), 2130, 2150) gdx <- "input.gdx" if(file.exists("fulldata.gdx")) gdx <- "fulldata.gdx" load("config.Rdata") scenario <- cfg$gms$cm_GDPscen EDGE_scenario <- cfg$gms$cm_EDGEtr_scen EDGEscenarios <- fread("../../modules/35_transport/edge_esm/input/EDGEscenario_description.csv")[scenario_name == EDGE_scenario] merge_traccs <<- EDGEscenarios[options == "merge_traccs", switch] addvintages <<- EDGEscenarios[options == "addvintages", switch] inconvenience <<- EDGEscenarios[options == "inconvenience", switch] selfmarket_taxes <<- EDGEscenarios[options == "selfmarket_taxes", switch] selfmarket_policypush <<- EDGEscenarios[options == "selfmarket_policypush", switch] selfmarket_acceptancy <<- EDGEscenarios[options == "selfmarket_acceptancy", switch] if (EDGE_scenario == "Conservative_liquids") { techswitch <<- "Liquids" } else if (EDGE_scenario %in% c("Electricity_push", "Smart_lifestyles_Electricity_push")) { techswitch <<- "BEV" } else if (EDGE_scenario == "Hydrogen_push") { techswitch <<- "FCEV" } else { print("You selected a not allowed scenario. Scenarios allowed are: Conservative_liquids, Hydrogen_push, Electricity_push, Smart_lifestyles_Electricity_push") exit() } endogeff <<- EDGEscenarios[options== "endogeff", switch] enhancedtech <<- EDGEscenarios[options== "enhancedtech", switch] rebates_febates <<- EDGEscenarios[options== "rebates_febates", switch] ##NB THEY ARE ONLY IN PSI! ONLY WORKING IN EUROPE savetmpinput <<- opt$reporting smartlifestyle <<- EDGEscenarios[options== "smartlifestyle", switch] REMIND2ISO_MAPPING <- fread(REMINDpath(cfg$regionmapping))[, .(iso = CountryCode, region = RegionCode)] EDGE2teESmap <- fread(mapspath("mapping_EDGE_REMIND_transport_categories.csv")) ## input data loading input_path = paste0("../../modules/35_transport/edge_esm/input/") inputdata = createRDS(input_path, SSP_scenario = scenario, EDGE_scenario = EDGE_scenario) vot_data = inputdata$vot_data sw_data = inputdata$sw_data inco_data = inputdata$inco_data logit_params = inputdata$logit_params int_dat = inputdata$int_dat nonfuel_costs = inputdata$nonfuel_costs price_nonmot = inputdata$price_nonmot ## add learning optional setlearning = TRUE ## add optional vintages addvintages = TRUE ## optional average of prices average_prices = FALSE ## inconvenience costs instead of preference factors inconvenience = TRUE if (setlearning | addvintages){ ES_demand = readREMINDdemand(gdx, REMIND2ISO_MAPPING, EDGE2teESmap, REMINDyears) ## select from total demand only the passenger sm ES_demand = ES_demand[sector == "trn_pass",] } if (setlearning & file.exists("demand_previousiter.RDS")) { ## load previous iteration number of cars demand_BEVtmp = readRDS("demand_BEV.RDS") ## load previous iteration demand ES_demandpr = readRDS("demand_previousiter.RDS") ## calculate non fuel costs and nonfuel_costs = applylearning(gdx,REMINDmapping,EDGE2teESmap, demand_BEVtmp, ES_demandpr) saveRDS(nonfuel_costs, "nonfuel_costs_learning.RDS") } ## load price REMIND_prices <- merge_prices( gdx = gdx, REMINDmapping = REMIND2ISO_MAPPING, REMINDyears = REMINDyears, intensity_data = int_dat, nonfuel_costs = nonfuel_costs) ## save prices ## read last iteration count keys <- c("iso", "year", "technology", "vehicle_type") setkeyv(REMIND_prices, keys) pfile <- "EDGE_transport_prices.rds" iter <- as.vector(gdxrrw::rgdx(gdx, list(name="o_iterationNumber"))$val) REMIND_prices[, iternum := iter] ## save REMIND prices (before dampening) saveRDS(REMIND_prices, paste0("REMINDprices", iter, ".RDS")) if(average_prices){ if(max(unique(REMIND_prices$iternum)) >= 20 & max(unique(REMIND_prices$iternum)) <= 30){ old_prices <- readRDS(pfile) all_prices <- rbind(old_prices, REMIND_prices) setkeyv(all_prices, keys) ## apply moving avg REMIND_prices <- REMIND_prices[ all_prices[iternum >= 20, mean(tot_price), by=keys], tot_price := V1] all_prices <- rbind(old_prices, REMIND_prices) }else{ all_prices <- REMIND_prices } saveRDS(all_prices, pfile) ## save REMIND prices (after