# | (C) 2006-2019 Potsdam Institute for Climate Impact Research (PIK) # | authors, and contributors see CITATION.cff file. This file is part # | of REMIND and licensed under AGPL-3.0-or-later. Under Section 7 of # | AGPL-3.0, you are granted additional permissions described in the # | REMIND License Exception, version 1.0 (see LICENSE file). # | Contact: remind@pik-potsdam.de library(moinput) library(luscale) library(lusweave) library(luplot) library(lucode) library(gdx) library(ludata) library(luplot) library(raster) library(ncdf) library(rgdal) library(fields) setwd("C:/Users/rhennig/Desktop/REMIND/scripts/output/single") source('C:/Users/rhennig/Desktop/DS/raster2magpie.R') source('C:/Users/rhennig/Desktop/dumpfolder/getAggregationMatrixCell.R') source('C:/Users/rhennig/Desktop/DS/edgar2magpie.R') mapping <- "../../../../dumpfolder/regionmappingREMIND.csv" map <- read.csv(mapping) mappingcell <- "../../../../dumpfolder/CountryToCellMapping.csv" mapcell <- read.csv(mappingcell, as.is = TRUE, sep = ";") matrix <- getAggregationMatrix(mapping) cellmatrix <- getAggregationMatrixCell(mappingcell,from="CountryCode",to="CellCode") convyr <- 2100 baseyr <- 2010 pm_conv_TWa_EJ = 31.536 cellcountries <- unique(mapcell[,2]) totals <- raster("../../../../Edgar/v42_FT2010_CO2_excl_short-cycle_org_C_2010_TOT.0.1x0.1.nc") AgSoils <- raster("../../../../Edgar/v42_FT2010_CO2_excl_short-cycle_org_C_2010_IPCC_4C_4D.0.1x0.1.nc") LSBB <- raster("../../../../Edgar/v42_FT2010_CO2_excl_short-cycle_org_C_2010_IPCC_5A_C_D_F_4E.0.1x0.1.nc") INTA <- raster("../../../../Edgar/v42_FT2010_CO2_excl_short-cycle_org_C_2010_IPCC_1A3a.0.1x0.1.nc") INTS <- raster("../../../../Edgar/v42_FT2010_CO2_excl_short-cycle_org_C_2010_IPCC_1A3d.0.1x0.1.nc") edgar <- totals - AgSoils - LSBB - INTA - INTS SO2totals <- raster("../../../../Edgar/SO2/v42_SO2_2005_TOT.0.1x0.1.nc") SO2nonroadtr <- raster("../../../../Edgar/SO2/v42_SO2_2005_IPCC_1A3a_c_d_e.0.1x0.1.nc") SO2agwaste <- raster("../../../../Edgar/SO2/v42_SO2_2005_IPCC_4F.0.1x0.1.nc") SO2lsbb <- raster("../../../../Edgar/SO2/v42_SO2_2005_IPCC_5A_C_D_F_4E.0.1x0.1.nc") so2edgar <- SO2totals - SO2nonroadtr - SO2agwaste - SO2lsbb reference <- raster("../../../../DS/REFERENCE_EDGARv4.2_anthro_CO2_energy_production_and_distribution_2005_6270.nc") EDGAR_CO2 <- edgar2magpie(edgar,reference) EDGAR_SO2 <- edgar2magpie(so2edgar,reference) # Set gdx path gdx_name <- "fulldata.gdx" outputdir <- "../../../output/SSP1ref" # path to the output folder gdx_path <- path(outputdir,gdx_name) y_plot <- c("y2010","y2015","y2020","y2025","y2030","y2035","y2040","y2045","y2050","y2055","y2060","y2070","y2080","y2090","y2100") yrs <- c(2010,2015,2020,2025,2030,2035,2040,2045,2050,2055,2060,2070,2080,2090,2100) # read 