diff --git a/scripts/iterative/EDGE_transport.R b/scripts/iterative/EDGE_transport.R index a29aa814d0ef8b05e71c7a301740ab736d6679fa..4c399c0ed5c8123d2fc9278719b685bf7fbd3343 100644 --- a/scripts/iterative/EDGE_transport.R +++ b/scripts/iterative/EDGE_transport.R @@ -11,7 +11,9 @@ opt = parse_args(opt_parser); library(data.table) library(gdx) library(gdxdt) -library(edgeTrpLib) +#library(edgeTrpLib) +require(devtools) +load_all("../../../../../../edgetrplib/") ## this library has to be on the inconv_comp branch library(rmndt) library(moinput) @@ -86,6 +88,14 @@ pref_data = inputdata$pref_data ## Moinput produces all combinations of iso-vehicle types and attributes a 0. These ghost entries have to be cleared. int_dat = int_dat[EJ_Mpkm_final>0] pref_data$FV_final_pref = merge(pref_data$FV_final_pref, unique(int_dat[, c("iso", "vehicle_type")]), by = c("iso", "vehicle_type"), all.y = TRUE) +pref_data$FV_final_pref[, check := sum(value), by = c("vehicle_type", "iso")] +pref_data$FV_final_pref = pref_data$FV_final_pref[check>0] +pref_data$FV_final_pref[, check := NULL] + +pref_data$VS1_final_pref = merge(pref_data$VS1_final_pref, unique(int_dat[, c("iso", "vehicle_type")]), by = c("iso", "vehicle_type"), all.y = TRUE) +pref_data$VS1_final_pref[, check := sum(sw), by = c("vehicle_type", "iso")] +pref_data$VS1_final_pref = pref_data$VS1_final_pref[check>0] +pref_data$VS1_final_pref[, check := NULL] ## optional average of prices average_prices = FALSE @@ -104,8 +114,9 @@ if (file.exists(datapath("demand_previousiter.RDS"))) { ES_demandpr = readRDS(datapath("demand_previousiter.RDS")) ## load previus iteration number of stations stations = readRDS(datapath("stations.RDS")) - ## calculate non fuel costs and - nonfuel_costs = applylearning(gdx,REMINDmapping,EDGE2teESmap, demand_BEVtmp, ES_demandpr) + ## calculate non fuel costs for technologies subjected to learning and merge the resulting values with the historical values + nonfuel_costs = merge(nonfuel_costs, unique(int_dat[, c("iso", "vehicle_type")]), by = c("iso", "vehicle_type"), all.y = TRUE) + nonfuel_costs = applylearning(non_fuel_costs, gdx, REMINDmapping, EDGE2teESmap, demand_BEVtmp, ES_demandpr) saveRDS(nonfuel_costs, "nonfuel_costs_learning.RDS") } else { stations = NULL