dampening) saveRDS(REMIND_prices,paste0("REMINDpricesDampened", iter, ".RDS")) } REMIND_prices[, "iternum" := NULL] ## calculates logit if (inconvenience) { years=copy(REMINDyears) logit_data <- calculate_logit_inconv_endog( prices= REMIND_prices[tot_price > 0], vot_data = vot_data, inco_data = inco_data, logit_params = logit_params, intensity_data = int_dat, price_nonmot = price_nonmot) } else{ logit_data <- calculate_logit( REMIND_prices[tot_price > 0], REMIND2ISO_MAPPING, vot_data = vot_data, sw_data = sw_data, logit_params = logit_params, intensity_data = int_dat, price_nonmot = price_nonmot) } shares <- logit_data[["share_list"]] ## shares of alternatives for each level of the logit function ## shares$VS1_shares=shares$VS1_shares[,-c("sector","subsector_L2","subsector_L3")] mj_km_data <- logit_data[["mj_km_data"]] ## energy intensity at a technology level prices <- logit_data[["prices_list"]] ## prices at each level of the logit function, 1990USD/pkm if(addvintages){ ## calculate vintages (new shares, prices, intensity) vintages = calcVint(shares = shares, totdem_regr = ES_demand, prices = prices, mj_km_data = mj_km_data, years = REMINDyears) shares$FV_shares = vintages[["shares"]]$FV_shares prices = vintages[["prices"]] mj_km_data = vintages[["mj_km_data"]] } ## use logit to calculate shares and intensities (on tech level) EDGE2CESmap <- fread(mapspath("mapping_CESnodes_EDGE.csv")) shares_intensity_demand <- shares_intensity_and_demand( logit_shares=shares, MJ_km_base=mj_km_data, EDGE2CESmap=EDGE2CESmap, REMINDyears=REMINDyears, scenario=scenario, REMIND2ISO_MAPPING=REMIND2ISO_MAPPING) demByTech <- shares_intensity_demand[["demand"]] ##in [-] intensity <- shares_intensity_demand[["demandI"]] ##in million pkm/EJ norm_demand <- shares_intensity_demand$demandF_plot_pkm ## total demand is 1, required for costs if (setlearning) { demand_BEV=calc_num_vehicles( norm_dem_BEV = norm_demand[technology == "BEV" & ## battery vehicles subsector_L1 == "trn_pass_road_LDV_4W", ## only 4wheelers c("iso", "year", "sector", "vehicle_type", "demand_F") ], ES_demand = ES_demand) ## save number of vehicles for next iteration saveRDS(demand_BEV, "demand_BEV.RDS") ## save the demand for next iteration renaming the column setnames(ES_demand, old ="demand", new = "demandpr") saveRDS(ES_demand, "demand_previousiter.RDS") } ## use logit to calculate costs budget <- calculate_capCosts( base_price=prices$base, Fdemand_ES = norm_demand, EDGE2CESmap = EDGE2CESmap, EDGE2teESmap = EDGE2teESmap, REMINDyears = REMINDyears, scenario = scenario, REMIND2ISO_MAPPING=REMIND2ISO_MAPPING) ## full REMIND time range for inputs REMINDtall <- c(seq(1900,1985,5), seq(1990, 2060, by = 5), seq(2070, 2110, by = 10), 2130, 2150) ## prepare the entries to be saved in the gdx files: intensity, shares, non_fuel_price. Final entries: intensity in [trillionkm/Twa], capcost in [2005USD/trillionpkm], shares in [-] finalInputs <- prepare4REMIND( demByTech = demByTech, intensity = intensity, capCost = budget, EDGE2teESmap = EDGE2teESmap, REMINDtall = REMINDtall, REMIND2ISO_MAPPING=REMIND2ISO_MAPPING) ## add the columns of SSP scenario and EDGE scenario to the output parameters for (i in names(finalInputs)) { finalInputs[[i]]$SSP_scenario <- scenario finalInputs[[i]]$EDGE_scenario <- EDGE_scenario } ## calculate shares finalInputs$shFeCes = finalInputs$demByTech[, value := value/sum(value), by = c("tall", "all_regi", "all_in")] ## CapCosts writegdx.parameter("p35_esCapCost.gdx", finalInputs$capCost, "p35_esCapCost", valcol="value", uelcols=c("tall", "all_regi", "SSP_scenario", "EDGE_scenario", "all_teEs")) ## Intensities writegdx.parameter("p35_fe2es.gdx", finalInputs$intensity, "p35_fe2es", valcol="value", uelcols = c("tall", "all_regi", "SSP_scenario", "EDGE_scenario", "all_teEs")) ## Shares: demand can represent the shares since it is normalized writegdx.parameter("p35_shFeCes.gdx", finalInputs$shFeCes, "p35_shFeCes", valcol="value", uelcols = c("tall", "all_regi", "SSP_scenario", "EDGE_scenario", "all_enty", "all_in", "all_teEs"))