2010 baseline data for weights x <- read.magpie("../../../core/input/country/convert_Data_A1_Country_total_population-SSPs.csv.mz") x <- x[,y_plot,"Pop_ssp2"] y <- read.magpie("../../../core/input/country/convert_OECD_v9_25-3-13-3.xlsx.mz") y <- y[,y_plot,"GDP_ssp2"] memis <- read.magpie("../../../../dumpfolder/memis.mz") eminew <- read.magpie("../../../../dumpfolder/emi2010.mz") emiC <- eminew[2:249,2010,"TOTAL.TOTOTHER"]+ eminew[2:249,2010,"TOTAL.CO2EMIS"] emiag<- speed_aggregate(emiC,mapping) #energy <- read.xlsx("energy2.xlsx") #en <- as.magpie(energy) pop <- readGDX(gdx_path,"pm_pop", format="first_found") pop <- pop[1:11,y_plot,] vari <- readGDX(gdx_path,"vm_cesIO", format="first_found") gdp <- vari[1:11,y_plot,"inco.l"] ratioppp <- readGDX(gdx_path,"pm_shPPPMER", format="first_found") ratioppp <- ratioppp[1:11,,] gdp <- gdp/ratioppp vec <- c("fegas.l" , "fehos.l" , "fesos.l" ,"feels.l" , "fehes.l", "feh2s.l" ,"ueLDVt.l" , "ueHDVt.l", "fetf.l" ,"feh2t.l" , "ueelTt.l" ) fe <- dimSums(vari[1:11,y_plot,vec],dims=3)*pm_conv_TWa_EJ emi <- readGDX(gdx_path,"vm_emiTe", format="first_found") emib <- readGDX(gdx_path,"vm_emiMacSector", format="first_found") so2 <- emi[1:11,y_plot,"so2.l"]+emib[1:11,y_plot,"so2.l"] emi <- emi[1:11,y_plot,"co2.l"]+emib[1:11,y_plot,"co2cement.l"] getNames(emi) <- "co2" a<-dimSums(vari[1:11,y_plot,vec],dims=3)*pm_conv_TWa_EJ testpop <- speed_aggregate(x,mapping) popCountry <- speed_aggregate(pop,mapping,weight=x) gdpCountry <- speed_aggregate(gdp,mapping,weight=y) emiCountry <- speed_aggregate(emi,mapping,weight=emiC) so2Country <- speed_aggregate(so2,mapping,weight=emiC) feCountry <- speed_aggregate(fe,mapping,weight=y) # re-aggregation to have unified region labeling, check str(gdp) and str(gdp2) to see why gdp2 <- speed_aggregate(gdpCountry,mapping) pop2 <- speed_aggregate(popCountry,mapping) emi2 <- speed_aggregate(emiCountry,mapping) testemi <- speed_aggregate(emiC,mapping) getNames(testemi) <- "co2" #ei2 <- speed_aggregate(eiCountry,mapping) fe2 <- speed_aggregate(feCountry,mapping) nomiR <- gdp2 nomibaseC <- gdpCountry[,2010,] denomC <- popCountry eminormREMIND <- emi2[,2010,]/0.34723208 eminormIEA <- emiag[,2010,]/1331.5600 GDPpcC <- gdpCountry/popCountry GDPpcR <- gdp2/pop2 gdplin <- downscale_intensity(gdp2,pop,gdpCountry[,2010,],popCountry,mapping,convmethod="lin",convrate=0.3)*popCountry gdpexp <- downscale_intensity(gdp2,pop,gdpCountry[,2010,],popCountry,mapping,convrate=0.4,replacemissing=TRUE)*popCountry gdppclin <- downscale_intensity(gdp2,pop,gdpCountry[,2010,],popCountry,mapping,convmethod="lin",convrate=0.5) gdppcexp <- downscale_intensity(gdp2,pop,gdpCountry[,2010,],popCountry,mapping,replacemissing=TRUE) emilin <- downscale_intensity(emi2,gdp2,emiC,gdpCountry,mapping,convmethod="lin",convrate=0.5) emiexp <- downscale_intensity(emi2,gdp2,emiC,gdpCountry,mapping,convmethod="exp",convrate=0.5) so2exp <- downscale_intensity(emi2,gdp2,emiC,gdpCountry,mapping,convmethod="exp",convrate=0.5) emlin <- emilin*gdpCountry emexp <- emiexp*gdpCountry gdpds <- magpie_expand(gdpexp,gdplin) emissionsC <- emlin emgrid <- downscale_grid(emissionsC,test,mappingcell) loggrid <- log(emgrid) summary(loggrid) loggrid[is.infinite(loggrid),,] <- NaN loggrid[loggrid < (-60),,] <- NaN testmap <- magpie2map(loggrid[,15,]) image.plot(testmap) countrygrid <- testgrid for(k in cellcountries) { countrygrid[!cellmatrix[,k]==0,,] <- as.numeric(emlin[k,2100,]) } countrymap <- magpie2map(countrygrid) image.plot(countrymap) summary(test) testgrid <- test summary(emgrid) testvec<-emissionsC[cellcountries,1,] emgrid <- speed_aggregateCell(testvec,"CountryToCellMapping.csv",weight=testgrid) getNames(gdpCountry) <- NULL plotlistgdp <- list(gdplin["DEU",,],gdpexp["DEU",,],gdpCountry["DEU",,]) plotlistgdpppc <- list(gdppclin["DEU",,],gdppcexp["DEU",,],GDPpcR["EUR",,]) magpie2ggplot2(emexp["JPN",,]) magpie2ggplot2(GDPpcR["EUR",,]) temp <- gdppclin["DEU",,] getRegions(temp) <- NULL temp2 <- GDPpcR["EUR",,] getRegions(temp2) <- NULL getNames(gdpexp) <- "gdp" getNames(gdplin) <- "gdp" getNames(gdpCountry) <- "gdp" getNames(GDPpcR) <- "gdp" magpie2ggplot2(plotlistgdp,group=NULL) magpie2ggplot2(gdplin["DEU",,]) magpie2ggplot2(gdpexp["DEU",,]) magpie2ggplot2(gdpCountry["DEU",,]) dummy <- mbind2(gdpexp["DEU",,],gdplin["DEU",,]) getNames(dummy) <- "gdp" magpie2ggplot2(mbind2(gdpexp["DEU",,],gdpCountry["DEU",,]),color="Data2",group=NULL) magpie2ggplot2(plist) gdplin <- downscale_intensity(gdp2,pop,gdpCountry[,2010,],popCountry,mapping,convmethod="lin",convrate=0.7)*popCountry gdpexp <- downscale_intensity(gdp2,pop,gdpCountry[,2010,],popCountry,mapping,convrate=0.35,replacemissing=FALSE,adjustshare="by nomiC")*popCountry getNames(gdpexp) <- "gdp" magpie2ggplot2(mbind2(gdpexp["DEU",,],gdpCountry["DEU",,]),color="Data2",group=NULL) magpie2ggplot2(mbind2(gdpexp["FRA",,],gdpCountry["FRA",,]),color="Data2",group=NULL) magpie2ggplot2(mbind2(gdpexp["ESP",,],gdpCountry["ESP",,]),color="Data2",group=NULL) getNames(gdplin) <- "gdp" magpie2ggplot2(mbind2(gdplin[1,,],gdpCountry[1,,]),color="Data2",group=NULL) magpie2ggplot2(mbind2(gdppcexp[1,,],GDPpcR[1,,]),color="Data2",group=NULL) testgdppc <- y/x GDPpcC <- gdpCountry/popCountry GDPpcR <- gdp2/pop2 gdplin["DEU",,] denomR <- pop dataR <- gdp2 nomibaseC <- gdpCountry[,2010,] denomC <- popCountry convmethod="lin" convrate="standard" replacemissing <- FALSE adjustnomiR <- TRUE adjustdenomR <- TRUE